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Four methods for nuclear polarization and alignment are discussed and compared. In particular, a general
theorem regarding the leading term in the expression for nuclear polarization by hfs coupling with external
6eld is obtained. A general method is derived for treating the computation of higher order terms in the
expansions of these quantities, as well for use with complicated hamiltonians, and application is made to
three cases of interest. It is shown that the higher order terms are very small, in cases of interest, compared
to the leading terms.

I. INTRODUCTION

'HE first suggestion that nuclei can be polarized
experimentally was advanced by Simon' in 1939.

A thermodynamic argument indicated that the direct
coupling of external magnetic fields of 10' gauss to the
nuclear spins at temperatures of 0.01'K would decrease
the entropy of the nuclear spin system by 20 or 30
percent. Since that time, three alternative methods have
been proposed. One is the polarization of nuclei by
hyperfine coupling, with an external magnetic field
polarizing the electrons, which was proposed independ-
ently by Rose' and Gorter' (hereafter referred to as
R-G polarization). A second method, due to Pound, '
utilizes the electric quadrupole splitting in crystals and
results in a change in the second moment of the nuclear
spins only, i.e., an alignment.

%e follow the nomenclature introduced by Bleaney and use the
term polarization to indicate a resulting net magnetic moment of
the nuclei. Alignment will indicate a condition in which the odd
nuclear moments ar'e zero but in which the even moments depart
from their values for complete spatial isotropy.

Finally, there is the recent suggestion of Bleaney'
utilizing the anisotropic hyperfine structure, which
sometimes occurs in paramagnetic ions in the solid state,
to obtain an alignment. Of the four methods, the re-
quirements with regard to field strength and tempera-
ture are most favorable experimentally for the R-G
polarization. Next in order of difhculty are the Pound
and Bleaney alignments, and finally the direct polariza-
tion makes the greatest demands as far as large field
strengths and/or low tempera. tures are concerned.

Nuclear polarization, in conjunction with polarized
neutron beams, can be used to determine the spin of the
compound state resulting from neutron capture. ' By
simply observing whether the induced activity increases
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or decreases upon reversal of the neutron polarization,
we can determine the compound state angular momen-
tum from the two choices I~-', where I is the spin of
the target nucleus. Alternative methods mould observe
the capture y-rays or the transmission of the neutron
beam. Yet another approach is to observe the deviations
from isotropy of the radiations (for example, y-rays)
from polarized (or aligned) nuclei. ' Here a knowledge
of the multipolarity of the emitted radiation is required
in order to obtain information on the excited level. This
is the only method that can be used for aligned nuclei.
Finally Simon' has suggested that polarized nuclei can
be used in further adiabatic demagnetizations to obtain
temperatures of the order of 10 'K.

It is the purpose of this paper to discuss and compare
the various methods of nuclear polarization and align-
ment with a view to clarifying the underlying assump-
tions that are made in the predictions of the magnitude
of the sects. In Sec. II we will derive expressions for
the polarization or alignment resulting from the four
methods. In addition a general result regarding the
leading (and most important) term in the R-G polariza-
tion is derived. Section III will contain a method of
calculation which is quite useful for complicated hamil-
tonians and for higher order terms.

II. LOWEST ORDER POLARIZATION
AND ALIGNMENT

The complete expression for the expectation value of
an observable, when we are dealing with a statistical
ensemble, is obtained by use of the density matrix. This
is defined in the usual fashion as

psj= ~ Cga Csa)
g a-I

where cI, represents the expansion coefficients of a
given system of the ensemble, P„ in terms of a basic
representation NI, .

lp~ —Q fg C/g~Q/g ~ (2)
7 J. A. Spiers, Nature 161, 807 (1948). As shown by H. A. Tol-

hoek and S. R. deGroot, Physica 17, 81 (1951), in the case of P+
emission an anisotropy is observed only if the P-particles are ob-
served with a polarization-sensitive detector. This would require,
for example, a scattering of the P particles before they reach the
detector.
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where l, is the s-component of the nuclear spin and T
is the temperature of the system. The alignment is
defined as

Tr {I,' exp[—X/kT] } I+1
I2 Tr{exp[ —X/kT] I 3I

(6)

and represents the excess of the normalized second
moment over the isotropic value represented by the
second term in (6).

