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E. E. SALPETER
Neman Laboratory of Nuclear Studies, Cornell University, Ithaca, New Yerk

(Received August 24, 1951}

The integral equation, satished by the momentum-space wave function p(p) for a nonrelativistic two-
body problem with a phenomenological central interaction potential, is solved by means of an iteration
method. A general prescription is given for 6nding suitable trial wave functions, which depend on some
adjustable parameters. Reasonable values for these parameters are found by iteration of the wave function
for particularly convenient values of the momentum. Successive iterations, giving better approximations
p„(p) for @(p), are carried out in a form suitable for numerical work. Besides p„(p), approximations are
obtained for (a) the binding energy for certain bound states and (b) the phase shifts for scattering problems.
For scattering at fairly low energies reasonable approximations are obtained with the same method both
for weak and for fairly strong potentials.

Extensions of the method are discussed for {a) two-body problems including tensor forces, (b) simple
three-body problems, and (c) a relativistic equation for the two-body problem.

I. INTRODUCTION
' 'N a number of current problems in nuclear physics
- - the momentum distribution of nucleons in nuclei is
of importance. For instance, the production cross
sections of fast deuterons by the bombardment of
nuclei by fast neutrons' depend criticaIIy on the mo-
mentum distribution of the protons in the nucleus.
Similarly, the way in which the energy and momentum
distribution of a x-meson and a nucleon produced by
photon bombardment of hydrogen diGers from that for
bombardment of other nuclei again depends on the
momentum distribution of the nucleons in such a
nucleus. It therefore may be of some practical use to
develop further the methods for finding wave functions
in momentum space directly for a particle in a bound
state in a fixed potential. For some problems involving
the escape of slow nucleons from a nucleus it may also
be of use to find the wave functions in momentum space
for a particle of positive energy in the field of a fixed
potential.

Approximation methods have been developed previ-
ously" for solving the wave equation in momentum
space for a particle in a central potential. These methods
are very powerful in cases where the necessary calcula-
tions can be carried out analytically, but are not very
suitable in cases where numerical methods have to be
used. The momentum-space wave function for a non-

relativistic particle in a fixed potential satisfies a well-

known integral equation. It is the main aim of the
present paper to show that a rapidly converging itera-
tion method can also be found in many cases where the
application of a variation method, like that used by
Svartholm, is unsuitable. A general prescription for
finding a reasonably good initial trial wave function for
potentials with a finite range is given and the method
is presented in a form suitable for numerical work.

~ Work supported in part by the ONR.' G. I'". Chew and M. L. Goldberger, Phys. Rev. 77, 470 (1950}.
2 Q. Svartholm, thesis, Lund (1945).
3 M. Levy, Proc. Roy. Soc. (London) A204, 145 (1950).
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II. GROUND STATE IN A CENTRAL POTENTIAL

Consider a bound state of energy E for a nonrelativ-
istic particle of mass M in a fixed potential U(r). We put

k= c= 1; y'= —2ME. (&)

The Schrodinger equation in ordinary space,

L(—&/2~)+ ~(r)]4 (r) =&|i(r), (2)

transforms into an integral equation in momentum
space:

(p'+7')4(P) = —23' d"'P'V(P —P')4(P') (3)

There L(2ir)&V(p)] and p(p) are the p-space potential
and wave function respectively; i.e., they are the
three-dimensional fourier transforms of U(r) and P(r),
respectively.

We restrict ourselves in this section to the special
case of a spherically symmetric potential of finite
"range" p '. The p-space potential is then some spheri-
cally symmetric function V(p; p) which, in most cases
of interest here, is some monotonically decreasing func-
tion of p, decreasing fairly slowly for p~p and de-
creasing rapidly for p))p (usually a simple function of
Lp'+&']). Instead of calculating 8 for a fixed potential
strength, we assume the binding energy E to be known
(which is the case for the deuteron) and that the
potential is

V(p) = ~VO(p; ~), (4)

where Vo(p; p) is a given function. We then have to
solve Eq. (3) for the eigenvalue X and for p(p). We
restrict ourselves further to the spherically symmetrical
ground state wave function p(p), which corresponds to
a configuration-space wave function P(r) with no nodes.

