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The general theory of the elastic multiple scattering of particles with a strongly anisotropic scattering
function is investigated without making the small-angle approximation. The rigorous transport equation
is used and approximations are introduced at a later stage. The paper consists of four parts. In the first
part the general formulation of the problem is given. The approximations involved in the existing theories
of small-angle forward scattering are discussed in some detail. In the second part the spherical harmonic
method is formulated in a manner so as to permit an explicit expression for the general nth approximation.
There is an ambiguity both in (a) the way of defining successive approximations and in {b) the way of
introducing approximate boundary conditions. We have chosen (b) to give the best approximation to the
exact solution of the Schwarzschild-Milne problem. In the third part it is shown that our choice of (a) for the
spherical harmonic method leads to the same final formulas as the gaussian quadrature method. The relation
of these two methods is discussed in detail. In the fourth part the problem of anisotropic multiple scattering
is reduced to a quasi-isotropic one by using a generalized Goudsmit-Saunderson type distribution function
(de6ned also for back scattering) as a 6rst approximation. Three different methods are given for forward
scattering (including large angles). The first method is a perturbation treatment. The second method is
based on the approximate delta-function character of the scattering function and employs a Fokker-Planck
type development for the peaked part of the scattering function. The third method is a Liouville-Neumann

type of iteration applied directly to the transport equation. For back scattering the second and third of
these methods also apply. In addition a special method is developed, based on the smallness of the back
single scattering cross section. The generalized Goudsmit-Saunderson distribution function is developed in
powers of the thickness of the scatterer and it is shown that all three methods lead to the same single scat-
tering tail. The three methods can be applied for any single scattering law. The screened Born-Rutherford
law is introduced in some cases as an example. The relation of the present work to previous theories is
discussed.

L INTRODUCTION

HE theory of multiple scattering has been de-
veloped in the past primarily for three groups of

problems, namely, (1) radiative transfer, (2) multiple
scattering of neutrons, and (3) multiple scattering of
charged particles, in particular of electrons. ln any
problem of multiple scattering we have two steps to
consider (a) the law of single scattering, (b) the sta-
tistical problem of obtaining the spatial and angular
distribution of the multiply scattered light or particles,
which is properly governed by a Boltzmann integro-
diRerential equation.

We shall be concerned with the case of axial symmetry
in the single scattering law and multiple scattering in a
plane-parallel stratified medium. Then the distribution
function will depend only on two variables: a cartesian
and a polar coordinate describing the spatial and
angular behavior respectively. The difFiculties inherent
in the statistical problem of multiple scattering are well

illustrated by the fact that a closed expression for the
angular and spatial distribution was obtained only for
the simplest problem in multiple scattering.

A method of expanding the distribution function into
Legendre polynomials' (spherical harmonic method,
called SH in the sequel) has been applied by Gratton'
and Chandrasekhar' to the isotropic problem, unfortu-

*Supported in part by ONR.' Such methods have, of course, been applied to a great extent
to even more complicated Boltzmann equations; see for instance,
E. Guth and J. Mayerhofer, Phys. Rev. 57, 908 {1940).

L. Gratton, Soc. Astron. Ital. 10, 309 (1937).' S. Chandrasekhar, Astrophys. J. 99, 180 (1944).

nately using an inconvenient way of defining successive
approximations. This prohibited the general formulation
of the method, and made it look inferior to the method
of gaussian quadrature (called GQ in the sequel). Wick4

replaced the integral in the Boltzmann equation by a
sum employing gaussian quadrature. ' Guided by the
nth approximation in the GQ method, Chandrasekhar'
obtained exact expressions for the angular distribution
for semi-in6nite and finite media.

The SH method was used by several authors, notably
Marshak, ' Mark, Glauber, and Rarita from 1944 on for
a variety of neutron diffusion problems. To the authors'
knowledge, however, no general expressions were ob-
tained for the eth approximation for the general
anisotropic problem, nor was the relation to the GQ
method treated in a general manner. The general form
of the SH method as developed in this paper will be
the principal method we employ. There is an ambiguity
in the way of defining (a) successive approximations
and (b) approximate boundary conditions in both the
SH and the GQ method. This ambiguity does not seem
to have been recognized in the literature. The usual
procedure for (a) and (b) in the GQ method was chosen
for its analytical simplicity. We shall show that for the
SH method (a) can be chosen in a natural way so that
the GQ and the SH methods give exactly the same

4 G. C. Wick, Z. Physik 121, 702 (1943).
~ The GQ method has been applied to integral equations earlier

by Nystrom, Acta Math. 54, 185 (1930).
6 S. Chandrasekhar, Radiatiue Transfer (Clarendon Press,

Oxford, 1950).
~ R. E. Marshak, Phys. Rev. 71, 443 (1947).
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solution. Thus GQ and SH methods differ only in

analytical details, which do not aGect the final form of
the solution. (This is not the case when, for the SH
method, Gratton or Chandrasekhar's (a) is chosen. )
For the SH method our (b) differs from that used in
the GQ method. Our (b) was chosen among other
reasonable choices to give the best approximation to
the exact solution for the isotropic case. This approxi-
mation is better than the one obtained by (b) of the

GQ method. In the limit m~~, both the GQ (b), and
our (b), lead to the same exact solution. Although the

GQ method and our formulation of the SH method lead
to the same final result, there is some analytical ad-
vantage to the use of GQ for isotropic or quasi-isotropic
problems, while SH is simpler to apply to anisotropic
cases. For strongly anisotropic problems exact solutions
involving Chandrasekhar's H and X, I'-functions are
not practicable, since very many of these functions
would have to be tabulated. For quasi-isotropic prob-
lems, on the other hand, one needs only a few of these
functions.

Placzek' has shown that a simple iteration procedure
using integral properties of the known exact solution
leads to a more accurate solution than polynomial
approximations using approximate boundary condi-
tions. For the anisotropic problem, unfortunately,
Placzek's procedure cannot be used, because the exact
solution is not known.

The simpler features of the multiple scattering of
charged particles have been described in a very instruc-
tive manner in a recent paper by Bohr. ' For this
reason we shall restrict ourselves to a brief summary of
the attempts toward a more rigorous theory. Bothe"
started with the correct Boltzmann integro-diGerential
equation, but did not state the exact boundary condi-
tions. From the Boltzmann equation he derived a
Fokker-Planck type of diGerential equation. Though
the transition "from Boltzmann to Fokker-Planck"
assumes the "small-angle approximation, " Bothe re-
tained in the latter a factor (cos8) which goes to unity
in that approximation. He then tried to solve this
Fokker-Planck type equation with an inexact boundary
condition. Bethe, Rose, and Smith" have tried to
obtain a solution of the same differential equation with
the exact boundary conditions. We shall show later

t see Sec. II(C)j, however, that it seems doubtful
whether such a solution does exist. Bethe, Rose, and
Smith also derived a diGusion equation for back scat-
tering from thick foils by a procedure similar to the
"age" theory of neutron diGusion. Williams~ developed
a consistent theory in the small-angle approximation
based on the Fokker-Planck equation, putting the

G. Placzek, The neutron Density near a Plane Surface, National
Research Council of Canada, Division of Atomic Energy MT-16.

9 N. Bohr, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd.
XVIII, 8 (1948).

'0 W. Bothe, Z. Physik 54, 161 {1929}.
"Bethe, Rose, and Smith, Proc. Am. Phil. Soc. 78, 573 (1938).
~ E. J. Williams, Proc. Roy. Soc. (London) 169, 531 (1939).

factor mentioned (cos8) equal to unity and using an
approximate boundary condition neglecting the "back
scattering. " In this approximation the problem is very
similar to rotatory Brownian motion, i.e., diGusion on
a sphere. Goudsmit and Saunderson" developed a more
accurate theory, which can be formulated as follows:
one applies the small-angle approximation (putting
cos8=1) to the Boltzmann equation (instead of the
Fokker-Planck equation of Williams), and uses the
same approximate boundary condition as Williams does
neglecting "back scattering. "Goudsmit and Saunderson
point out that a parameter in their theory can be
considered either as the thickness of the medium or as
path length, and that their solution is an exact one for
the somewhat unrealistic problem of equal path lengths.
Moliere" uses an older theory of Wentzel" to derive an
expression which is just that of Goudsmit and Saunder-
son if one replaces a series by an integral, and evaluates
the integral. Snyder and Scott" derive essentially the
same integral form from equations equivalent to the
approximate Boltzmann equation which lead to the
Goudsmit-Saunderson theory. These authors give the
most extensive numerical evaluation of their formulas.
For thin scatterers both Moliere and Snyder-Scott show
how the multiple scattering approaches the single
scattering tail. A diGerent approach by Butler'~ leads
for thin scatterers also to a separation of the gaussian
multiple scattering and the single scattering tail in the
small angle approximation. Butler's procedure was
generalized to larger angles, still neglecting back scat-
tering, by Teichmann. "Lewis" treats multiple scatter-
ing in an infinite medium using the path-length as a
variable. He re-derives the Goudsmit-Saunderson solu-
tion and shows the transition to the Snyder-Scott
integral form. One may solve the problem by getting a
functional relation between path length and actual
thickness of the foil, but, of course, this is just as
complicated as the original problem. Rose,"in a note,
gives an approximate expression for the path length-
thickness ratio.

As is seen from this brief summary, no treatment of
the exact Boltzmann equation with the exact boundary
condition seems to exist in the literature. Since all
consistent approximative treatments neglect back-
scattering, no reliable theory of this phenomenon is
available in the literature either. (Bothe" has recently
given elementary considerations on backscattering. )

It would be very cumbersome to apply in a straight-
forward manner the SH (or GQ) method to the case of

"S.Goudsmit and J.L. Saunderson, Phys. Rev. 57, 24 (1940).
"G.Moliere, Z. Naturforsch. 3a, 78 (1948).
'5 G. Wentzel, Ann. Physik 69, 335 (1922).
"H. S. Snyder and W. T. Scott, Phys. Rev. 76, 220 (1949).
'~ S. T. Butler, Proc. Phys. Soc. (London) A63, 599 (1950)."T. Teichmann, Multiple Scattering of High Energy Charged

Particles in Thin Foils, Palmer Physical Laboratory, Princeton
University, Princeton, New Jersey, unpublished.