It will be convenient to work in the strong field repre-
sentation, in which case sums over electronic and nu-

clear states may be done separately. %e will use the
notation Trg and Tr~ to indicate the partial sums over
the electronic or nuclear states, respectively.

Let us consider the various hamiltonians that enter
into the four cases of interest. Since all experiments are
necessarily done at helium temperatures, or below, the
available states of our spin systems are just the lowest
degenerate states. In this spin manifold the typical
hamiltonian for a paramagnetic salt with complete
quenching is given by Abragam and Pryce' as

X=+; {D;Sp+g;pS;H,+A;5;I,+Q;I I

—gp~H I. (()

The first term represents the second-order splitting of
the electronic spin degeneracy by the combined action
of the spin-orbit coupling and other terms. The Q;I;'-

term describes the nuclear spin splitting due to the
interaction of the quadrupole moment of the nucleus
with the electrons and the crystalline field. %e have
chosen coordinates along the principle axis of the crys-
talline electric field. The usual range of values of the
constants are 3~0.10 ' cm ', D~10 ' —10 cm

P 10-'cm 'gauss ', Q 10 '—10 'cm 'and P,~ 10 '
cm ' gauss '. In addition to these interactions there
exist various spin-spin interactions between neighboring

See R. C. Tolman, The Principles of Statistical mechanics
(Oxford University Press, London, 1948), p. 347.

9 A, Abragam and M. H. L. Pryce, Proc. Roy. Soc. (London)
4205, 135 (1951).

The sum in (1) is taken over all the systems of the en-
semble and the expectation value of an observable 0 is

given by
(0)= «I Op]/Trh&] (3)

In particular, the density matrix for a system in thermal
equilibrium, at a temperature T, is given by

p= exp[ —X/kT],

where X, is the complete hamiltonian of the system and
where we are using a canonical ensemble.

The degree of nuclear polarization of a statistical
ensemble having a hamiltonian K is conveniently
defined as

Tr{I,exp[ —X/k2']I

I Tr{exp[—X/kr]I
'

ions which we will lump together in the general term
G(S) with the understanding that it is a function of the
electronic spin and space coordinates only. Direct
nucleus-nucleus and nucleus-neighboring ion interac-
tions are small and may be neglected. Finally, it should
be noted that the temperatures available at present for
practical nuclear polarization work are those resulting
from adiabatic demagnetization; viz. , of the order of
0.2'K. Thus we see that kT will be large compared with
all terms in the hamiltonian except for the term
Pg;EI,S; when fields of the order of 10' gauss are used,
as is customary. Saturation efI'ects are thus of interest
only for the direct coupling between electron spin and
external field.

[(—1)./(kT). n!]Tr[I,X.]. (~)

This expression has n terms which are linear in A, the
prototype term of this set being

(—1)"A;
Tr[I~;I;5;X," ' ']

(kT) "n!

I(I+1)(2I+ 1)A.(—1)"
Trx[X."5 X " " '] (10)

3(kT)"n!
since

and where

Tr~[I,I,]= -',I(I+1)(2I+1)8„,

X,=P; g;PS;H,+G'(5),

contains all the purely electronic terms. Making use of
the invariance of the trace to cyclic permutations Eq.
(10) becomes

—I(I+1)(2I+ 1)A, (—1)"—'

3nkT (kT)"—'(n —1)!

XTrE[S,X," ']. (ll)

Recombining all our terms we obtain

—(I+1)A, Trs{S,exp[ —X,/kT]I
fx= (12)

3k T Trx {exp[ —X,/k T]I

"Since the various terms of our hamiltonian do not commute,
we cannot obtain terms of higher order in (A/kT) in closed form
by the method of this section. However, a simple result will still
hold for the (A//kT) term.