We wish to solve Eq. (3) by an iteration method;
i.e., we assume some initial spherically symmetrical
trial wave function po(p); substitute this on the right-
hand side of Eq. (3) and thus obtain a better approxi-
mation to the wave function, @&(p). On substituting
p&(p) on the right-hand side of Eq. (3), a better approxi-
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TAN&.E I. Trial wave functions $0(r) and &0(p) for some potential shapes Uo(r) and Vo(p), in configuration and momentum space,
respectively, for a ground state of energy (—p2/2M).
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a f(r) is a slowly varying function of r. See reference 2. For large values of P the iterations for the Gaussian potential converge very slowly and the cor-
rect asymptotic behavior p(P) is somewhat different from that of pp(p).

mation still, 42(p), is obtained, etc. It will be more
convenient to use, instead of the p„(p) themselves,

which are then defined by the equation,

(P~+ Y )@ +&(p) = —2~)"d"'O'Vo(p —p'; ~)~-(p') (3)

No general discussion of the convergence, and hence of
the range of validity, of this iteration procedure will be
given in this paper, but in each particular application
the convergence can be investigated fairly easily.

The first step then is to find a general prescription
for a good initial wave function 40(p). For the case of
a monotonically decreasing potential V0(p, p) the cor-
rect wave function will be a monotonic function, de-
creasing with increasing values of (p/p) more rapidly
than V,(p; &). If we took as p, (p) a three-dimensional
delta-function, we would obtain a 4~(p) which is pro-
portional to (p'+ q')-'V, (p; p). Such arguments suggest
that we try an initial wave function of similar form,
but with an extra dimensionless parameter u which can
be adjusted to make agreement even better. Our
prescription for &0(p) is then

40(p) = (P'+v') 'Vo(p/a; ~). (6)

In Table I we give the form of pp(p) for the special
cases of a potential of Yukawa, exponential, and
gaussian shape, respectively, as well as the form of the
potential both in momentum spa. ce, Vo(p), and in
coordinate space, Uo(r). The fourier transforms of 40(p)
can be calculated in most of these cases and give a
rough, but usually simple, approximation $0(r) to the
wave function in coordinate space. For the Yukawa
potential fo(r) has the form of the well known wave
function for a Hulthen potential. For the exponential
potential $0(r) is also a simple function and is given in
Table I. For the gaussian potential fo(r) is a rather
complicated function (see Svartholm) 2 but a simple
function which approximates $0(r) is given in Table I.

In many cases it is impossible, or at least too tedious,
to carry out the integral in Eq. (5), with e equal to
zero, analytically for all values of p. In these cases the
conventional variation method for finding the "best
value" for the parameter e is not very suitable. Usually,
however, the integral can be carried out much more
easily (usually analytically and certainly numerically)

0+1=u~ a= 1.62. (&0)

A similar calculation for pq
——0, P2«p gives a value for

for special values of p, like p=0, p«y, p=gp, p»~.
A simple method for finding reasonable values for u is
to find 4 &(p) for some of these special values p&, p2, etc.,
and define a by means of the equation,

41(pl)/4'1(P2) $0(pl)/$0(P2) ~ (7)

Since both $0 and 4» are in general monotonically
decreasing our criterion (7) means that we are using a
value of a which makes the rapidity of the decrease of
4»(p) with p roughly the same as that of 40(p).

Having fixed the 40(p) to be used by means of Eqs.
(6) and (7), we have to carry out the integrals (5) to
obtain the successive approximations 4„(p). If no
analytic formula can be found for 4 „(p) for a particular
value of e, it is most convenient to calculate 4„(p)
numerically for a number of values of p between zero
and infinity and from this to determine. for these values
of p, a function a„(p) defined by the relation,

4.(p) =(p'+v') 'Vo[p/~-(P); uj.
Whereas 4& (p) is a fairly rapidly varying function,
tending towards zero for large p, a„(p) is a very slowly
varying function and takes on finite values of equal
orders of magnitude for both large and small values of
p, This makes it possible to interpolate fairly accurately
for u„(p) after it has been determined for only a few
values of p. This interpolation furnishes a good approxi-
mation to 4„(p) to be substituted in Eq. (5), 4'„+~(p)
is then calculated for a few values of p, and so on.