'9 H. W. Lewis, Phys. Rev. 78, 526 (1950).
'0 M. K. Rose, Phys. Rev. 58, 90 (1940).
~' W. Bothe, Ann. Physik 6, 44 (1949).
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a strongly anisotropic single scattering, like Rutherford
scattering. %e shall show, however, how the anisotropic
problem can be reduced to a quasi-isotropic one. Most
of our solutions use the Goudsmit-Saunderson solution
as a erst approximation. However, wc always start
from the exact Soltzmann equation vrith the exact
boundary conditions and make approximations at a
later stage.

Section II introduces (A) the single scattering func-
tion, (8) the exact Boltzmann equation with the exact
boundary condition, and (C) the different kinds of
approximation for forward scattering. Section III
brings the development of the SH method for the
isotropic problem without incident current. Section IV
contains the application of the SH method (A) to the
approximate 8oltzmann equation neglecting back
scattering (equivalent to Goudsmit-Saunderson theory),
and (8) to the exact Boltzmann equation of II(B).
Section V makes a comparison of the SH and GQ
methods for the case of (A) isotropic scattering and
(8) anisotropic scattering, in which we also give the
GQ procedure of solving the problem in IV(A). The
identity of our SH and the customary GQ method is
shown explicitly, apart from the boundary conditions.
For the case of the isotropic problem of III, a numerical
comparison of the exact, SH and GQ methods is
presented. Section VI presents our theory of multiple
scattering of charged particles, particularly of electrons,
by reducing the anisotropic problem to a quasi-isotropic
one. The sub-section (A) on forward scattering consists
of: (1) a perturbation treatment using the Goudsmit-
Saunderson solution as a first approximation, (2) a
simple improvement of the Goudsmit-Saunderson solu-
tion based on the 8-function character of the single
Rutherford scattering, and (3) an iteration procedure
starting again with the Goudsmit-Saunderson solution.
The subsection (8) on back scattering consists of (1) a
procedure of solving the exact Boltzmann equation
based on the smallness of the "backward" single
scattering cross section, (2) an approximate solution
similar to (A2), and (3) an iteration method similar to
(A3) In subsection (C) it is shown that as the thickness
of the scatterer approaches zero all three methods lead
to the same single scattering tail. This is exhibited both
for forward and for back scattering, using a straight-
forward expansion of the distribution function in
powers of the thickness.

IL GENERAL FORMULATION

(A) Law of Elastic Single Scattering for Axially
Asymmetric Scattering Potential

Let. n be the angle between the incident velocity and
the scattered velocity, and C (cosa) be the single
scattering law. The total scattering cross section o- is
given by

p2a
0= I dy C(cosa) sinada,

0 0

p(cosa) = g &u„P,(cosa),
0

(2)

we have a&2=1. C(cosa) is related to the amplitude of
the scattered wave f(cosa) by

C (eosn) =
~
f(cosn)

~

'
~
(1/2ik)g „(2r+1)(e"'"—1)P,(cosa)

~

' (3)

where the b„'s are the phases. The relation between the
~„'s and the 8„'s can be obtained by using the formula
for the integration of the product of three Legendre
polynomials given by Rose ef ul."

Now with reference to an arbitrary spherical co-
ordinate system, the directions of the incident velocity
and the scattered velocity can be specified by the angles
tY, p and 8', p' respectively. These angles are related
to the angle o, by the equation

'+L(1- ')(1- ")]»- (~-~') (4)

where p= cost» and p'= cos8'. Equation (2) then becomes

P(Pi 4'i I2 ~ 4 )

Expanding the Legendre polynomials by the addition
theorem and integrating over the variable p, we get

= 2 ~.&.(l )&.(u'). (5)
r~0

Practically, one does not have to take the whole
infinite series (2). There is always a maximum term at
which one can terminate the series with no appreciable
error.

(8) Boltzm2»2222 Equation

An axially symmetric beam of particles is incident
on a plane slab of scattering material with two of its
dimensions in6nite. Let the axis parallel to the Qnite
dimension be the x-axis, which is also the axis of
symmetry of the incident beam. The beam is incident
on the surface x=0, and the other surface is x=u&0.
The steady-state distribution function of the scattered

~ Rose, Goertzel, Spinrad, Harr, and Strong, Phys. Rev. 83, 79
(1951),Eq. (1ia).

where P is the azimuth angle. Then we define our
scattering function by

p(cosa) = (42r/0) c (cosa), (1)

so that when we develop p(cosa) in Legendre poly-
nomials



M ULTI PI. E SCATTER I NG 1095

particles obeys the well-known Boltzmann equation

1

«(8f/8r)+f=k ~r f(., «') p(«, «')d«',
4-Z

Eq. (6) becomes

«(8f/8r)+f= J(r, «). (9)

The formal solution of Eq. (9), satisfying the boundary
conditions (7), is clearly

f(r, +«)=e 'o)" J(r, «)e'&(dr/«)
0

+orFe
—'o8(« —«o), (10a)

f(r, «) =e'—"~ J(r, «)e 'i"dr/«—. (10b)

Here « is in absolute value. The expressions (10a) and
(10b) correspond to the range «&0 and «&0 respec-
tively. If one substitutes Eq. (10) into Eq. (8), one
gets an integral equation for J(r, «). That is

J(r «) = 'Fp(«, «o)e-
p1 f 0

+o Jt d'r
~

d« —
~t dr ~~ d«HJ(r, «)i

0 0 'r -1

wh««= (1/«') p(««')e&" '»o'. The function -J(r, «)
determines the solution completely by Eqs. (10). Thus
one may obtain the solution of the problem by solving
the integral equation for J instead of the original
integro-difkrential equation. For the simple case of
semi-in6nite, plane-parallel, isotropically scattering
material without incident current, the last integral

where p, is the cosine of the angle between the velocity
of the particle and the x axis, v =Pox, and E is the
number of scattering centers per unit volume. r and

p(«, «') are dehned above. The problem is to solve
Eq (6.) with the boundary conditions

f(0 «) =~~8(« «o), —«&o, (&a)

f(~ «)=o, «&0, (7b)

where t=Eou, and pp&0. For simplicity here we have
used a 8-function as the incident beam. Since the
integral equation is linear, the solution for any arbi-
trary axially symmetric incident beam is just a super-
position of such fundamental solutions, The integral of
the b-function over the whole solid angle is normalized
to unity, while the strength of the incident beam is
governed by the constant Ii.

If we de6ne the integral in Eq. (6) by the function
J(r, «), i.e.,

~1
J(r «)=o f(r «')P( «')d«',

equation for J(r, «) reduces to

with
0

H(z) -', )t e -ds/s.
1

This is the Schwarzschild-Milne integral equation.

(C) Approximations for Forward Scattering

If the single scattering is mainly in the forward
direction, a reasonable approximation is to replace the
factor « in the erst term of Eq. (6) by «o and neglect
back scattering in the boundary condition. If we take
pp= I for simplicity, the problem now becomes

(8f/8r)+f= o f(r «')P(««')d«'
4

with the boundary condition

f(0, «)=rrF8(« 1), ——1&«&1.

The exact solution of this approximate problem is

P a)

f(r, «)=—Q (2r+1)E,(«)e '"',
4 r-0

(12)

(13)

where k„=[1—oo„/(2r+1) j, with oo, given by Eq. (2).
This series was 6rst derived by Goudsmit and Saunder-
son without explicit use of the Boltzmann equation.
Their assumptions are thus equivalent to Eqs. (11)
and (12).

Another kind of small-angle approximation is to
replace the exact integral equation (6) by a di6erential
equation of Fokker-Planck type. Using the deinition
of the function p(«, «'), we can rewrite Eq. (6) into
the form

f2%Bf 1
p =

~

dp
8T 41l j. 4 0

dip(cosa) [J(r, «') f(r, «)j. (14)—

The three angles 0., 8 cos 'IM, , and 8'=cos 'p' form a
spherical triangle as shown by Eq. (4). Now let us use

the edge opposite the angle 8' as the polar axis, then
we have a relation similar to (4),

cos8'= cos8 cosa+ sin8 sina cosP,

where p is the azimuth angle in this case. Then one

develops f(r, «') into a Taylor series around «, keeping
terms up to aP, and gets

8f
f(r, «') =f(r, «)+—

I (1—«') I a cosP-
Bp

1 8+- (1—«') a' cos'p . (16)
2 Bp
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Putting the last expression for f(r, p, ') into Eq. (14)
and integrating over the angles a and P instead of p'

and Q, we get

8f 1 8 8f
~—=-—(1—

I ')—,
87- X Bp Bp

(17)

where 1/X=-', Jo P(cosn)a' sin)xdn, a constant. Bethe,
Rose, and Smith have tried to obtain a solution of
(17) with the exact boundary conditions

The above demonstration" of the incompatibility of
the approximate Fokker-Planck equation and the exact
boundary condition indicates that if we approximate
the exact integro-differential Eq. (6) by Eq. (17), we

must also approximate, to be self consistent, the exact
conditions (7). A self-consistent system results if we

apply the same "forward" approximations in connection
with the Fokker-Planck equation (17) as we did before,
i.e. , we put p= 1 in Eq. (17) and neglect back scattering
in the boundary condition. Then we solve the equation

f(0, p) = ~F8(I)) 1), —p) 0,

f(~ ~)=0
(18)

Bf 1 8 8f—=——(1—
I)),')—

87 X Bp, Bp

It seems doubtful whether such a solution does exist.
In fact, we shall show that the Fokker-Planck Eq. (17)
and the exact boundary conditions (18) are most likely
not compatible with each other.

One can easily show that the two-dimensional
analog of Eq. (17) is

cos88f/Br = (1/X) 8'f/88'

and the boundary conditions are

(19)

f(0) 8) = xF8(8—80), 0(8(m/2,

f(t, 8)=0, ~/2&8(~
(20)

If we put cos8=1 in the left-hand member of (19),
it becomes precisely the differential equation for heat
conduction in one dimension, with f playing the role of
the temperature, v the time, and 8 the distance along
the one-dimensional bar. Then the boundary condition

(20) corresponds to the following heat conduction
problem.