(a) Polarization by hfs Coupling (R—G)

We can write the appropriate hamiltonian as

X=g;PS;H,+A,S,I,+G'(5),

where we have dropped the small quadrupole and direct
nuclear coupling terms in Eq. (7) and where we have
combined the spin-splitting (D) term and G(5) in the
term G'(5). We wish to evaluate the leading term of f~
in an expansion in powers of (A/kT). '0 If we expand
the exponential in Eq. (5), we obtain the general term
for the numerator
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Trz }S, exp[ —X,/kT] }

S Try{exp[—X,/kT] }

(13)

so that f„=1 corresponds to complete saturation of the
electron spins. Therefore,

where the result for the denominator follows from noting
that the leading term is (2I+1) Trztexp[ —K,/kT]}
and that the linear term in (A/kT) vanishes. Neglecting
the very small e6ect of the hfs coupling on the degree
of electronic polarization we write for the electron
polarization

The inclusion of a term AP,I, will not alter this result,
since there is no tendency to polarize the electrons with-
out an external field. For fields with less than tetragonal
symmetry we must use the general quadrupole term
given in Eq. (7). This method requires a single crystal
since there is no external field to give a preferred direc-
tion in space.

(c) Alignment by Anisotropic hfs (Bleaney)

No external magnetic field is required. If we assume
tetragonal symmetry and neglect the quadrupole term
in (7), we have

fN= [S(I—+1)A*/3k'']f. , (14) x=D[S,' S(S+—1)/3]+AI,S,+B(IQ.+I„S„). (17)

(b) Alignment by Quadrupole Coupling (Pound)

No external field is necessary here. In fact there is no
necessity for the use of a paramagnetic salt. For sim-

plicity let us assume that we have a crystalline field of
tetragonal symmetry. Under these circumstances the
appropriate hamiltonian is simply

X=Q[3I,'—I(I+1)], (15)

where Q= eqX/[4I(2I —1)]and q is the nuclear quadru-
pole moment, X is the second derivative of V (the
intercrystalline field) at the nucleus, and z is the axis of
symmetry of the field. Then,

I'kT 2I+1

P(I+ 1)'
Tr[I,4]—

3

Q(I+1) 4
—I(I+1)—1,

5IkT 3

(16)

where the result follows immediately from an expansion
of the exponential, noting that

Tr~[I,']=I(I+1)(2I+ 1)(3P+3I—1)/15.

"J.W. T. Dabbs and L. D. Roberts, Phys. Rev. 83, 201 (1951)."J.H. Van Vleck, J. Chem. Phys. 5, 320 (1937).

which is the result previously communicated. '
The only assumption made in this derivation is that

A /k T((1.This permits the following general statement:
To first order in A/kT the complete effect of all inter-
electronic interactions on the R-G polarization is con-
tained in their inhuence on the electronic susceptibility.
Since this quantity is readily measured in an experiment
and is usually of order 0,8—0.9, all uncertainties due to
these effects can be eliminated. In particular the require-
ments stated by Bleaney, ' magnetic dilution and cooling
of the salt by contact with a second paramagnetic salt,
are seen to be unnecessary. Experiments at this labora-
tory" have amply demonstrated that low temperatures
and 1arge electronic polarizations are obtained at quite
small magnetic fields. The inhuence of dipole-dipole
coupling on f, has been thoroughly discussed by Van
Vleck. "

noting that

Tr[I 2I 2]=I(I+1)(2I+ 1)(2P+ 2I+ 1)/30.

This method also requires the use of a single crystal.

(d) Direct Polarization

There is no necessity to use a paramagnetic salt in
this case. The only essential term in the hamiltonian is

simply gP&H. I and the degree of polarization is given
exactly by the well-known result

fx =Br(gPn H/k&),

where Br(y) is the brillouin function. To first order in
1/kT this becomes

j~=gP~II(I+1)/3kT,

as may be verified by use of Eq. (5).

