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An alteration in the notation used to indicate the order of operation of noncommuting quantities is sug-
gested. Instead of the order being defined by the position on the paper, an ordering subscript is introduced
so that A,B, means AB or BA depending on whether s exceeds s' or vice versa. Then A, can be handled as
though it were an ordinary numerical function of s. An increase in ease of manipulating some operator
expressions results. Connection to the theory of functionals is discussed in an appendix. Illustrative appli-
cations to quantum mechanics are made. In quantum electrodynamics it permits a simple formal under-
standing of the interrelation of the various present day theoretical formulations.

The operator expression of the Dirac equation is related to the author's previous description of positrons.
An attempt is made to interpret the operator ordering parameter in this case as a fifth coordinate variable
in an extended Dirac equation. Fock s parametrization, discussed in an appendix, seems to be easier to
interpret.

In the last section a summary of the numerical constants appearing in formulas for transition prob-
abilities is given.

N this paper we suggest an alteration in the mathe-
~ - matical notation for handling operators. This new
notation permits a considerable increase in the ease of
manipulation of complicated expressions involving
operators. No results which are new are obtained in
this way, but it does permit one to relate various
formulas of operator algebra in quantum mechanics in
a simpler manner than is often available. In particular,
it is applied to quantum electrodynamics to permit an
easier way of seeing the relationships among the conven-
tional formulations, that of Schwinger and Tomanaga, '
and that of the author. ' These relationships have already
been discussed by many people, particularly Dyson. '
The connection was shown by means of a re-ordering of
operators in each term of a perturbation power series.
Here, the same end is achieved in much the same way
without having to resort to such an expansion.

It is felt, in the face of daily experimental surprises
for meson theory, that it might be worth while to spend
one's time expressing electrodynamics in every physical
and mathematical way possible. There may be some
hope that a thorough understanding of electrodynamics
might give a clue as to the possible structure of the
more complete theory to which it is an approximation.
This is one reason that this paper is published, even
though it is. little more than a mathematical re-expres-
sion of old material. A second reason is the desire to
describe a mathematical method which may be useful
in other fields.

The mathematics is not completely satisfactory. No
attempt has been made to maintain mathematical rigor.

* Absent on leave at the University of Brazil, Rio de Janeiro,
Brazil.

' See J. Schwinger, Phys. Rev. 76, 790 {1949),and S. Tomonaga,
Phys. Rev. 74, 224 (1948), where additional references to previous
work may be found.' The author's previous papers will hereafter be designated as
follows: R. P. Feynman, Revs. Modern Phys. 20, 367 (1948)—C;
Phys. Rev. 76, 749 (1949)—I; Phys. Rev. 76, 769 (1949)—II; and
Phys. Rev. 80, 440 (1950)—III.' F. Dyson, Phys. Rev. 75, 486, 1736 (1949).

The excuse is not that it is expected that rigorous dem-
onstrations can be easily supplied. Quite the contrary,
it is believed that to put the present methods on a
rigorous basis may be quite a difficult task, beyond the
abilities of the author.

The mathematical ideas are described and are illus-
trated with simple applications to quantum mechanics,
in the first four sections. Some possible mathematical
relations between the operator calculus described here
and the theory of functionals is described in Appendix
A, with further specific mathematical applications in
Appendixes B and C. Section 5, and more particularly
Secs. 6 to 9, apply specifically to quantum electro-
dynamics and may be omitted without loss by those
whose interest is limited to mathematical questions.
The use of a fifth variable to parametrize the Dirac
equation is discussed in Secs. 8 and 9. An alternative
procedure due to V. Fock4 appears in Appendix D.
Section j.0 gives a summary of the rules for computing
matrix elements.

1. DESCRIPTION OF THE NOTATION

The order of operation of operators is conventionally
represented by the position in which the operators are
written on the paper. Thus, the product AB of two
operators A and 8 is to be distinguished from the
product in reverse order BA. The algebra of operators
is noncommutative, so that all of the ordinary algebra,
calculus, and analysis with ordinary numbers becomes
of small utility for operators. Thus, for a single operator,
n, ordinary functions of this operator, such as A = expn,
can be defined, for example, by power series. These
functions obey the rules of ordinary analysis even
though a is an operator. But if another operator p is
introduced with which a does not commute, the ques-
tion of functions of the two variables n, P is beset with
commutation diKculties and the simplest theorems of
analysis are lost. For example, if 8= exp p, it is not true

4 V. Fock, Physik. Z. Sowjetunion 12, 404 {1937).
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that BA, that is, expP expa, is equal to exp(P+a).
Thus, the law of addition of exponents fails. Conse-

sequently, the principles of elementary calculus are no
longer operative in a simple way. For example, expand
exp(a+P) to first order in P, assuming P small. The
zero-order term is expo. , but the first-order term is
neither P expu nor (expa) P nor the average of the two.
From the theory of time-dependent perturbations in

quantum mechanics we learn that it is

exp(a+ P)

necessary to define the order of operations, there being
only one operator in the term.

