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These curves are plotted in Figs. 1 to 4 and numerical
values are listed in Tables II and III.

The curves have the peaked shape characteristic of
photonuclear reactions. In three of the four cases such
cross-section turn-overs cannot be explained as re-
sulting from a cascade competition with other photo-
nuclear reactions but must be due to a peaking of the
photonuclear absorption cross section.

The (p, p) reactions peak at slightly higher photon
energies than the (y, I) reactions and their cross sec-
tions near the peak are considerably greater. These
large cross sections are remarkably independent of wide
variations in photonuclear thresholds and of the char-
acteristics of the residual nuclei. These facts can be
explained in terms of a primary interaction of high
energy photons with nuclear protons.
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Radiation Reaction in Relativistic Motion of a Particle in a Wave Field
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An approximate solution of the equations of motion of Dirac's classical theory f pointlike particles is
obtained for a particle in the field of a plane wave, under the assumption that the radiation reaction terms
in these equations can be considered as small. The appearance of runaway terms in this solution is avoided
by letting the interaction set in gradually. Considerable simplification is achieved by restriction to the
domain of high relativistic energies where the transfer of energy and momentum from the wave to the
particle appears to be mainly due to radiation reaction. A quantitative discussion of the conditions of
applicability of the formulas obtained is made possible by the assumption that there is correspondence
between a photon and a classical wave train of finite length. This assumption leads to the conclusion that
the classical formulas can be valid for arbitrarily high energies. An estimate of a lower limit for the duration
of the interaction. between particle and wave train yields an expression which resembles formulas for life-
times of unstable particles both in its dependence upon fundamental constants and in its increase with the
energy involved in the process.

L INTRODUCTION

'HE transfer of linear momentum from a wave to a
particle is usually considered as a typical

quantum effect, particularly in the E.R.' domain. It is
the primary purpose of this paper to show that in
classical theory such momentum transfers can be
accounted for as radiation reaction effects, and that
correspondence can be established between relevant
results of classical and quantum theory. The equations
of motion of Dirac's classical theory of charged, point-
like particles in an electromagnetic' field are used as
starting point and transformed in a way which sim-

plifies the treatment of the motion of a particle under
the inhuence of a plane wave (Sec. II). A solution of
the transformed equations is worked out explicitly in a
first approximation, under the assumption that the
radiation reaction terms can be considered as small.
Runaway terms in this solution are made to disappear
by the device of letting the interaction set in gradually,
but no attempt is made to prove the consistency of this
procedure (Sec. III). Restriction to the E.R. domain
leads to simple formulas which are not likely to depend
upon any particular assumptions (Sec. IV).

A quantitative discussion of the conditions of appli-
cability of the first approximation is made possible by

E.R. for extreme relativistic, N.R. for nonrelativistic.
~ P. A. M. Dirac, Proc. Roy. Soc. {London} A167, 148 {1938).

the assumption that the particle absorbs the energy of
a photon while interacting with a wave train of finite
length. This leads to the conclusion that the first
approximation is likely to be valid for arbitrarily high
energies. At first sight such a conclusion seems sur-
prising, since in the N.R. domain the relative order of
magnitude of the radiation reaction terms is given by
the expression —,'e'a&/mc' (co angular frequency) which
becomes larger than unity for photon energies
Lr&205mc'. But radiation reaction makes the particle
recede in the direction of incidence of the wave. This
effect, though small, is cumulative, and can account for
large momentum transfers in the E.R. domain. It leads
to such a reduction of the frequency of the wave relative
to the particle that, on the average, the ratio of the
radiation reaction terms to the main terms in the
equations of motion does not exceed the order of mag-
nitude of the fine structure constant, e'/kc —1/137
(Sec. V). Analogous results have been previously ob-
tained in the quantum theory of radiation damping. '

The same assumptions lead to an estimate of a lower
limit for the duration of the interaction between particle
and wave train. The expression obtained for this limit

3 For scattering of photons by charged, spinless particles, the
case corresponding to the proposed semiclassical treatment, see
E. Gora, Z. Physik 120, 121 (1943).The present paper originated
from 'an attempt to find a classical analog to the results obtained
there.
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increases with the energy of the incident photon in a
way analogous to the relativistic increase of the lifetime
of unstable particles, and resembles the formulas for
meson lifetimes in its dependence upon fundamental
constants. This result suggests that one may have to
distinguish between interaction times and lifetimes in
interpreting meson processes (Sec. VI).