A bar of length x is insulated all over the surface.
If the initial temperature distribution along one-half of
the bar is given and if it is required that the temperature
along the other half of the bar should be zero at a given
later time, what is the temperature distribution along
the whole bar at any time in between? It is a well-known

fact in the theory of heat conduction that the tempera-
ture distribution along the bar at any later time is
always analytic no matter whether the initial tempera-
ture distribution is analytic or not. Therefore, it is
impossible to have the temperature zero along part of
the bar at a certain later time. Now the original Eq.
(19) and its corresponding three-dimensional Eq. (17)
belong to the same class of parabolic equations as the
heat equation, so we should expect that such general
analyticity theorem holds true for all of them. How
could then Bethe, Rose, and Smith obtain a solution
to this seemingly insoluble problem? The answer lies,
of course, in the approximations which these authors
made in addition to the small-angle development.
Their approximate solution implies that backscattering
results mostly from such numerous small-angle single
deQexions, for which Eq. (16) is a valid approximation.

with the boundary condition (12). The solution,

p
f(r, p) =—Q (2r+1)F,(p) exp—

4 r=o

r(r+1)

~(~f/8r)+f= 2 f(r ~)d~
—1

and the boundary conditions are

(21)

f(0, )))) =0, p&0, (22a)

f(r, p)),-'—)0, (22b)

To solve this boundary value problem, we 6rst develop
the unknown function f(r, )))) in a series of Legendre
polynomials in p, with unknown functions of 7. as
coefficients, i.e., let

f(r, p) = ~~ g (2r+1)f,(r) F(p,). (23)
r 0

Substituting (23) into Eq. (21) and using both the
recursion formula.

(2r+1)~F.( )=(r+1)F.+~(~)+rF. i(I ),
and the orthogonality relation of Legendre polynomials,
we get

df, ) df~+)
Z r +(r+1) F„(p)

dr d7-

= 2 I 8.0—(2r+1)jf.F.( ).
x=0

~We are indebted to G. E. Uh1enbeck for suggesting this
argument.

is, of course, an approximate form of the Goudsmit-
Saunderson solution (13). This type of small-angle

approximation leads exactly to Williams' theory of

multiple scattering.

III. ISOTROPIC SCATTERING

Here we treat the case of a semi-ininite, plane-
parallel, isotropically scattering material without inci-
dent current. The appropriate integral equation for
this problem is, from Eq. (6),
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Since this is an identity in p, we can equate coefficients Then the general solution of Eq. (26) is
of the P„(p)'s and thus obtain the inffnite system

1

d r'+1
r- + (2r+ 1—b„p)f,+(r+ 1) =0,

d7 d7

f,= P A, exp( k—r)+B„r+C„
a=—(n—1)

r=0, 1, 2 ~ ~ (2n —1), (28)

or, in matrix notation,

0 D 0 0
D 3 2D 0
0 2D 5 3D
0 0 3D 7

fp
fi
fp

fz

0
0
0

,

= 0;or sf=0, (23)

r=0, 1, 2, (24) where the A„'s 8„'s, and C„'s are arbitrary constants,
but they are not all independent.

To find the relations among the constants, we
substitute Eq. (28) back into Eq. (24), and equate the
coefficients of exp( k—r), etc. , since the resulting
equation is an identity in 7. We get from the coe%cient
of exp( —k r)

k rA„ i ~ —(2r+1—
&1,p)A„,+k, (r+1)A„+i,,——0, (29a)

from the coefFicients of 7.

where D=d/dr, ck=d, (D), and f is a column-matrix.
The infinite system of interconnected Eqs. (25) is

hardly manageable. We can approximate, however,
this infinite system by a finite system which is much
easier to handle. Clearly, there is no unique way of
defining the successive approximations. The following

choice recommends itself by the ease with which the
nth approximation can be obtained explicitly. We define

the nth approximation as the solution obtained by
retaining the left upper corner submatrix of 2n rows

and 2n columns, and putting all the other elements

equal to zero. It is then obvious that the nth approxi-
mation approaches the exact solution as n~~. This
finite system of 2n linear di6erential equations with
constant coefficients can be easily solved. All the f„'s
are solutions of the differential equation

(2r+1 —6„p)B,=O,

from the constant term

(29b)

rB„ i+ (2r+1 —5„p)C„+(r+1)B„-+i——0. (29c)

Equation (29a) is a recursion formula for the A, 's.
The 2n linear homogeneous equations (r=O, 1, 2

(2n —1)) of 2n+1 unknowns Ap, Ai ~ Az„, cannot
determine all the unknowns uniquely. But we know
that A ~„, ——0, since for this nth approximation we have
put fz„=0. There remains one arbitrary unknown,
which we shall take to be Ao . All the other A„'s will
then be proportional to Ap, so let us define p, (k ) by

A, =p, (k )Ap .

Then Eq. (29a) becomes a recursion formula for p„,
that is

where

6„(D)f„=0 r=0, 1, 2 (2n, —1), (6 2r+1—5p r
p„+i(k )— —p„(k )+ p„ i(k ) =0,

k (r+1) r+1
pp = 1. (31a)

0
D
0

A.(D) =

D 0 0
2D 0

2D ) 3D
0 3D 7

(4n —1)

Equation (29b) shows that

B„=O for all r, except Bp is arbitrary. (31b)
(27)

Equation (29c) becomes, using (31b),

rB, ,+ (2r+1 8„p)C„=0,—

which gives

Since the determinant A„(D) has an even number of
rows, 0,„( D) is equivalent to D—„(D) with all the
diagonal elements negative instead of positive. But it
can be easily proved that A„(D) does not change its
value if all the diagonal elements change their signs,
because all terms have even number of diagonal ele-
ments as factors. Therefore, A„(D)=6„(—D), and its
roots are in pairs with same absolute value but opposite
in sign. One pair of the roots is obviously a=0, and
let us denote the other n —1 pairs of nonvanishing roots
by k with k = —k and zz=&1, &2, &(n —1).

r=O,
r= 1,
r&2,

CO is arbitrary
~ 1= —~o/ 3
C„=O

(31c)

Therefore, we have altogether 2n independent arbi-
trary constants, that is

Ap Bp, Cp a=&1 &2' ' '&(n —1)

among which one is the proportionality factor deter-
rnined by the assigned constant net Aux in the material.
The remaining 2n —1 constants will be determined by
the boundary conditions (22). The boundary condition
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TABLE I. Values of (2/8&)f(0, —p) from Eq. (36b).

Gaussian quadrature
method

Exact n =1 n =2 n =3
r=O, 1, 2, ~

n=i n=2
.n -1
n=3

Spherical Harmonic methoda
r =n, n+1, 2n -1 r even
n=i n=2 n=3 n=i n=2 n=3

r odd
n=2

Chandrasekhar's
SH methodb

n=i n=2 n=3

0 0 $774 0 5774
0.1 0.7202
0.2 Q.S373
0.3 0.9483
0.4 1.Q561
0.5 1.1621
0.6 1,2668
Q.V 1.3706
0.8 1.4738
0.9 1.5765
1.0 1.6788 1.5774

0.5774
0.6965
0.8103
0.9207
1.0288
1.1352
1.2405
1.3450
1.4487
1.5519
1.6547

0.5774
0.7048
0.8219
0.9338
1.0422
1.1493
1.2547
1.3591
1.4627
1.5658
1.6684

. 5 0.$620
0.6896
0.8094
0.9243
1.0359
1.1452
1.2528
1.3591
1.4645
1.5691

1.5 1.6731

0.5656
0.7000
Q.8210
0.9351
1.0453
1.1530
1.2590
1.3639
1.4679
1.5712
1.6740

0.6667 0.8452 5.080 0.5
0.9689 5.393
1.0858 5.627
1.1986 5.820
1.3086 5.989
1.4165 6.143
1.5231 6.285
1.6285 6.420
1.7332 6,549
1.8371 6.673

1.6667 1.9405 6.794 1.5

0.5532
0.6769
0.7938
0.9066
1.0166
1.1245
1.2311
1.3365
1.4412
1.5451
1.6485

0.5632 0.6667
0.6949
0.8146
0.9281
1.0380
1.1455
1.2516
1.3565
1.4604
1.5638
1.666V 1.6667

0.6026
0.7195
0.8316
0.9407
1.0478
1.1535
1.2582
1.3620
1.4653
1.5682
1.6706

0.5918
0.7166
0.8322
0.9432
1.0511
1.1573
1.2623
1.3664
1.4697
1.5726
1.6751

0.6667 0.5862 0.5920
0.7091 0.7047
0.8224 0.8147
0.9351 0.9231
1.0456 1.Q301
1.1543 1 ~ 1359
1.2617 1.2410
1.3681 1.3454
1.4736 1.4493
1.5784 1.5527

1.6667 1.6827 1.6557

The different r means the different choice of the n equations among the system (33) of 2n equations to determine the arbitrary constants.
b The last three columns are from reference 3.

t P„(Ii,)f(0, p)dp=0, r&2n 1. —
0

(33)

The system (33) has 2e equations, which is double the
number of unknowns to be determined. Here we choose
to take those equations with odd r, because this choice
gives the most convergent approximation, as shown in

Table I, among other reasonable choices. Thus the n
equations are

»—i 2m+1
f (0) ' F (~)& (~)@=0,

«a 0

r=1, 3.. (2oi—1) (34)

in which we have made the substitution

f(o ~)=o Z (2rio+1)F (0)&-4)

The function J in the formal solution (10) for this
case is

1

~(r)=o)" f(r ~)d~

which is just ofo(r) Therefore, usin.g (28) and (32),
we have

Z(r) =; Pso. e~( k:)+Bor+Co —. (33)

(22b) forces us to discard all terms with exp(+k r),
so that

Ao, ——0 for a= —1, —2 ~ —(oo—1). (32)

Thus, finally, we have n constants left to be determined

by the other condition (22a), which cannot be strictly
satisfied in this approximation, of course. There are an
infinite number of ways to construct the corresponding
approximate boundary condition, just as the ways of
defining the nth approximation of the solution were
not unique. Again, the logical choice should be based
upon simplicity and the convergence of the result. The
simple approximation of boundary condition (22a)
appropriate for this method is

Substituting this expression into (10) with F=O and
t~~, we get the final solution for the nth approxi-
mation

exp( kr) —e'"—
f(r, +~)=o Z~o-

krxP

+Bor

+ (Co Bop) —(1 e 'lo)—-(36a)

exp( —k r)
f(r, —u)=k Z~o.