As mentioned before, if 4 „(p) is known, it is usually
easier to calculate 4 ~q(0) than 4„+q for other values
of p. We therefore define an approximation to the
eigenvalue X of (3) by means of

X„+,=4.(0)/4 „+g(0). (9)

The approximations X„do not necessarily (unlike the
approximations of Svartholm') form a monotonically
decreasing series, but they are much easier to calculate
and approximate X very closely for even quite low
values of e.

As a very simple (and somewhat fortunate) example,
consider the case of a Yukawa potential for which the
binding energy of the ground state is known to be zero,
y=0. Equation (7) for p~, p2 equal to 0 and ~, respec-
tively, gives u as the solution of
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u of 1.37. Taking a mean of these values, a= 1.50, Eqs.
(5) and (9) give then ) i=1.67 after a very simple
integration. In this case C'i(p) can be calculated
analytically, and ai(p) varies from ai(0) = 1.39 to
ai(~) =1.58. Then X2 can be calculated, its value being
1.6823. The values of ai(p) are then accurate to within
about 1 percent and X2 to within 1 in 10,000.

Approximations to p(p) for the case of a Vukawa,
exponential, and gaussian potential are being calculated
by Mr. J. Goldstein for values of p/p corresponding to
the experimental values for the triplet efI'ective range
for the ri psystem -and for the binding energy of the
deuteron. These calculations are carried as far as C2(p)
and ) 3 and will be reported on in a later paper.

The integral equation (3) holds also for the states of
higher angular momentum. For a central potential V(P)
the wave function p(p) takes the general form,

~,.(p) =~ (p) V.-(0, ~), (11)

where Vi, (8, P) is a spherical surface harmonic in
p-space. Using the spherical harmonics addition theorem
one can derive from Eq. (3) the equation, '

(p'+ 7')4 (p) = -4 kI ~p'p"V (p; p')4 (p'),

. (12)

A method of partial waves can also be applied in

momentum space. The wave function g, (y) in momen-

tum space for a particular value of / is of the form (11)
with m equal to zero. For a scattering problem gi(p)
satisffes an equation which is similar to Eq. (12);
except that (a) y' is replaced by (—k'), where

k= (23M) &

and (b) that the left-hand side contains an additional
term proportional to 8(p —k) whose coefficient deter-
rnines the phase g~. For a monotonically decreasing
potential V(p) of sufficiently low strength, so that at
most one bound state for a particular value of / is

possible, and for sufficiently small energy (k~p), it
seems likely that the methods described in the last
section can be applied to obtain successive approxima-
tions to pi(p) and gi, which converge fairly rapidly.
This method might be particularly useful for some
scattering problems for very low energy where S-
scattering is predominant and where the momentum
distribution for a fixed wave-number k (obtained auto-
matically with this method) is of interest. We shall
restrict ourselves in this section to the case of l equal
to zero and shall omit the subscript l.

The asymptotic expression for the wave function in
configuration space for f=0, ip(r), is then proportional to

Vi(P; P') —=
) dxV [(P'+ P" 2PP'x) &]P—i(x). P'*(r) = sin(kr+ q)/r sing, (14)

For 1 bigger than zero Vi(p; p') is no longer a mono-
tonically decreasing function of p, Vi(0; p') being zero,
but will usually not change sign. For the lowest energy
state, for a given value of 1, pi(p) will have no nodes
and an iteration method could be used to solve (12).
A reasonable initial wave function gati, o(p) could be
used of the form,

@i,o(p)=(p'+v') 'Vi(p!a; ~) (13)

Such an iteration method will probably still converge
fairly rapidly even for moderately large values of l, but
probably not as rapidly as for 3=0. The method de-
scribed in this section is not suitable without modifica-
tion for the higher states for which the wave function
has nodes.

III. SCATTEMNG IN A CENTRAL POTENTIAL

Consider the problem of the scattering of a non-
relativistic particle of definite energy E by a fixed
central potential. If the wavelength of the particle is
not too small compared with the range g ' of the
potential, a partial wave analysis is a convenient
method for solving the problem. Usually one attempts
to solve the Schrodinger differential equation for P&(r),
the radial wave function in configuration space for each
particular angular momentum 3, and the asymptotic
phases q~ then determine the scattering cross section
completely.