H. TRANSFORMATION OF THE EQUATIONS
OF MOTION

Dirac' has shown that the equations

bv—~—bv vp = (8/m)vpFp"g~

represent the correct equations of motion for a charged,
pointlike particle in an electromagnetic Geld. e„ is the
velocity four-vector (sp, v~, s2, v~), v'= bo vP vm

—bg',

and b= ',e'/ md' -is a constant characteristic for the
radiation reaction terms. Dots denote differentiation
with respect to the proper time of the particle in Eq.
(1), but from now on they will be used to denote dif-
ferentiation with respect to normal time. F„"~ is the
6eld tensor of the incident 6eld. The units used will in
general be such that the velocity of light c= j..

In treating the motion of a particle under the inQuence
of a plane wave we use the coordinate system x=x~,

x2 8 x3 5 xQ and choose the 2 axis as direction of
incidence of the wave which we represent in the usual
way by Z, =B„,E„= B„E,=B—,=O. In conformity
with this notation we write

g= (1—s )-&= so, s. pi =a~=, etc. ; (2)

m(g, w) is the energy-momentum four-vector of the
particle.

Considerable simpli6cation is achieved by introducing
the new variable s= (t—s) together with the auxiliary
function

f=g n, =g(1 z) =—gh.. —

From these dehnitions one can easily derive the relations

d (= (1—z)d„gd i fd„dt/ds=——&/f (4)

(d&= d/Ch, d, =d/ds), which will be used repeatedly.
With these dehnitions subtraction of the last two

equations of (1) leads to

d,(f bff')+bR= —0,

while the 6rst two assume the form

d, (m, be.')+be jil/f =—(e/m.)F:, (Sb)

d (s„bf~„)+'bxyR/f=(e/m)Q (Sc).

The accents denote difkrentiation with respect to s,
and

R= —i'= vP(ic' —iP) =P(w"-g"). (6)

Equations (5) contain no other unknown functions but
f, ~„~„,and their derivatives. The functions ~, and g
are linked up with f, ~„x„byEq. (3) and by the four-
vector relation vP=1+w'. Combining these two rela-

tions, we obtain

~,= (1 f'—+x,'+ 7r„')/2f,
q = (1+f'+ s,'+ x„')/2f.

Using these expressions in Eq. (6), we find

(7a)

(7b)

III. SOLUTION OF THE TRANSFORMED EQUATIONS

For the sake of simplicity we assume that the inci-
dent wave is circularly polarized, for instance,

(e/m)F, =F sin(as, (e/m)Z„= F cos(as. (8)

The appearance of multiples of ~ in the radiation reac-
tion terms is thus avoided.

In general, the inQuence of radiation reaction is
likely to be small, and we might expect to obtain a
satisfactory approximation by retaining in Eqs. (5) only
linear terms in b:

f'+bf'F'=0, (9a)

b(~ " 7r,F—')f=F—sinu)s, (9b)

wy
—b(my —xqF )f=F costs. (9c)

The expression R=f'F', which has been used here,
follows from Eqs. (7c) and (5b, c) with Eqs. (8) if
radiation reaction is neglected. The term bd, (ff') in
Eq. (Sa) turns out to be of third order in b and is of no
influence in this approximation.

With initial conditions of the usual type, for instance,
a= e'=0 for s=0 (particle initially at rest), a solution
of Eqs. (9) is fully determined; but it contains rapidly
increasing, and physically meaningless, radiation reac-
tion terms. It is well known that Dirac's Eqs. (1) lead
to such runaway solutions. ' Probably this difhculty can
be avoided in theories where the particle is no longer
considered as pointlike, but such theories are necessarily
complicated and have not yet been tested. '

The appearance of the runaway terms is connected
with the use of initial conditions according to which the
interaction sets in with full strength at the space-time
point of the particle. These terms disappear, at least
to any desired order in b, if a suitable starting function
is introduced. in Eqs. (8) to let the interaction set in
gradually. It does not seem likely that such a procedure
could be made to Gt consistently into the framework of
Dirac's classical theory of pointlike particles. Our main

4A comprehensive survey of the problems involved has been
given by C. J. Kliezer, Revs. Modern Phys. 19, 147 (1947).' See, for instance, R. E. Peierls and H. McManus, Phys. Rev.
70, 795 (1946);H. McManus, Proc. Roy. Soc. (London) A195, 323
(1949).

R=f'(x,"+s„") 2f—f'(s;s '+s„n„').
+f"(1+m,'+s„'). (7c)

The system of differential Eqs. (5), supplemented by
Kq. (7c), can be solved by the method of successive
approximations with b as expansion parameter, pro-
vided that this procedure is convergent.
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f=A/(1+Bs), (10a)

s,= (F/&o) [ cosmos—+ hoof sin~s(1+ F'/&u')], (10b)

m„= (F/~) [sincos+ beef cosa&s(1+F'/cu')], (10c)

reason for using it is that it enables us to derive results
which look interesting and new. lvVe do not go beyond
the formalism of customary classical theory in using this
procedure, but we hope that it might represent a first
tentative step towards a formalism of a theory of ex-
tended particles and that the results obtained might be
confirmed by such a theory.