1+0 p,

+B or+ (&o+Bop) ~ (36b)

Such a simple form for the nth approximation is not
easily obtained from another, otherwise quite reason-
able, way of defining successive approximations due to
Chandrasekhar. He defines the nth approximation as
the solution obtained by retaining 2n+1 rows and
columns of the infinite matrix 6 dehned by Eq. (25).

The function f(0, —p) (known as the law of darkening
in astronomy) has its exact closed form worked out by
many authors. "They present diBerent ways of deriving
the same final solution in the form of a complex inte-

gral, "which can be evaluated by numerical integration
for particular cases. Halpern, Lueneberg, and Clark"
have obtained an exact solution for the function

f(0, —p) for the case with incident current in the form
of a complex integral, and Chandrasekhar" got the
same solution later by a diGerent method.

IV. ANISOTROPIC SCATTERING

%e generalize the simple problem treated in the
previous section in two respects. First, we admit a
general anisotropic single scattering function as defined

~E. Hopf, Mathematical Problem of Radiative Equilibrium
(Cambridge University Press, London, 1934); E. A. Schuchard
and E. A. Uehling, Phys. Rev. 58, 611 (1940); M. M. Crum,
Quart. J. Math. 18, 244 (1947);and reference 6, Chap. III and V.

~' G. Placzek and W. Seidel have given a simpli6ed derivation
in Phys. Rev. 72, 550 (1947).

Halpern, Lueneberg, and Clark, Phys. Rev. 53, 173 (1938).
~~ See reference 6, Chap. ID and V.
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by Eq. (1); second, we consider the case with an
incident current. It is convenient to reformulate the
boundary value problem defined by Eqs. (6) and (7).
I,et

f(r, p)=I(r, p)+sFb(p p—o)e '"' . (37)

Putting (37) into Eq. (6), we get the integral equation
for I(r, Ii),

where k„=1—ie„/(2r+1). The system (45) can be
immediately integrated, and, for the eth approximation,
we have

I,(r) = ,'F(C-„e ~"' —e'—), r=0, 1, 2 (2e—1), (46)

where the C„'s are integration constants to be deter-
mined by the boundary condition (43). From (44) we
have

~~I/~r+I= kj
~ I(r, I ')p(I, I ')dI

'
—1

+lFp(I, uo)e '"'.

The boundary conditions, Eq. (7), become

I(0, p)=0, p)0,
I(t, p) =0, @&0.

Here we define J(r, p) as

(39b)
F 2n —i

J(r, p) =—P ie,P„(Ii)e
~-0

1

I.(0)=)I I(0 IJ)P.(Ii)de
—1

(38)
which, in view of (43), gives I,(0)=0. Therefore, C,= 1.
Putting (5) and (44) with finite upper limit into (40)
and using (46), one gets

39a

The same small-angle approximation by the GQ method

„«)p(„„~)d„~+iFp(„„),i» (40) will be treated in a later section.
The formal solution, corresponding to Eq. (41), in

this case is
Then the formal solution, similar to Eqs. (10), is

(41a)
I(r, +Ii)=e ' J(r, Ii)e'dr,

0

(48a)

(48b)

Putting the expression (47) for J(r, ii) into Eq. (48),
and then from Eq. (37) (with p& ——1) we obtain the
final solution,

(A) Approximate Boltzmann Equation

%e have made a small-angle approximation for Eqs.
(6) and (7) to get Eqs. (11) and (12). Now if we make F a~—z

the same approximation for Fqs. (38) and (39), we get f(r~ +&)=—P (2r+1)P,(p)(e '"'—e ')
r=o

1

(BI/Br)+I= ,')I I(r, ii')p-(p, p')dp'+ i4Fp(Ii, 1)e ' (42)

I(0, p) =0, —1&p(1. (43)

Although we know the exact solution of this approxi-
mate boundary value problem, yet we shall work out
the approximatiovs of this problem by both the SH
and. the GQ methods, and compare them with the
corresponding approximations of the exact problem
later.

In the SH method we develop both functions I and
p in Eq. (42) in series of Legendre polynomials. The
development for I is

I(r ~) =k Z (2r+1)I.(r)P.(~)
r 0

and that for p is given by Eq. (5). Substituting both
developments into (42), and equating coefficients of
P„(ii), we get the infinite system, similar to (24),

dI„/dr= k„I„+', F(1 k„)e ', —r=0, 1-, 2—, (45)

+s.Fh(ii —1)e ', (49a)

F 2n —x

f(r, —ii)=—P (—1)'(2r+1)P„(p,)(e i"'—e '). (49b)
4 r=o

When ri~~, the two expressions of (49) reduce to the
identical form

F e)

f(r, Ii) =—g (2r+1)P„(p)e ", —1&@&1,-(50)
4 t-0

which is the exact solution (13).

(B) Exact Boltzmann Equation

In this section we will get the solution of the exact
integral equation (38) with boundary condition (39) by
the SH approximation. The procedure is the same as in
the isotropic case, except here we have an inhomo-
geneous term in the integral equation, and the scat-
tering function p(ii, p') is a series given by Eq. (5)
instead of just the 6rst term, unity. So now if we
develop the function I(r, p) and equate coe%cients,
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we get the inhnite system, corresponding to (24),

r(dI„ i/d7)+S, I„+(r+1)dI„+i/dr= oFe '"pea„P„(pp),

r=0, 1, 2, (51)

From the form of the nonhomogeneous part of the
system (51), it is obvious that the particular integral
must be of the form

where I„=g„e '"', r=0, 1, 2 . (2ri 1—), (56)
S„=2r+1 pp„,—So=0. (52)

Since Eq. (24) is identical with the homogeneous
part of Eq. (51) if 8,p is replaced by oi„ the general
solution of the associated homogeneous system of Eq.
(51) in the rith approximation must be of the form

(28), i.e.,

I„= P A „exp( kr)+—B„r+C„,

r=0, 1, 2 (2N —1), (53)

where the g„'s are constants, but not arbitrary. To
determine the g„'s, we substitute (56) into Eq. (51)
and get the recursion formula for g„

(r/po) g, ,—S„g„+L(r+1)/po]g, ~i = —-', F~,P,(po). (57)

%e 6rst split the inhomogeneous term as follows

o Foi„P„(pp)= o (F/po) L(2r+ 1)poP„(po) —S„ppP„(pp) j
=oFL(r/po)P, -i(u )oS,P,—( o)

+ {(r+1)/uo}P.+i(&o)j.
where the constants are related by

A„~= p„(k~)Ape i Ao arbitrary, (54a)

Then Eq. (57) can be put into the form

(r/po)h. —i S h.+ {(r+1)/po} h +i 0, (58)

2t'+ 1 M). r
p,+i(k.)— p„(k.)+ p, i(k.) =0,

k (r+1) r+1
po= 1)

80 arbitrary, By=82= . . - =82 g=0,

Cp arbitrary, Ci= —Bo/(3 —ipi),

where

h.=g.+oFP.(po).
(54b)

Since the recursion formula (29a) (with h, o replaced by
(54c) o&,) reduces to (58) with k = 1/pp, h„must be connected

with hp by an equation similar to (30), that is,

Co=Co= Cp„ i=0, (54d) h, =p, (1/po)hp, (60)

equations similar to Eqs. (30) to (31c). The k 's are
the nonvanishing roots of the determinant

where the p„'s obey the recursion formula (54b). Now

go„——0 in this approximation, so that, by Eq. (59),

0 D
D Sg
0 2D

A.(D) =

0 0
2D 0
52 3D
3D 53

h,„=-', FPp„(pp). (61)

With Eq. (61) the system of Eqs. (58) determines

uniquely all the remaining h„s, but it is necessary only
to determine one of them, say hp, from which all the
other h, 's can be obtained by Eq. (60). It is easier to
visualize the result which we are going to obtain, if the
system of Eq. (58) is written in the matrix form

0
1/po

0
0

1/po—Si 2/po
2/po Sp

0 3/pp

0 ~ ~ ~

0 ~ ~ ~

3/ po
~ ~ ~

h,
hg

IE2

hg
(62)

—S& i .ho i. .—FPp&i(po)/&o. '

where we have made use of (61). Solving this inhomo-
geneous system, it is easy to see that

ho =NFPp-( o)(2oi—1) '/Lp '"~-(1/po)3, (63)

where 6„ is defined by (55). Therefore, combining
(60) and (63),

The complete solution is the sum of (53) and (56)
with g„given by (59) and (64). Thus we have

I,= P A„exp( kr)+B„7+C,—
ex=—(n—1)

FPp„(pp) (2rp)!
h, = p„(1/pp).

2po'"~-(1/pp)
(64)

F Pp„(po)(2N)! t'1 )
+— p. {

—
}
—P.(p ) e

—' o. (65)
2 - po'"~-(1/pp)
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The constants in the solution obey the conditions (54a)
to (54d), which leaves only 222 independent arbitrary
constants to be determined by the boundary conditions.
We shall again approximate the boundary conditions

(39) by the 2rt equations

Values of Prk

30
32

gk
0
—1 1 —5
4 2 16

ThsLE D.