III. HIGHER ORDER EFFECTS

(19)

The direct calculational techniques used up to this
point are not very convenient when we wish to obtain
the general term of an expansion of the density matrix

The alignment cannot be calculated as simply as in our
previous cases. This is due to the non-commutativity of
the purely electronic and hfs terms and to the fact that
the leading term is of order (A/kT)'. Instead this case
will be treated by the general method of the next sec-
tion. For the present let us assume that D=O. We im-
mediately obtain

S(S+1)

6(kT) 'I'(2I+ 1)

'A' TrN[I, ']+2B' Trx [I 'I,']
,'I(I+ 1),—-

S(S+1)I(I+1)
1+ (A'+ 2B')

18(kT)'

which becomes

(A' —B')(I+1)S(S+1)4
—I(I+1)—1, (18)

90I(kT)' .3
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where m takes on the values (+, 0, —), and 1' = F
By use of the commutation rules

in terms of only one noncommuting part of the hamil-
tonian. The straightforward calculation leads to a result
which is expressed as an in6nite series for each term.
This complication can be avoided by the following
procedure.

We wish to expand the operator p=exp[ —X/kT),
where X=Xo+Xi, in powers of Xi/kT. In general Xo
and Xq do not commute. Let r= —1/—kT. Now if the
operator P obeys the "equation of motion, "

SoS~=S~(So+1), SoS =S (So—1),
we And

Xi'(r) =AI"S exp[ —amr]. (27)

Then to first order in (A/kT) the density matrix is

p =exp[aSor)+AI~ exp[aSor]S t exp[ ma—ri)dry
(20)X@=8@/er;

Taking the trace of the electronic states we have

TrE[p] =Z—(AI,/k T) TrE I So exp[aSor] I,
where

a particular solution is

(21)exp=[xr)= p

Let us transform to the "interaction representation""
by defining an operator

P=exp[ —Xor)@, (22)
then

elf/8r =Xl (r)lp

Z= Tr~ f exp[aSor) I,
and by use of Eq. (5) we obtain the previous result of
Eq. (14).

(23) The second order term is

X. '(7) =exp[ —Xor]xi exp[xor);
note that P(0) = P(0) =1 and @=exp[Xor)f. Equation
(23) can be solved immediately, by an iteration tech-
nique, in powers of X&'(r) as

po=A'I"I" exp[aSor)S S„

X exp[ —mari] '

exp[ naro)d—rodr&J,

where

&=P S
n-0

Only the terms S~S, SM+, and SoSo will contribute to
a trace over the electronic states. The integrals are
readily evaluated

p'1 prl pea 1-
S~— ' ' '

~

X$ (rl) ' ' 'Xi (ra)drys' ' ' dr'I)

&1

I(+ —)=) exp[—ari] t exp[aro)drgr,
0 0

= (ar+exp[ —ar]—1)/a',

Using Eqs. (21) and (22) we can write the density I( , +)=(—or+exp—[ar] 1)/ao, —
matrix as

p= exp[ —X/kT) =exp[Xone) P S„.
n=O

(25) The diagonal elements of S S„are given by use of

Thus we have obtained the expansion in powers of 3CI.
%e apply this method to three cases.

(a) Second-Order Term in R—6 Polarization

For simplicity we take X=Xo+Xi with

X,=gPS H= S„aX,=—AI S, (26)

S+ =-', [S'—S,'—S,],
SM, =-', [S'—S '+S ]
SoSo=S,'.

Summing over electronic states we have

po= (A/kT)oZ(ao+aiI, +aoI )/8
where

(2g)

where we have chosen the s-axis along the direction of
the external fieM and set e= gPII. Ke make the usual
definitions:

S~= (S,+iS,)/v2, S = (S, iS„)/V2, So ——S,.—
Then

X,'(r) =exp[—aSor]A(I S) exp[aSor)
=AI" exp[ —aSor]S exp[aSor),

&o = ——,'I(I+ 1)Mi8,
a& ——M'&[1—(8/2) coth(8/2)],
Oo= ioe'S(S+1)+-;eiiI,[1+8COt (e/2)],

and the erst moment of the electronic spins is given by

M&= oi [coth(8/2) )—(S+oi) coth(S+ oi) 8,

noting that
"The use of the interaction representation is a convenient and

familiar device in quantum electrodynamics. For the definition
and use of the interaction representation see, e.g., I. Schwinger,
Phys. Rev. 74, 1448 {1948).

with
Z = [sinh(S+ oi)8)/sinh(8/2),

8=gPH/kT.
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1)A y'
(I+1)sf.