' Equation (12) is derived in Appendix 1.

where g is the S-phase which determines the S-wave
scattering cross section. If iP(r) is normalized so that
Eq. (14) is its asymptotic expression, then

(15)

is finite and is equal to the eGective range as defined

by Blatt and Jackson' and by Bethe. ' The fourier
transform of P"(r) is

~-(p) =(2/-) ~- {~(p-k)+W(p -k) I,
(16)

P—= (2/x)k tan~,

where 5(p —k) is a Dirac delta-function. ' Since p(E, E)
is merely a multiple of the difI'erence of the normaliza-
tion. integrals of the two configuration space wave
functions, it can also be written as

n(E, E)=2

happ'I

I @™~(p)I'—I &(p) I'I (»)
~o

if y(p) is normalized to be the fourier transform of ip(r).
For the integra, l (1"/) to be finite, p(p) and qP'(p) must
be identically equal for ~k.

The wave function @(p) satisfies an integral equation,

' J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949).
' H. A. Bethe, Phys. Rev. 76, 38 (1949).
'A derivation of Eq. (16) and some discussion is given in

Appendix 2.
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equivalent to Eq. (3),

(P' k—') I O(y)+~f'&(P k—) }

d"'P'V(y —y')4(y'), (18)

where the constant c is as yet undetermined. We are
interested only in the case kWp, for which the integral
occurring on the right-hand side of Eq. (18) will be of
fairly similar form to that occurring in Kq. (3), and an
initial trial wave function analogous to Eq. (6) for
p/k should again be a good starting point. In the
present case, however, we must choose p(p) so that it
is proportional to Kq. (16) for p—+k. We therefore take
an initial wave function proportional to

&o(P) = }(P' k') '—+f'&(P k)/Pi—}Vo(P/&; v) (19)

with &3& left unspecified.
In the present problem both the total energy E and

the strength of the potential are given. The unknown

parameter to be determined by the iteration method is
the constant P, of the same dimensions as the wave
number k, which determines g and hence the 5-wave
scattering cross section. We define successive approxi-
mations to $(p) by means of

0-(y) = —
}(p' k') '+ f—(p k)/P-+i}—

X if"& p' V(y —y') 4. i(y'), (20)

starting with &i=1. The integral in Eq. (20) is first
evaluated with P„ in the expression for p„ i(p') left
unspecified. Then P„ is determined by requiring that

0-(P0) =0--i(PO)

for some suitably chosen fixed value, po, of p/k (e.g. ,
zero or a value difkring from k by an infinitesimally
small amount). The values P are then successive
approximations to the parameter P which determines
the phase shift. Before this iteration process can be
carried out, a reasonable value for the parameter u

must be found. This is again done by using Eq. (7).
Equation (21) with n=0 and Kq. (7) both contain a
and P~ as unknowns, and these two equations have to
be solved simultaneously. Since the exact choice of u is
not very important, an approximate solution of these
two simultaneous equations is sufhcient.

One nice feature of this method is that it converges
fairly rapidly both for a very weak potential and for
one strong enough to allow one (but no more) bound
state. For a potential, for instance, strong enough to
introduce a phase-shift near ir/2 (resonance) the values
obtained for P„will be very large compared with k;
the term involving the delta-function in the integrand
of Eq. (20) will be unimportant, and the iteration will

proceed in close analogy to that for bound states.

For a very weak potential, on the other hand, Eqs.
(20) and (21) with e= 1 will yield a value of Pi much
smaller than k and the term involving the delta-function
in the integrand of Eq. (21) will be much more im-
portant than the term involving (p' —k') '. Complete
omission of this term involving (p' —k') ' in the ex-
pression for &0(p') in Eq. (21) would be equivalent to
first-order Born approximation. With po difFering from
k by an infinitesimally small amount, and making this
omission, Eqs. (20) and (21) yield an approximation to
Pi which is quite independent of the value used for a:

Pi' ' ———16m.Mk' dyy V(2ky).
Jo

Since P&«k, Eq. (16) gives

(22)

A simple calculation shows that this expression is
identical with the usual first-order Born approximation
to q.