0 1

Values of era

1 1 5 0
4 2 16

—3 0
32

0 1 2 3 4 5

~0
P„(ti)I(t, ti)dt's=0,

1 —5
3 — 0

16 16
1 —81
2 256

0 3
—1 5 1016 16 2

2J —1

or

where

r= 1, 3, (2&2 1)—,

)"P.(p)I(0 p)~p=0

2n —1

Z P.oI2(t) =0,

r=1, 3 (2rt 1), -
2n —1

P p„pIp(0) =0,
k=0

tt"=2(2k+1) " Po(p)P. (p)~p

(66)

—1 25
5 —0

32 256
—81
256

1
5

2

1 —25
32 256

81
256 2

n —1 2n —1

j(r, ti)=-', P Ao exp( —k r) Q pi„p„(kn)P„(ti)

defined by (40) is, in this approximation,

2n —1

I(r, p) =2 E ~.P.(p)I.(r)
r 0

P 2n —1

+—e '» p p&„P„(ti)P„(tip). (67)
4 r=0

Putting the expression (65) for I, into Eq. (67) and
making use of Eqs. (54a), (54b), and (54c), we have

n=—(n—1) r=0

pl
p 2=2(2k+1)

J
P&(p)P (p)dp

0

pii FP2„(tip) (2n)!
+~07+~0—~O P+ e

—T/tt0

3 cdi 2Jlo 6~(1/tio)

The constants p„o's and p„p's can be easily calculated.
Table H is sufhcient for the 6rst three approximations.
The system (66) provides 2n equations to determine
the 2N independent arbitrary constants, Ap (u=&1,
+2 . .+(22—1)), Bp and Co. The function J(r, p)

2n —1

&& 2 ~.p.(1/uo)P. (p) (6g)

Then we get the Anal solution by substituting the
expression (68) into Eq. (41) and in turn into (37)

Ao (exp( —k r) —e ' ")»—i ( 3Bp
f(r, +ti)=~ g Q pi„p„(k )P„(ti)+Bor+I Cp — p i(1—e ' ")

„e —(n—1) 1 Pktx r 0 3—~, )
FP2„(tip)(2n)! e '»' e'» ip-

+ —g pp, p, (1/tio)P, (ti) +prFti(ti po)e '—"' (69a)
2po'"&.(1/po) 1—p/po

(
Ao exp( —k r) —expl k,t-

p ) pa-i
2 (—1)"~.p.(k-)P.(p)

n —1

f(r, -p)=2
0.cs~—(n—1)

( 3Bo ) FP2.(po)(2rt)!
+Bp(r —te ' ")+

i Co+ — ti i(1 e )+
3—pii ) 2tio + (1/tio)

t t—r~
exp[ ——

/

—expj ———
tipl E tip tp ) 2n —i

2 (—1)"~.p.(1/pp)P. (p) (69b)
1+plpo

V. COMPARISON WITH GAUSSIAN
QUADRATURE METHOD

(A) Isotropic Scattering

Kick and Chandrasekhar have worked. out the
problem defined by Eqs. (21) and (22) with the GQ

method. Chandrasekhar's expression for the function
J(r)22 is of the same form as (35), and we shall prove
that the k 's are really identical.

First we shall get a relation between our f, and

~8 Reference 6, Chapter III, Eq. (44).
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f(r ~) =k E (2r+1)f.P.(~) (70)

p;(BI;/Br)+I;= ,'g a;-I;, o=ai, a2 Wro,

Chandrasekhar s I,, which in our notation is f(r, p;). Now the two sets of linear homogeneous constant
In the Nth approximation, the development (23) coefficient differential equations of this problem for the
becomes two methods are related by the same linear transfor-

2n —1 mation. In the GQ method the set of 2n equations" is

where P„(p) can certainly be expressed by the Lagrange
interpolation formula

or, in matrix notation,

Po~(y)
P.(p)= P P (y*)

(~-w)Po. '(w) here
eI=0,

ay= (p,D+1)B;& a;/2,—D= B/B—r.

(79)

(80)

Here the p s are the roots of Po„(p). Putting the
expression (71) in Eq. (70) and interchanging the sums,
we get

»—& 2r+1 P,„(y)
f(r, r )= Z Z f.P.(~'), - (72)

a=~ r-o 2 (II, p;)Po„'(—p;)

In the SH method, the set is (24) or

r df„ g r+1 df ~,
+ (1 &,o)f,—+

2r+ 1 dr 2r+ 1 dr

r=0, 1, 2 (2n —1),

Now in the GQ method, one simply approximates the
function f(r, p) by the interpolation formula

which, in matrix notation, can be written as

gf=0, (81)

Comparing Eqs. (72) and (73) we have the required
relation,

2a—1

I;= Q o(2r+1)f„P„(p;), o=&1, &2 +n, .(74)

or, in matrix notation,

where
I=Sf,

5;,= -', (2r+ 1)P„(p,;).

The inverse transformation

has its matrix elements

&,o '=aoP. (wo),

(76)

(77)

where the ug, 's are the gaussian weights. Using Eqs.
(75) and (77), it can be shown that

(5'-5')"= Z l(2i+1)a.P'(~.)P,(~.)=B'„(78a)

2s—1

(5'~ ')o= Z xo(2r+1)a P.(I *)P.( 1)=~' (78b)

These are just the orthogonality and the closure rela-
tions of Legendre polynomials in 6nite dimensions.

Po-(~)
f(, ~) = Z f(r ~')

(~—~')Po '(~')

Po.(y)= P I, . (73)
(~—~')Po '(I ')

with

P„=(1—B o)B + [(m+ 1)B„, +g+rlb„, ~ yj. (82)
2r+1

Using the deanitions (75) and (77) of the matrices S
and S ', and the orthogonality relation (78a), one can
easily verify that

S-'eS= g

Therefore, in view of (76), we have

S-'aSS-'I = yf.

Thus, the set of equations (79) are transformed to the
set (81).

In order to prove that the k 's given by the two
methods are identical, one notices that the vanishing
of the determinant

~

n
~

leads immediately to the
characteristic equation in the GQ method, and the
vanishing of the determinant

~ P ~, which is essentially
our A„dined by (27), gives the characteristic equation
in the SH method. Now since e and g are connected

by the transformation S, it is well known that the
characteristic roots must be identical. Chandrasekhar"
has also derived a characteristic equation which does
not explicitly involve the u s and p, s. This is essentially
our equation

~ p~ =0 with only a different constant
factor.

The approximate boundary conditions in the two
methods are not identical, so the arbitrary constants
and the final solutions too, or course, are slightly

29 The difference in sign between this system of equations and
Chandrasekhar's system (reference 6, Chapter III, Eq. (2)) is
because he measures angle from the negative instead of the
positive x axis. Consequently all his p,'s should be replaced by—p's before comparison can be made with our results.

'o Reference 6, Chapter III, Eq. (33).
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diGerent. %e shall prove now that the difference
vanishes when n-+00 as it should be since both approach
the exact solution.

The boundary condition in the GQ method is when

7=0, I;=0 for i=1, 2 . N. Using Eq. (74), that
means

2n—1

Q 5;,f(0)=0, i=1, 2 m, (83)

where

(85)

Now if we premultiply th e coeKcient matrix of the
system (83) by any nonsingular constant matrix, say T,
of n rows and e columns to form a new coefficient

matrix for the system, nothing is changed essentially.
Let the elements of the T-matrix be dehned as

1=i 2 ~ s

where 8;„ is defined by (75). The boundary condition

in the SH method is given by Eq. (34), i.e.,

2n

P Rg,f,(0)=0, 0=1, 3, 5 (2e—1.),

odd-r choice gives the best result, and it converges
faster to the exact solution than the GQ approximation
also, except at the point p, =0, where the GQ method
gives the exact result in all approximations. The last
three columns are Chandrasekhar's SH approximation,
which is diGerent from ours both in the way of dining
the nth approximation and in the choice of the equa-
tions of the boundary condition. His successive approxi-
mations converge slower than the GQ approximations,
and, a fortiori, slower than the SH approximations
with the odd-r boundary conditions.

An advantage of the GQ boundary conditions is that
they permit one to express the nth approximation in a
closed form. Thus, heuristically, the transition to an
exact solution by means of an H-function is facilitated,
though, as we have seen, the odd-r condition leads to
faster convergence. For the anisotropic case, the SH
procedure is analytically simpler than the GQ pro-
cedure.

(B) Anisotropie Scattering

To solve the approximate problem de6ned by Eqs.
(42) and (43) by means of the GQ method, we, following

Chandrasekhar, 6rst approximate the integral in Eq.
(42) by a sum. For the Nth approximation, put

where the p s are the positive roots of E2„(p), and

with

1

1(~ ~ ')P( I ')dl '=2 2 oJfJP(P I J) (88)
-i 7~

where the symbols have the usual meaning. Substituting
(86) (88) into Eq. (42) and using (5), we get the following

system of equations:

Then the new coeflicient matrix for (83) will have

elements
P 2n —1

+—e 'P co„P„(p~), ~=+1,+2. . +n (89).
r-O

To get the solution of the associated homogeneous

We wish to show that Qi„——Rq, as n +~. Wi-th b;

defined by (86) we can construct the quadrature formula

(90)
0

which is exact for any function g(p) if N~~. Thu»t
follows that the two expressions (85) and (87) are the
same as n-moo. Therefore, Eqs. (83) and (84) are
identical in the limit, and so are the 6nal solutions.

Table I gives the exact value and the approximations
of the function f(0, —p) for this case. Wick has already

plotted the 6rst four columns in his paper mentioned
above. Among the diBerent choices of the approximate
boundary condition for our SH approximation, the

where

2n —1

gi = Z ~rI r(pa) pr,
1—k -o

(91)

let
g.g—kt

where g; and k are constants. From Eq. (90) we ha«
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2n-1
p~= p Z aiP~(pr) Z &LPx(le)p)

g~ $—k )-0

ol'

j. 2n —1 5g 1 M p
E ~)p&,—k&-p 2r+1 1—02r+1

Eliminating the g, 's from Eqs. (91) and (92), we get The 2n constants pp, p1 p2„1 are determined by the
boundary condition (43), which in this approximation
becomes when

r=0, I;=0 for i=+1, &2 &n. (100)

With condition (100), Eq. (99) gives

p„=p'F, r=0, 1, 2 (2n —1).

1

!
—1 !p„=0, r=0, 1, 2 (2n —1).