A function of the type required is [1—exp( —was)]";
it vanishes together with its (n —1)st derivatives for
s=0, and approaches unity for O.s&~ i. We multiply the
expressions (8) by this function and derive equations
corresponding to the linear approximation (9) in b, where
now R=f'F'[1—exp( —nas)]'". The solution of these
equations is comparatively simple if it is permissible to
omit not only terms of higher than first order in b, but
also in (an/~). It does not contain any runaway terms
if n&~ 2. For o.s&&1 this solution reduces to

which the particle absorbs:

Eebe
——P,b, ——m ) (iF sm(os+yF cosa)s)dt

=mbF'(1+ F'jaP) sq.
(14)

here tj is the value of t which corresponds to the length
sj of the incident wave train. To determine the energy
and the momentum which the particle emits, we use
Eqs. (10a), (12a, c), and (14):

(15a)

Fl

P, =m, bRzdt= ,'(E,b, -mfqB—s~) (15.b)

The energy and the momentum which the particle
retains should be given by the difference between the
absorbed and the reemitted energies and momenta. One
can easily verify that

where

2=1/(1 —E e'F'/ma), B=bAF'. (11)

m(gg —
qP) =E.b.-—E. ,

m(s zl ~zo) Pebz Pem,

(16a)

(16b)

Here we have Eq = 1, E2= 25/36, K3=49/90, IC4
= 761/1680, etc. Using Eqs. (10) in Eq. (7), we obtain

x*=(1 f'+F' j~'—)/2. f, (12a)

n= (1+f'+F'/ ')/2f, (12b)

(12c)

In these expressions all the linear terms in b cancel out.
Apart from the factor A in f which should not affect

the order of magnitude, Eqs. (10) represent just the
forced solution of Eqs. (9). Thus, the use of a starting
function makes it possible to leave aside the free solution
of Eqs. (9) which contains the runaway terms.

Ke have still to consider whether the procedure is
consistent apart from the more fundamental difFiculties
involved. It seems reasonable to expect that the inhu-
ence of the starting function should not be considerable,
or that A 1. According to Eq. (11), this will be the
case if K„e'F'/m&a. Further, since we have omitted
terms of order (am/co)' in Eq. (10), (an/&a) should be
small. We obtain thus lower and upper limits for o. .

E„e'F'/m (a((co/e. (13)

Such a condition can obviously only be fulfilled if
e'F'/m(&cv. A similar condition (see Eq. (21) below) is
obtained for the validity of the linear approximation
in b.

IV. ENERGY AND MOMENTUM RELATIONS

To interpret our formulas, we need a few energy and
momentum relations. With the help of Eqs. (2), (3),
and (10) we calculate the energy and the momentum

but, since the formulas used here are valid only for
s))1/a, go and vr. e represent the expressions obtained
from Eqs. (12a, b) with s =0, and not the correct values
for a particle initially at rest, This inconsistency is of
little importance in the E.R. domain„where a satis-
factory approximation is obtained by substituting 1, 0
for gp, ~ p in our formulas; but, in general, such a sim-

plification is not permissible.
Te verify this statement, we consider first that our

formulas describe a particle moving both in the direction
of incidence of the wave and around this direction. In
the N.R. case, where q—1, F&«g, A —1, and f 1, the-
kinetic energy of the particle, m(q —1)——,'m(s, '+s'„')
—~mF'/oP, is mainly due to an approximately circular
motion in the (x, y) plane under the direct influence of
the incident wave and Eqs. (12a, b) reduce to

'(F'/co')+ bF's, -g = 1+'(F'/&a') The -final value of
the radiation reaction term in m. is not likely to exceed
the order of magnitude of the direct interaction term,
F jco', since it se-ems plausible to consider the classical
coherence length 1/baP as an upper limit for s~ and with
this expression bF's&=F'/zz'. A term of this order is of
negligible inhuence upon the kinetic energy. Thus, we
have (go—1) &(g~—1), and m.,o ~,~. From these rela-
tions, it is evident that formulas like Eq. (16) do not

apply to the N.R. case.
In the K.R. domain, we find q&)&1; and, according to

Eqs. (3), (10), and (12), provided that F~cg (see Sec.
VI), we have f~=1/bF's~ ', /2zt~, and q, =sz~= ',bF's&—-
These relations show that in the E.R. domain the
influence of radiation reaction predominates. From Eqs.
(12a, b) it follows further that m, e 1«w, &, (ge —l)~1