»i~& = —2Mk —' dr sin'(kr) U(r). (24)

where
Sip(0,)=3[(ei r)(e, r)/r'] —(o, e,)

and Vr(p) is proportional to

(27)

d&'&r Ur(r)e'i"P, (cosa„). (28)

More generally, an expression independent of the choice
of a and equivalent to the nth Born approximation
could be derived from the nth iteration of the present
method by the omission of certain terms. If, however,
the iterations are carried out as described above without
any omissions, then even Pi, obtained after one single
iteration, contains (at least approximately) corrections
proportional to higher powers of the potential, in
addition to the linear term Pi'~&. In fact, as discussed
in the last paragraph, }Bi remains a fairly good approxi-
mation even for a fairly strong potential for which the
Born approximation breaks down completely.

IV. OTHER APPLICATIONS

(A) Tensor Forces

The method discussed in the preceding two sections
for the evaluation of momentum-space wave functions
for a two-particle system can be extended to the case
of an interaction potential which contains a tensor-force
term in addition to the spherically symmetrical central-
potential term. A potential in configuration-space of
the form,

U, (r)+g Ur(r)S, i(8„) (25)

corresponds to a momentum-space potential of form,

V (P)+gV (P)~ (0 ), (26)
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For most of the commonly used simple forms of Ur(r)
the function Vr(p) is usually fairly complicated. There
are, however, a few types of tensor-potentials for which
both Ur(r) and Vr(p) are fairly simple functions. For
problems where calculations have to be carried out
both in conhguration and in momentum space it might
be useful to employ such potentials. For instance,

Vr(P) =P'/(P'+I ')'

corresponds to a Ur(r) proportional to

(p.—1+p)~
—&r

(29)

(30)

A consideration of momentum-space potentials leads to
a more direct understanding of the well-known fact
that, for very low energies, a tensor potential of form
Ur(r) is much less important than a central potential
of the same form, U, (r)= Ur(r). Note, for instance,
that Vr(p) of the form (29) is proportional to p' for
small momenta p, whereas the momentum-space po-
tential V,(p) corresponding to a central potential U, (r)
of form (30) is not.

The momentum-space wave function for the neutron-
proton triplet system, for instance, with an interaction
potential given by Eq. (26) is of the form,

where x ' denotes one of the triplet spin-wave func-
tions. The Schrodinger equation in momentum space
can then be reduced to two coupled integral equations
involving the two functions P.(p) and gr(p). For the
case of the ground state of the deuteron, where the
percentage of D-state is known to be small, an iteration
method analogous to that described in Sec. II should
be applicable. As initial trial wave functions one might
take, in this case,

4.(P) = (P'+ v') 'V.(p/o);

&r(P) = (P'+7') 'GVr(P/&),
(32)

where there are now three parameters, u, b, and 6, to
be determined (instead of one, a, as in Sec. I).

(B) Three-Body Problem

The problem of the ground states of H' and He',
using only central potentials, has already been treated
by Svartholm using a variation-iteration procedure in
momentum-space. The momentum space wave function
is here a function of two momentum variables p~ and p2.
As Svartholm' has already pointed out it is convenient
to employ as an initial wave function pp(pq, pp) a
function of (PP+PpP+p&. yp) only. As a starting point,
either for a variation-iteration method as used by
Svartholm or for an iteration method as described in
this paper, more rapid convergence is obtained when an

initial function of form,

A(p4 pp) (P& +0p +p&' pp+7 )
XVpL(P& +Pp +p&'pp)/o; ~] (3&)

is used than with the functions previously used by
Svartholm '

(C) Relativistic Two-Body Equation

In the following paper' an integral equation is de-
rived, from a relativistic treatment of the two-body
problem, for a wave function P(p, p), which is a function
of a momentum variable p and an energy variable p.

This integral equation is of the form,

F(P p)f(p p)

d~'&p'dpV p(p y', p——p', p)P(p', p'). (34)
aJ

By analogy with Eqs. (3) and (6) an initial trial wave
function of the form,

(33)

can be used. Reasonable values for the two parameters
a and b can then be found by means of the equation
(analogous to Eq. (7)),

pl(p1q pl)/0'1(p2) p2) = Qp(pl( pl)/pp(Ppq p2) (36)

for suitably chosen combinations of the values p&, p,

and pp, pp.