(1—k 2r+1 )

Thus finally we have

P 2n —1

I'=—Z (2r+1)P.(p')(e '"'—e ').
4 r=o

(101)

This is the characteristic equation for k, so the roots are

k„=1—po„/(2r+1), r=0, 1, 2 ~ ~ (2n —1). (93)

For a certain root of k, say k, the only nonvanishing
p„ is p which is arbitrary. Therefore, the corresponding
g; given by (91) reduces to only one term, that is,

g'=(1—4) '~-P.(p') p-;

and it follows that

I,= (1—k ) 'pp.P (p;)p.exp( —k.r),
a=0, 1, 2. (2n —1). (94)

The general solution is a linear combination of (94),
i.e.)

2n —1 p~
I,= Q ar.P, (p,) exp( —!'p.r)

a=o $ —k
2n —1

= Q p, (2r+1)P„(p;)e—""', (95)
r=o

where we have made use of Eq. (93).
To get the particular integral of the nonhomogeneous

system (89), let

One then substitutes the expression (101) into (88) and
in turn into Eq. (40) with pp

——1 to get the function
J(r, p) as follows:

P 2n —1

J(r, p) =—P ~„P„(p)e
4 r=o

(102)

This is identical with (4/), since the difference in
boundary condition in the SH and GQ method does
not show up if we neglect back scattering. However,
the analytical procedure is, obviously, simpler in the
SH than in the GQ method. This is only natural, since
also in the GQ method one develops the scattering
function into a I.egendre series and then it is clearly
advantageous to develop f(r, p) also into a Legendre
series.

The GQ approximation of the exact integral equation
(38) has been worked out by Chandrasekhar. "Using
his expression of I; in (88), one gets from (40) an
expression for J(r, p) which can be shown to be identical
with (68). To prove the identity of these two expres-
sions, we have to redefine the arbitrary constants in
the following way

I;=41Fh;e ' (96)
Ao pFL, Bo———,'F(——1—

—p,rag)Lp, Cp= ',FL„—
gs 2n —1 2n —1

Z h.—Z ~.P.(p')P. (p~) = Z~.P.(p/)—
—n 2 r 0 r=o

Then we get for h; the following system of linear
equations: and to show that the k 's are the same and

Po„(po) (2n)!= II(po)II( —po)
po'"D„(1/po)

(103)

It can be easily verified that

2n —1

j=+1,+2. . an. (97) The proof for the identity of the k 's in this case is
essentially the same as that given for the case of
isotropic scattering, except that here

h, = —g (2r+1)P,(p,), i=a1, +2 an, (98)
r=o

is the solution of the system (97).
Combining (95) and (96), we get the complete

solution for Eq. (89):
F 2n —1

I;= P p„(2r+1)P„(p;)e "" e' P (2r+1)P,(—p~—),
r=o r-o

i =+1, +2 +n (99). .

Q~ 2n —1

~a=(p/D+1)&v ——2 ~.P (p*)P.(p/)
r=p

instead of (80), and in the expression (82) for P„one
should replace 5,p by a&„/(2r+1), so that

t' cu„i D
P„=! 1— !8„+ I (m+1)8„+g+mB„)7.

2r+I)

"See reference 6, Sec. 48.
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Using the same transformation matrix S, the rest of
the proof goes through exactly the same. Thus we have
shown in this general case how one gets a characteristic
equation which does not explicitly involve the a; s and

p s. However, it does not mean that the characteristic
roots are independent of the particular quadrature used.
In fact, the values of the roots are different if one uses
diferent quadrature formula. The identity of the roots
for the two methods in the present case in obviously
due to the fact that both are developments of the same
polynomial, namely the Legendre polynomial.

To prove the identity (103), we need the explicit
expression for H(pp)H( —ps) as given by Chandrasekhar,
1.e.)

Tasiz III. Values of (4/F)[f(t, +p) s—FS(il, 1—)e ')
from Eq. (69a).'

m=1 n=2 %=3
GQ SH Apb GQ SH Apb GQ SH Apb

0 2.292 2,430 1.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 6.256 6.075 3.9

—3.60—4.39—4.85—4.86—4.31—3.07—1.03
1.93
5.94

11.10
17.54

—4.01—4.65—4.95—4.83—4.17—2.85—0.79
2.13
6.02

10.98
17.11

—1.26—1.76—2.04—2.01—1.59—0.67
0.81
2.96
5.85
9.58

14.23

3.35
4.13
4.05
2.99
1.08—1.24—3,09—3.11
0.67

10.87
30.90

3.89
4.47
4.20
3.01
1.07—1.17—2.84—2.62
1.33

11.49
31.04

1.29
1.86
1.82
1.05—0.34—1.97-3.09

-2,55
1.30

10.69
28.47

a Parameters: «ut =2.9941, roe =4.9741, to3 =6.9343, os4 =8.8702,
cog =10.778, 8 =19.46.

b The values in these three columns are from the solution of the approxi-
mate integral equation (Eq. (49a) instead of Eq. (69a)).

n PD
—Ps Ps.(~s) 246 2e

Ps.(~s)
(—1)"Ps„(0) 1 3 5 (2e—1)

Since the k s are the 2n —2 roots of A„(D)/( —D'),

Now since the p s are the 2is roots of Ps (p), it is clear
that

VI. REDUCTION OF THE ANISOTROPIC PROBLEM TO
A QUASI-ISOTROPIC ONE

(A) Forward Scattering

(1) Theoretically the expression (69a) gives the
forward scattering to any degree of accuracy one
wants. But if the single scattering function is extremely
forward, one has to carry the approximation to a large
e in order to get some sensible result. This means a
tremendous amount of numerical work, so it is not too
desirable in practice.

Now, since the Goudsmit-Saunderson solution (50)
gives a pretty good approximation for forward scat-
tering, we can consider this as the 6rst approximation
of a perturbation treatment. First we rewrite the
integral equation (6) as follows:

~s'" '~-(1/w)/( —1/~s')
(~f/~r)+f= s ~ f(r, I')P(I, ~')d~'

(—1)"—'[3 5.7 (2is—1)]' —1

where the denominator is the coefficient of the highest
power of D in A„(D)/D' —Combining .these results

we get (103) immediately.
Since we have proved that the GQ approximation of

Chandrasekhar gives an expression for J(r, p) identical
in form with our Kq. (68), it follows that the final

solution f(r, +p) and f(r, —p) also must be identical
in form with our Eqs. (69a) and (69b). However, the
numerical values of the arbitrary constants are slightly
different because of the different ways of approximating
the boundary condition in the two methods. Conse-

quently, for any finite approximation, the two methods
will give slightly different numerical values for the 6nal
solution too. Table III gives the forward scattering in

the first three approximations for both methods, and
the corresponding approximations for the approximate
integral equation.

The parameters used in constructing Table III
coincide with the first case of Goudsmit-Saunderson's
Table I" (i.e, log)=4, @=0.0025).

~ S. Goudsmit and J. L. Saunderson, Phys. Rev. 58, 36 (1940).

+e(1 p) Bf/Br. —(104)

Putting this into (104), we get one equation with terms
free from ~

(Bfi/i)r)+fi s fi(r) p')——P(p) p')de'~ (105)
—i

and another one involving e (with e put equal to unity)

1

I (~fs/»)+fs= s "fs(r I ')P(u, ~')d~'

+(1 u)~f /~ (1o—6)

If fi and f, satisfy the boundary conditions,

fi(0, p)=trpb(p —1), —1&p&1,

fs(0, iu) =0,

fs(~ ~)= —fi(~ W)

(107a)

(107b)

(107c)

The parameter e, which is inserted here to indicate that
the term is small, will be set equal to unity eventually.
Let
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00
6'

12
18'
24'
30'
45'

Goudsmit-Saunderson
solution&

120.9
72.6
26.3
8.3
2.7
1.1
0.1

Correction
term�

2.57
2.45
2.08
1.55
0.97
0.44—0.08

TABLE IV. Forward scattering. ' develop the function fm under the integral of Eq. (106)
in a Taylor series around p' p, , that is

f2(~ t ') =f2(~, t )+[~f2(~, t )/~t'j(t '
t )—" (109)

Then we get|
fo(r, ls )p(p, p)dp

2

& Parameters have same values as in Table III.
b Values from reference 32.
&Deference of last toto columns in Table III.

f will satisfy the original boundary condition (7) with

po 1. Up to this point everything is still exact. Equa-
tions (105), (106), and (107) are just another way of
defining the original problem (6) and (7).

The solution of Kq. (105) with boundary condition
(107a) is just the Goudsmit-Saunderson solution (50).
With f~ given, one then wishes to find the correction
term fm satisfying (106), (107b), and (107c). Here we

will make the approximation by taking the 6nite series
solution (49) for f~ instead of (50) in Kq. (106), and
then solve the problem to the same SH approximation
with the corresponding approximation in boundary
condition. This approximate solution for f2 is simply
the difference of the two series solutions, (69a)—(49a)
with @0=1 and r=t. Thus we have for forward scat-
tering

f(t, tI) = Goudsmit-Saunderson solution (50)
+[(69a)—(49a,)j. (108)

Table IV gives both the Goudsmit-Saunderson value
(or f~) and the correction (or f2) for the special case
which is treated in Table III. In calculating f» one
does not need to carry the approximation to a large n
as in the case of calculating the original f, because the
extremely anisotropic part has been taken care of by
the first approximation f~ Here the co.rrection term is
calculated with n=3, which is, of course, just the
difference of the last two columns of Table III. One
notices from Table III that in the region with positive
values (the negative values in the table are meaning-
less), the percentage difference between the solutions
for the exact and the approximate integral equations
decreases steadily with the increase of approximation,
and for the third approximation it is only about 8
percent for p, =1.Therefore, the Goudsmit-Saunderson
value there probably would not be more than 8 percent
o6 from the exact value. Our correction in Table IV
is about 2 percent at p, = 1 or 8=0',

(2) Another simple approximation for f2 is to make
use of the fact that the single scattering function is
extremely forward, which means the function p(p, p')
has a sharp peak at p'=p approximately. 33 So we

~ The peak is usually not at jM,'=p, but a little distance o6.
For example, in the case we used for constructing Table III,
p'= 1.000082@.for values of p' not too near unity.