((q~. Obviously, it is permissible to substitute 1, 0 for

go, 7r, o in the approximation where terms of relative
order 1/rtA are omitted. The contribution of the par-
ticle's motion in the (x, y) plane to its total energy,

(m/2gA)(F'/~ ), is also negligible in this case. The
approximate validity of our formulas in the E.R.
domain is thus demonstrated. To derive formulas valid
for all energies, one would have to take into account
explicitly both the starting process and a 6nal stage
where the particle reemits the energy of its motion in
the (x, y) plane. Since this wouM lead to considerable
complications, we prefer to restrict our considerations
to the E.R. case.

V. COMPARISON WITH QUANTUM THEORY

In comparing our classical formulas with quantum
theory, we have to use the corresponding formulas for
scattering of photons by spinless particles which can
be derived from expressions given by Pauli. ' In the
E.R. case, where the ratio of the photon energy to the
rest energy of the particle y=ti&/mc'»1, the total
scattering cross section is

C ~mr '/y (r, = e'/mc'). (17)

Terms of relative order of magnitude 1/y hs, ve been
omitted. The average energy of the secondary photons
and their average momentum in the direction of inci-
dence of the primary photon follow from

(
(Feve)Av = m

~
r COSBd4

~

4'v'

where y'=y/L1+y(1 —cos6)] refers to the secondary
photon which is scattered in the direction 6. Evaluating
these integrals and using Eq. (17), we obtain the E.R.
relations:

(+em) Av—(Fem) Av—2 m 7

Since m is the energy initially absorbed by the particle,
we see that (Eem)Av/Eebe 2. The same result follows
from the classical formulas (14), (15), since mf, Bs, m

((E,b, in the E.R. domain. Thus both classical and
quantum theory lead to the result that in the E.R. case
about one-half of the energy which scattering spinless
particles initially absorb is retained by them and the
other half is emitted in form of secondary radiation.

The classical expressions (15) become identical with
the quantum-theoretical expressions (18) if it is assumed
that the particle absorbs the energy of a photon,
E bs= kx& ol

sical. formulas. It appears that such a procedure may
contribute to a better understanding of why customary
quantum-theoretical methods can lead to correct
results for high energy photon-electron processes. In
fact, the expression for the interaction is still taken over
from classical theory there, and it is by no means
obvious that classical concepts can be valid for arbi-
trarily high energies.

Let us consider the conditions of applicability of our
classical formulas. It is evident from Eqs. (9) or (10),
and it can be confirmed by working out higher approxi-
mations, that radiation reaction terms which do not
contain s explicitly will, in general, be small if

beef«1,

b f(F'/co) «1
(20)

(21)

sl

&J )
where Eq. (4) has been used to carry out the trans-
formation from t to s; t~ is the time during which the
interaction takes place.

With f and q as given by Eqs. (10a) and (12b), these
integrals are easily worked out. Using the E.R. relation
f, A/Bs, «1, and om—itting terms of relative order
1/'BsI, we obtain

sl

qds=AA (1+F'/cv') BsAs/A (23)

sl

(n/f)«=A(1+F'/~' ')B''»'/A--(24)

Since for particles initially at rest f & 1, these conditions
are certainly fulfilled if they are fulfilled for f= 1.

If f 1, it—follows from Eq. (20) that bee«b/b—205 mc'. Obviously, for high energies and f 1, the-
use of our classical formulas is not permissible. But if
high relativistic energies are transferred to the particle
during the interaction, it will rapidly recede from the
incident wave, and the function f can be expected to
decrease considerably during the interaction.

To determine the average E.R. value of f, we make
use of Eq. (19). If the particle acquires the energy
gIm ——,'pm during the interaction, it follows from Eq.
(3) that

f, 1/2rtA=—1/y (22)

The average value of f can be obtained from the rela-
tions

(f)A =
/

( fdt
( p"

E,h. m=bF' 1+F' co' sA ——y. 19
Using these expressions and Eq. (22), we obtain the

We propose to use this relation to supplement our clas- E.R. formula:

' %V. Pauli, Revs. Modern Phys. 13, 230 (1941). (f)A„3A /2Bs~ 3f,/2 —3/2y— —(25)
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With this expression for f, condition (20) assumes the
form

b~(3mc'/2h~) =e'/kc«1 (2o')

Since e'/Ac —1/137, it appears that, except during an
initial stage of the process when f is relatively large„
condition (20) can be fulfilled for arbitrarily high fre-
quencies of the incident photon. It is possible that the
inhuence of this initial stage upon the total process is
small and that classical results still apply, in a corre-
spondencelike way, even for Lr & 205 mc'. As mentioned
already in Sec. I, this somewhat surprising result may
prove of some help in understanding the quantum-
theoretical result that, for the process considered, radia-
tion reaction corrections do not exceed the relative
order of magnitude e'/hc.