The author wishes to thank Mr. J. S. Goldstein for
some assistance with this work and the ONR for
support of part of the work.

APPENDIX L DERIVATION OF EQ. {12}

Ke shall 6rst derive a general property of spherical
harmonics, Eq. (A4). Let

(0~) —P Iml (z)simP

where 0 denotes the unit vector (8, P) and x=cos8.
From the spherical harmonics addition theorem for
P~(cos~0 —Op~) and from the normalization integrals
for the associated Legendre polynomials' it follows that

1 2%'

J , (o),(-.(o-o()
—1 Q = (4pr/21+1) F'i, (0). (Ai)

We can expand V~, (0+Op) in terms of V~, ~ (0),

(A2)

8 E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951}.
9 E. Jahnke and F. Emde, Tables of Portions (Dover Publi-

cations, New York, 1945), pp. 115 and 116.
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Lim I dxe '*cos(yx)=lr8(y),
e-+0 g

iio(0o) = I'i, (0o).

Multiplying Eq. (A2) by P&(x) and integrating over x We therefore have the relations,
and p, we obtain, after changing the variable of
integration from 0 to 0'—= (0+Oo) and using Eq. (A1),

If f(t1) is an arbitrary function of tt, not depending on

p, it follows from the above equations and from the
orthogonality property of the spherical harmonics that

pl ~2m'

J' dx d4I'l, ~(e+8 )fo(~)
—i 0

=2orI', „(0o) dxPl(x)f(8). (A4)
—1

Consider Eq. (3) for P&, (p) of the form (11) with p
parallel to the unit vector 00. Let 0 now denote
spherical polar coordinates with the vector 00 taken
as axis. Equation (3) then becomes

(p'+7')4i(p) I'l. -(eo)
Qo p1 rio2x

dpp"y, (p')
0 ~0

XI [(p-+p'-2pp'x)~]&, , „(e+e,). (As)

Using Eq. (A4), we may reduce Eq. (A5) (after dropping
the suffix zero) to Eq. (12) of the text.

Lim dxe '* sin(yx) = (1/y),
e~0 g

where it is to be understood that the principal part has
to be taken of any integral in which this term (1/y)
occurs.

To obtain the fourier transform qP'(p) of the wave
function iP"(r), Eq. (14), we first make the fourier
integral definite by adding a convergence factor e '"
and then proceed to the limit of e tending to zero.

Xl ~1

y-(P)=(2or) &Ljm dyyoe '" dx~0 J 0 -1

=(2n.) &(p sining) 'Lim lr dre "
~-+0 J 0

X {sinrl [sin(Pr+ kr)+ sin(Pr —kr)]

+cosrl[cos(Pr kr) —c—os(Pr+ kr)]}. (A9)

DERIV&T10N 0p EQ it~) Remembering that both p and k are positive, so that

We first note that, for an arbitrary analytic function 5(P+k) can be rePlaced by zero, and using Eqs. (AS),

f(y),
we then have

~ QO oO

Lim dyf(y) i dxe "cos(yx) = orf(0),
e~0 J

QO 0

Lim dyf(y) dxe '* sin(yx)
e~0 g

(A6)

J0
dyf(y)/y,

dyf(y) &(y o) =f(o). - (A7)

where 6 denotes the principal part. The Dirac delta-
function 5(y) can be defined by means of its property

(p-k) r(p-k) = 0, (A11)

the factor p
' in Eq. (A10) can be replaced by k

—',
and Kq. (A10) then reduces to Eq. (16) of the text.

It also follows from Eq. (A11) that the coefficient c
of the delta-function in the integral equation (18) is
completely arbitrary. Hence, p(k) cannot be deter-
mined from Eq. (18) alone, but is determined from the
condition p(k) = @"(k). It should be noted that,
throughout Sec. III of this paper, the principal part
has to be taken of any integral over p in which the
term (p' —k') ' occurs.

@"(p) = (n./2) & cotri {p
—'b(p —k)

+ (2/or) tauri/(P' —k') }. (A10)

Since, from Kq. (A7), we have