1. 8f2 ~
=f2(~ t )+- Z ~.&.(t ) ~" P.(t ')(t ' —t )dt

' . .
2 Bp, r=o ~

Bfg
=f2(T, p) pky-

Bp
(110)

where k&= (1—Sco&). Using (110),Eq. (106) becomes

u(8f /8 )+pjt (&f /BtI) = (1 p) (Bf /—8 ). (111)

For erst approximation, we omit the second term of
Kq. (111),since k&((1. Then the solution which satisfies
the boundary conditions (107b) and (107c) is

f2(~ t)=
[(1—p)/pjfi(r, p),

[(1—t )/t $f,(~, t ) (1/t )f—,(t, t ), t (0
p, )0;

For second approximation, we let

f2 g&+g» (112)

alld

~g~/~&= L(1 v)/p]—~f~/~& (113a)

Bg2/BT = —kg(Bgg/Bp), (113b)

respectively. The solutions of Eqs. (113a) and (113b) are

g~=[(1—t )/t jr+A(t ) (114a)

g2= —kg (8gg/Bp)d +J3(tI,) A(p), (114b)—

where A(y) and 8(p) are arbitrary functions. To
satisfy the boundary conditions (107b) and (107c), we
6nd that

A (p) =0 and B(p)

p&0;
(115)

+k,) (Bg)/BtI, )dr (1/p)f~(t, tI,), p(0—.

Combining Eqs. (112), (114), and (115), we have, for

where gq))gq. Putting Kq. (112) into Eq. (111), but
omitting g2 in the second term, we get the first- and
second-order equations
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the second approximation,

fp(r p)=

i p (1 p af~ f& 1

f~(r, p) k—~ )

(
——

~dr&
E p ap p')

p&0;

Then we have the final solution

(1—p afi ji)
f~(r p) fi-(t, p)-&i ——~dr, p&0.

p -~p ~p - ( p ap

f(r p)=f~+fp=

f~(r& p) t" (1—»f~ f~)

"o E p ap

,(r, p) —f,(t, p)
- t" (' (1—p af, f, )

p p - ( p ap p

p, &0; (116a)

(116b)

where f~ is the solution (50). The forward scattering is
given by (116a) with r = t, i.e.,

fz(t, p) t' (1—p afi fi)
f(t, p)= —k~ I

~

———jdr, p&0. (117)

The result given by (116) diverges for p=0. Since,
as p—+0, the terms neglected in (111) might be larger
than the ones retained, the whole approximation breaks
down. But away from p=0, the solution (116) might
give a reasonable approximation. Of course, it is not
allowable to make the same kind of development (109)
in the original equation (104), since the function f(r, p )
is a highly peaked function too. In fact such a develop-
ment applied to f(r, p') would lead just to a Fokker-
Planck differential equation [see Eq. (14)—(17)],which
is valid only for small angles. On the other hand,
fp(r, p') in Eq. (106) is a much more smooth function,
so we think it is justi6ed to make such a development,

(3) A third way of getting an approximate expression
for fp is by an iteration method. To illustrate how one
gets an exact solution by iteration, we will use the
problem de6ned by Eqs. (11) and (12), whose exact
solution is known to be the series (13). The solution
of (11) and (12) is equivalent to that of the integral
equation

where
1

&(r, p)=s f(r p')P(p p')dp'.

Now suppose we start with Williams' approximate
solution (given at the end of Sec. II) of this problem as
a trial solution in the last integral equation defining
the function J(r, p), and then substitute in turn into
the integral in f(r, p), we get

P e)
' (r p) f'"(r p)+—g (2r+1)P„(p)(g,—1)

4 T-o
y [& r(r+1) rt& e rj——

gT=
1—r(r+ 1)/X

X exp—
r(r+1) r —e '—1—

r(r+1)

One can go on and get the series

p
f&"&(r, p) =—P (2r+1)P,(p) exp

4 T-O

r(r+1)
T

r(r+1)
+(g.—1) 2 g." exp—

n-o

( r+1~ '

n 4 X )
s!

which can be easily shown to be identical with Eq. (13).
For the present case we first calculate the function

J(r, p) from Eq. (8) by using fq as the approximation
for f under the integral; then we obtain f(t, +p) by
(10a) with pp ——1. The result is

P QQ

f(t, + )-fi(t + )——Z(2+1)&.P.( )
4 T-o

and f&p&(r, p) is the Williams' solution we start with.
If we start with f"'(r, p) and iterate once more, we get

p
f"'=f"'+ Z(2r+1—)P.(p)g.(g.—1)

4 T=o
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Then Eq. (122) becomes

p ~
—{1+8)t

=—p(s, 1)
4 1+sp(cosa)=p(cosa, )+p'(cosa, )(cosa co—sn, ) . (119)

(B) Back Scattering Now multiply (122) by exp( —sr)dr and integrate r
from 0 to t. Also let

(1) The expression (69b) gives the back scattering,
but here again it is unpractical for cases with very t

anisotropic single scattering function. The perturbation q(s, p)= ~I dre "I(r, p).
treatment that we are going to give for this case is Q

based upon the extremely small cross section of the
back scattering.

First we make a Taylor development of the scattering
function p(cosa) defined by Eq. (1) around any back- PP(~~ P)~ " I(0~ Ii)]+~Iia(~& P)+&P(&i u)

ward direction, say cosn=cosno with no) m/2; i.e. ,

Rearrange the terms to make a series of Legendre
polynomials,

n

p(cosa) = c~ Q id' Pp(cosn),
)'=0

(120)

where coo~ = 1.Though the function p(cosn) is extremely

forward, it is much more isotropic in back scattering.
Therefore, we need only a few terms of the development

(119) or (120); i.e. , m will be small. The factor e„
depends upon n and n0, and it is small for small m.

From (120) we get a development for p(p, p') similar

to (5):

&n
1

+—Z ~.*P ( ) ~ v(~, j') P(~') d~'. (123)
r=0

In first approximation we will omit the sum in (123).
Then we put s= —1/p, and introduce the proper
boundary condition (39) for I(r, y). Thus we get

I(0, p) =0,

F ~{1—) ) t/))

I'"(& p)= ——p(p, 1) e "&, y)0, (124a)
1—p

I(), p)=0,
p( I ') = ~- 2 ~.*P.(~)P.(u')

r=O
(121)

Putting Eq. (121) into Eq. (38), we have (setting go= 1)

P 1 g{1—p) tip

I"'(0, ~) = P(p 1)—
4 1—p

p (0. (124b)

BI P
~—+I=—P(~, 1)s '

87 4

+—Q (v,*P,(p,) i I(r, p')P, (p')dIJ'.
2 ,-0

I&'&(0, p) is, of course, the first approximation for back
scattering.

In order to get the second approximation for I(r, p),
we have to get the first approximation of y(s, p). One

(122) just substitutes the two expressions (124a) and (124b)
into (123), still omitting the sum, and gets

F p(p, 1) 1—e "+"
v"'(~, ~)=—— — +

4 1+st 1+5

~
—t/y, —st )0

(1—p)/p
(125)

(1—~)/~
p, &0.

I"'(o, P) =I"'(0 I ) r. ~ *P (I )——
2p ~=0

1

X )I q"'(&, p')P. (u')dv'
—1 - s=—1/tr)

Putting (125) into the integral in Eq. (123), and

carrying out the integration in p, ', we get the second
approximation by again setting s= —1/p and using
boundary condition for I(r, y):

One can go to higher approximations in a similar
manner. "

For a semi-infinite medium, t—+~, the first approxi-
mation of back scattering becomes obviously

I'"(0, A =4PP(p 1)/(1 —p), ~&0 (12&)

Now if we make the development (119) around the
direction where we wish to calculate the back scattering,

34 A similar technique was used by L. V. Spencer, "Penetration
and diffusion of x-rays, " Natl. Bur. Standards (U. S.) Memo
Rept. We are indebted to U. Fano for a copy of this report.
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that is, to put cosno=ti, then, in view of Eqs. (119),.
(120), and (121), we have

TAaLE V. k of Eq. (126).

k»+1 —k» k»+1jk»

p(&, 1)=p(t)

exactly. Thus we get finally

I'"(0, ti) =4I"p(ti)/(1 &i)—, &t&&0.

(128)

(129)

0.69
2.58
4.89
7.1S
9.21

1.89
2.31
2.26
2.06

3.72
1.89
1.46
1.29

If the development is made around a direction difFerent

rom the one where we calculate the back scattering, principal value. We have calculated the first and

then p(ti, 1) is simply the finite series second approximation only for n =0 and p, = —1.VVe get

e
p(ts, 1)= p —pi" (cosno)(ti —cosao)",

r-art
(130)

Ii'&(0, —1)=-', I'"P(1—e "),

p
I&'&(0 —1)= I&'&(0 —1) 1+ Dn2+Ei(2t)

g
—2f

—2E,(t)e—' —(y+1nt)e "j, (134)

Ei(x) = I e-"dl/N.

where the r in parenthesis means the rth derivative
with respect to the argument. In (128) the value of

p(p, 1), for a fixed &ti, does not change with the number
of terms taken in the development (119), but in (130)
it does. Since (130) is a series in (ti —cosno), it requires where p is the euler constant and

a larger» to approach (128) for ti further away from
cosno. With t~~, the expression (125) reduces to

Ii p(ti, 1) 1 0 ti)0,
yo&(s, ti) =— +

4 1+st .1+s t/(1 —t). &«0,

from which one can calculate I&2&(0, p) by (126).
To give some idea about the order of magnitude of

the first approximation and the convergence of the
method, we have calculated a few values for the semi-
infinite case with the Rutherford scattering function

P(cosn) =4P(1+P)/(1+2P —cosa)', (131)

which is normalized according to the definition (1).
P is the screening constant, usually much smaller than
unity. Using (131), we get the first approximation
immediately from (129):

For the case we treated in constructing Tables III and
IV, t is of the order 20. Then Eq. (134) gives practically
the same result as the case of infinite t.

From a physical point of view one would expect that
such a development is good only for thin foils. However,
the results of Table V seem to show that this develop-
ment may be useful for thicker foils too. Further
numerical work would be necessary, however, to make
this conclusion safe. Physically, this conclusion would
mean that in back scattering a large number of small
angle defIections is less probable than a small number
of large defIections.