VI. ESTIMATES OF LOVfER LIMITS FOR s& AND

We have still to consider condition (21). Since condi-
tion (20) leads to the plausible condition (20'), it would
seem desirable that condition (21) should not lead to an
additional restriction of the domain of applicability of
our formulas, It can be seen immediately that condition
(21) will be fulfilled simultaneously with condition (20)
if

F~w, or 8~m~/e -—(e/137ro)p. (26)

For y~1, this upper limit for E is of the order of mag-
nitude of the critical field intensity in positron theory, '
e/137r02; and for y) 137 it is larger than %0', the field
intensity on the surface of the classical electron model.
Certainly, neither classical nor quantum theory will be
expected to apply if the field intensities exceed these
limits, and so it seems plausible to require that condi-
tion (26) be fulfilled.

This requirement leads to interesting conclusions
concerning the admissible values of si and tj. An esti-
mate of a lower limit for si is obtained by substituting
~ for F in the expression si=y/bF'(1+F'/cv') which
follows from Eq. (19):

s,~~y/2b~'= (3hg/8+e')X (27)

where ) is the wavelength of the incident radiation.
Since si represents an extension of the incident wave-
train along its direction of propagation and (3kc/8me')—16.3, this looks like a reasonable condition.

The corresponding order of magnitude of a lower
limit for t& is obtained by combining the E.R. expression
(24) with (19) and substituting a& for F. This leads to
the estimate

roy, ro= k'/16me'c. (28)

~ See, for instance, W. Heisenberg and H. Euler, Z. Physik 98,
714 (1936).

Since ro is a constant, this lower limit for tj increases
with the energy of the incident photon in a way analo-

gous to the relativistic increase of the lifetime of un-
stable particles.

In our classical theory ti represents the duration of
the interaction between wave and particle. In deriving
the condition (28) for t&, no unusual assumptions have
been made, apart from the use of a starting function
which may be nothing more but a mathematical device
and which does not directly acct our results. It seems
thus likely that such lower limits for interaction times
really exist. Analogous results for normal Compton
scattering would probably lead to the prediction of a
lower limit for the delay in the appearance of the
secondary particles. Times of the order given by Eq.
(28), ro—10 "sec, are, however, far below the present
limit of experimental accuracy, around 10 8 sec, in
attempts to observe such a delay.

Results of this kind might be of some interest in
meson theory. Perhaps it is not just coincidence that the
expression for ro in condition (28) resembles the formu-
las for meson lifetimes in its dependence upon funda-
mental constants. In earlier theories of meson decay
where the existence of mesons of di6erent masses has not
been taken into account, meson lifetimes of the order of
magnitude h'/pf'c have been obtained; p is the meson
mass, and f is a constant of the dimension of a charge,
~(10 '—10 ')e, which determines the interaction
between mesons and light particles in the same way as
e determines the coupling between the electromagnetic
field and charged particles. There is direct analogy
between these meson theories and the quantum theory
of electromagnetic radiation in all their aspects, in-
cluding the classical foundations. ' If our semiclassical
results corresponded to physical reality, one might
expect analogous results for interaction processes
between mesons and light particles, and that would
imply lower limits for interaction times which might be
of the same order of magnitude as the meson lifetimes.
In recent versions of meson theory which distinguish
between mesons of different masses, the situation is
more involved, but still essentially the same. It seems
conceivable that an interaction process between some
type of meson and a high energy light particle might
last long enough to be observable. At present, such an
observation would probably be interpreted as indicating
formation and decay of a heavier meson. A possibility
of reducing the number of independent elementary par-
ticles by taking finite interaction times into account is
thus suggested.

It was in particular this possibility which seemed to
make the semiclassical treatment of radiation reaction
worth pursuing. A quantum-theoretical investigation of
relevant problems would seem desirable, but apparently
no attempt in this direction has as yet been made.

' R. Hofstadter and J. A. McIntyre, Phys. Rev. ?S, 24 (1950);
%. G. Cross and N. F. Ramsey, Phys. Rev. 80, 929 (1950).' See, for instance, H. Yukawa, Proc. Math. Phys. Soc. (Japan)
17, 48 (1935); H. A. Bethe and L. W. Nordheim, Phys. Rev. 57,
998 (1940).