3 KkT)

1—(8/2) coth(8/2)
(29)

The function in the brackets has the maximum absolute
value +~'~ and thus the entire second term represents a
correction of less than one percent when T=0.2'K and
A=0.01 cm '.

(b) Bleaney Alignment Including the
Electronic (D) Term

Here X=X0+Xi with

X,=D[5,'—-',S(5+1)],
Xi=AI.S,+ B(I,S,+I„S„).

This calculation follows along similar lines. In general,

5 (r) =5 exp[ Den(250+—ra) r], (30)

and we find that the term in (1/kT)' (after taking the
electronic trace) is

p2 2(A/k T) 'I——,'M2Z

+-'(BlkT)'[I(I+1)—I*']G( ) (31)

G(&) =Trz {exp[X01"][5(5+1)—5,' —5,]F(r, 5,)},
exp[D(25, +1)r]—1—D(25,+1)r

F(v, 5,)=
D'(25,+1)'r'

Z= Trz{exp[Xorj},

These results can be inserted in Eq. (5) to obtain the
next correction to fN, which is

1(A )' ag

}
(I+1)—

3 (kT) 8'

At temperatures of O. i'K this term is of the same
order as the leading term which means that the influence
of the electronic splitting must be carefully investigated
for a given experiment and several terms taken in the
expansion. Alternatively, one can choose an ion with
S= ~ and then the D term reduces to a constant factor
in the hamiltonian and has no eGect, as may also be seen

by the form of our result.

(c) Spin-Spin Coupling of Two Iona

The general result stated in Sec. II showed that to
first order in A/kT the spin-spin coupling between ions
only affected f~ by altering the value of f. It i.s of
interest to inquire as to the efI'ect of this coupling on
the next higher term (A/kT)'. To investigate this we
assume the model of a system composed of two ions
coupled together by spin-spin coupling. If X represents
the coeKcient of the spin-spin coupling, we can expand
the (A/kT)' term in powers of (l~/kT). The zero order
term is simply part (a) of this section. The first term
of interest is of order A2l~/(kT)'. We take X=XO+X,
with

X,=gpH (Sr+ S2)+XSi S2,

X,=AI, S,+AI2 S2,

where the subscripts refer to a particular ion. Since we
have expanded in powers of X, the new Ko is just the
same as in part (a). Carrying through a similar analysis
we find

pm'= —[A'UEiZ/2(kT)'](ao+aiIg+a2I. '), (34)

where

ao ———[2I(I+1)/P] {4Mi[1—(8/2) coth(8/2)]
+M i8[1+8coth(8/2)]+ S(S+1)8'},

and M2 is the second moment of the electronic spins.
VVe can evaluate the traces by expanding in powers of
(D/kT) The zero ord. er term reduces to our previous
result of Eq. (18).The linear term in (D/kT) becomes

a, = (Mi/82) [8—3 coth'(8/2)+6 coth(8/2)]
+[45(5+1)/8'][1—(8/2) coth(8/2)],

a& —— [ao/I(I+1)] —2S(S+1) coth(—8/2)
—M,[2S(S+1)—1+3coth'(8/2)],DrS(5+1)(25+1) 4

—5(S+1)—1I
ps =

60(kT)' 3 and Mi, 8, and z are the same as in case (a). The correc-

X {2A'I,'—B'[I(I+1)—I,']} tion term to the R-0 pol»ization is then

and this is easily shown to lead to the following correc-
tion term to the Bleaney alignment:

f~'= —[A')i/6(kT)']Mr(I+1) ai

= —-'(A/k T) '(X/k T)S(I+1)f,ai.
(35)

—D[2A'+B'] (I+1)
5(5+1)

900(kT)' I
4 4

X -I(I+1)—1 —5(5+1)—1 .
3 .3

The term e~ is well-behaved and has a maximum abso-
lute value of about +S(S+1)/3. Thus this term is still
small compared to the linear term in A/kT for A 0.01
cm ', T~.2 'K, X/kT~0. 1.

(32) These three cases illustrate the wide applicability of
the method.