(2) Equation (116b) gives another approximation for
backscattering, i.e.,

I"'(o &)=I"'(0 t)(1+It P) (133)

I&»(0, &) =FP(1+P)/(1+2P-~)'(1-~) fi(t, t) ' 1 t ~fi f»—
=I'"P/(1 —t )', t«0 (132) f(0 t ) = — +&i " I

0 E ti 8ti jp)
If the second approximation is written in the form

p &0. (135)

the constant k„, which determines the convergence,
changes with n, the number of terms taken in the
development (119) besides the first constant term.
Table V gives the values of k„ for n&4 at p, = —1 and
cosa, o

———1 too. The last two columns giving tile
difFerence between and the ratio of consecutive k„'s,
show that the k„probably would not diverge as n
increases.

The calculation for finite t is a little longer, but there
is no essential diKculty, but some of the integrals
involved must be understood in the sense of cauchy

The function f,(t, ti) in the form of the infinite series
(50) is not too practical for numerical calculation,
since for an extremely forward single scattering function
one has to take a tremendous number of terms. For the
case of small t, several authors" '6 ~~'7 have made devel-
opments of this function which are more suitable for
numerical calculation than the series. However, they
all made the small-angle approximation, so their
developments are not suitable for p, &0 as required by
(135). We shall give another development here which
approximates better for smaller y.

The function f&(r, ti) is a solution of (105) and (107a).
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We first develop fi(r, p) in a Taylor series of r, i.e.,

fi(r, p) =~Fb(p 1)—+r(bfi/Br), ,
+s~(b'fi/br'). =', (136)

for p= —1 in our approximate expression (139). For
this special value of p, the integral in (138) can be
evaluated exactly. We found the exact value for the
deviation up to first power of P to be

in which we have made use of the boundary condition
(107a). Putting (136) into (105) and equating coeK-
cients of difFerent powers of v, we get

2Pt(lni/P —1)

(~fi/br). -0='FP(p) ~F—b(p 1),—
instead of (140).

If we apply the development (136) to the exact
Boltzmann equation (6), we get, instead of (138),

13/

+-'F tp(p)+'t' l) P(p p')P(p')dp' 2P(p) —(138)
—1

One gets, of course, exactly the same series if one
develops the solution fi(t, p), as given by (50), into
power series of t, only not immediately in this form.
In the form of (138), one notices that, besides the
singular function at p=1, the coefficient of t contains
only a single-collision term, and that of P contains both
single and double-collision terms. The t' term will have
single-, and double-, and triple-collision terms, and
so on.

The first term inside the curly brackets of (138) is
the weO-known single scattering tail for a thin foil. To
evaluate the integral, we notice that the integrand is
the product of two extremely peaked functions with
one peak at p,

'=
p, and the other at p'= i. So we break

the integral at p'= (1+p)/2, and develop the slowly

varying function in both intervals into Taylor series
around the peak of the other function. Using the single
scattering function (131), and keeping terms of first
power of P, we get, combining with other terms of (138),

fi(t, p) = (1 t+ttt2)s Fb(p —1)+$FtP(p)—
pt 1 2

X 1+ 2(3+p) ln—(3+p) ln
2P 1—p

27@,'—15@,'—27@,+47

4(1—p)'
(139)

In calculating (139) we have taken the Taylor series up
to terms with third derivative. The above result is, of
course, incorrect if P/(1 —p) is not small. The deviation
from single scattering, given by the term with square
brackets, reduces to

2Pt(1 1/P —ln2 —1/2) (140)

1

(b'fl/br'). -0=4F 2 P(p p')P( ')dp' 2P(p—)
—1

+sFb(p —1),

where p(p), which is written for p(p, 1), is just the
single scattering function defined by (1). Combining
(136) and (13/), we get

f (t, p) = (1—t+-'ts) sFb(p —1)

(
f(t, p)=

i
1—t+—(mFb(p 1)—

E. 2)

F tP(p) t' 1 t'P(p, p')P(p')dp' 1+p
P(p)4(p2p2 p

(3) We can get an expression for back scattering
similar to (118) for forward scattering by iteration.
The only di8erence in calculation is that here we use

(10b) instead of (10a). Thus, we get

p co ~
—0+ft&r) &Iy

(0, —p)= —Q (—1)"(0„F„(p)
4 ~-0 1+pk,

p& 0. (141)

(C) Final Remark

Making use of the development (138), one can show,
in the case of forward scattering, that for small t

f(t, p)~L1 —t(1—ki) jirFb(p —1)+Ftp(p)/4p (142)

in the solution (117), and

f(t, p) (1 t)sFb(p 1)+—Ftp(p)/4—p . . (143)

in the solution (118). The two expressions (142) and
(143) are approximately the same, since ki«1. In the
case of back scattering, the three kinds of approximation
lead to the solutions (124b), (135), and (141). They
represent the same quantity, the angular distribution
of back scattering, since I(0, p) and f(0, p) are identical
for p &0 by definition (37).Now one can also prove that
for small t the three solutions approach the same
expression

f(D, p) = Ftp(p)/4p, p&—0.

All our approximations described in this Sec. VI,
except the one in subsection (81), are based upon the
Goudsmit-Saunderson solution (50) as a first approxi-
mation. Therefore, if we want to have some numerical
results, it is necessary to tabulate the solution (50) first.
For small t, there are some developments in the litera-
ture" suitable for numerical calculation in the range 8

not too large, and we have given the development (139)
for large 8. For arbitrary t and 8 very small, one can
replace the sum (50) by an integral, as done by Moliere
and Snyder and Scott"" and get some approximate
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values. But when 8 is not very small, in fact very large
as in the case of backscattering, we are not able to
convert the sum to any form more suitable for numerical
calculation, except for small f,.

In calculating the series (50), one major job is to
compute the k„'s, which involves some elementary
integrations. For the scattering function (131), we

have calculated the first seven k„'s and found, by
inspection, the general rule

where m=~mr or —,'(r—1) for r even or odd, and

x—i x" n —i
ln + +

2 x+1 x2—1 1
x" 2

e—3 n —5
x" '+ x" 6 (145)

1 (2r —2i)!
(1—k„)= Q (—1)i A, 2;,

2'Ao '-o ~!(r—i)!(r—2~)!

with x=1+2P. In using the series (145), all terms,
after the second, with negative powers of x have to be

(144) discarded. Snyder and Scott, and Lewis"" have given
some approximate expressions for k„.
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The Primeval Lead Isotopic Abundances and the Age of the Earth's Crust*
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Nier s determinations of lead isotopic abundances in common lead ores have been the subject of con-
siderable study in connection with attempts to calculate the age of the earth. The importance of the age of the
earth in 6xing the age of the elements has led us to remark on the very high precision frequently attributed
to the former age determinations. A calculation is presented which yields a rough maximum age of the earth,
namely, t(max) =5.3 billion years. The primeval lead isotopic abundances have been estimated and. briefly
discussed in the light of nuclear systematics.

INTRODUCTION
' 'N several recent papers dealing with the subject of
~ ~ the age of the elements, use has been made of the
important value for the age of the earth's crust due to
Holmes, ' namely, 3.350&10' yr. In view of the rather
unreasonably high accuracy assigned to this value by
many authors' and the great interest in such ages for
cosmological and cosmogonical problems, it seems per-
tinent to discuss brieRy the analyses leading to such

ages, and to point out that, at the present time, the
limit of speculations on this subject due to the nature
of the data may be a rough estimate of the maximum

age of the earth's crust, and of the primeval lead iso-

topic abundances.
Katco6, Schae8er, and Hastings' have recently cal-

*This work was supported by the U. S. Navy, Bureau of
Ordnance.

'A. Holmes, Nature 157, 680 (1946); 159, 127 (1947); 163,
453 (1949); Endeavour 6, 99 (194/). See also H. JeGreys, Nature
162, 822 (1948); 164, 1046 (1949), as mell as E. C. Bullard and
J. P. Stanley, Suomen Geodeetisen Laitoksen Julkaisuja, Verof-
fentlichungen des Finnischen Geodatischen Institutes, No. 36, 33
(1949). The latter authors obtains 3.29X10' yr using the same
data as Holmes but employing a least squares analysis.' For example, Fleming, Ghiorso, and Cunningham, Phys. Rev
82, 967 (1951),suggest that their new value of the decay constant
for U23' will alter Holmes' value for the age of the crust, vis. ,
3.350X109 yr, by three percent. It is very dificult to understand
how this small change in the crustal age was estimated, in light
of the involved nature of Holmes' analysis leading to this age,
and its concomitant approximate nature.

' Katco&, Schae6er, and Hastings, Phys. Rev. 82, 688 (1951).

culated the time between element formation and
formation of the earth's atmosphere to be At =0.27' 10'
yr. Their calculation was based on the addition of Xe'"
to the atmosphere by the decay of I'", as suggested
earlier by Suess. 4 More recently Suess and Brown' have
pointed out that this calculation actually leads to an
approximate lower limit for the value of the time
interval At. They find a value of At—0.4)& i0' yr. The
age of the elements is then given by the sum of this
time and the age of the earth's crust, assuming that the
time between formation of the crust and of the atmos-
phere, and between formation of the earth as an entity
and its crust, may be neglected. These suggested values
of 3t are suKciently small that, if they are correct even
only as to order of magnitude, then the important calcu-
lation, in so far as the age of the elements is concerned,
is that yielding the age of the earth's crust. However,
the determination of At is otherwise of great interest in
connection with the early history of the universe.

FORMULATION

The determinations of the age of the earth's crust

by various investigators are all based on a set of data
due to Nier. ' These data are accurate mass spectro-

'H. E. Suess, Z. Physik 125, 386 (1948); Experientia 5, 3/6
(1949).

s H. K. Suess and H. Brown, Phys. Rev. 83, 1254 (1951).' A. O. Nier, J. Am. Chem. Soc. 60, 1571 (1938);Nier, Thomp-
son, and Murphey, Phys. Rev. 60, 112 (1941).Of the twentv-6ve