The notation is to be extended so that the index need
not be integral, for example, A gB3.2= BA, since
3.1&—2, and in general A,B, =BA if s'&s and AB if
s&s' and is undefined if s= s'.

How can we work with an expression such as
exp(a+P) so as to free the a and P of their noncom-
mutative aspects and thus utilize the theory of functions
for rearranging the expressions? Take a quantity E very
large and write

=expa+ expL(1 —s)a]P exp(sa)ds+ . . (1)
Jp

The appearance of the integral in this analytic result
appears surprising and its derivation does not indicate
clearly how to differentiate or expand other functions
of a+P. Further, the simple integral on s is not easy
to perform, although the results can be given in several
ways as power series. That the integral cannot be done
in a general fashion is clearly due to a weakness of
notation, for in a representation in which n is diagonal
with eigenvalues 0. we can of course verify directly the
usual result,

(exp(u+P)) „=(expa )b „

+ (expu —exp a„)P (a —a, ) + (2)

of the perturbation theory of stationary states.
%e shall change the usual notation of the theory of

operators and indicate the order in which operators are
to operate by a different device. %'e attach an index to
the operator with the rule that the operator with higher
index operates later. Thus, BA may be written B1Ap
or Ap81. The order no longer depends on the position
on the paper, so that all of the ordinary processes of
analysis may be applied as though Ap and B1 were
commuting numbers. It is only at the end of a calcula-
tion, when the quantities are to be interpreted as
operators, that the indices 0 and 1 are of importance if
one wishes to reconvert an expression to the usual
notation. Thus, if A = expa and B=expP, we can now

safely write BA = exp(ao+P&), as there is only one way
to interpret the latter expression. Other analytic
processes then become valid. For example,

1
«p(ao+ Pi) = 1+(ao+ Pi)+ (ao+ Pi)'+—

2!

1 1
1+—(a+P) 1+—(u+ P)

E A

1

X 1+—(a+P) for iY factors.

= lim exp —P (a;+P,),
X-ace P s=1

where the last expression is written in accordance with
the new convention that the index i controls the order
of operation. (The ambiguity arising from u; and P;
with the same index can only cause trouble in a product
u;P;, and such products are of vanishing importance as
X~oo.) More simply, calling s=i/sV, we can take the
limit and write

exp(a+P) =exp (u,+P,)ds .
0

(3)

That this is valid is, of course, evident, since we could
call a.+P.= y, with y a definite operator operating at
order s, so that

( c" & ( I"
exp] y,ds )=exp( )~ yds ),) EJ, )

In each factor we repls. ce a+P by a,+P;, where i is an
index running to X, and write

1
exp(a+P) = lim g 1+—(u,+P;)

X~~ s=1

in the conventional notation. For on squaring

+p+~(ao+2pa+po)+. . . for in this expression the order index is unnecessary,
only one operator y being involved. The integral is
just y,

(ao+Pi) = uo +2aoPi+Pi,

we must interpret the quantity cxpp1 as pn in accordance
with our convention. The quantity P&' alone (that is,
not multiplied by any other expression with an index,
such as ao) is simply P', since the index is no longer

1 ~1

Jp al p

since y does not now depend on s. Therefore, Eq. (3)
is trivial as it stands; but what is not trivial is the fact
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that the right-hand side of Eq. (3) may be manipulated
just as though a, and p, were numerical functions of s,
with the assurance that now the order of operations
will always be automatically speci6ed by the index. For
example, from Eq. (3) we have the legitimate relation

exp( +P) =exp( ,ds
I exp( ' P,ds ). (4)

(I" i (~'
)

As an example, showing that such manipulations do not
destroy the validity of equations, consider the term of
6rst order in both a and P on both sides of Eq. (4).
Expanding the left side as 1+(a+P)+-'(a+P)'+
we see that the term in question is 2(aP+Pa), while

expansion of the right side gives for the corresponding
term (Jo' a,ds)(Joi PAS). This can be simplified by
being written as

~l ~l pl ps ~1 ~l
agdsPg~ds = a~Pg dsds + ~~ a~PI~dsds

0 ~0 ~0 0 0 s

In the 6rst integral we have s&s', so that a,P, is equal
to aP, while in the second s(s', so it is Pa. Hence, there
results aPJoiJ0'dsds'+Pa JtiJ dsds'; thus on per-
forming the integrations we 6nd 6nally

a,ds )i
i p,ds i=i(ap+pa).

)&0
This process of rearranging the form of expressions

involving operators ordered by indices so that they
may be written in conventional form we shall call
disentangling the operators. The process is not always
easy to perform and, in fact, is the central problem
of this operator calculus. As a second example of disen-
tangling, consider the problem of expanding Eq. (4)
to the first order in P. It is evidently

exp(a+P) =exp( I a,ds [+exp( ~ a. ds'
[

~ pcs+ . (5)
0

The 6rst term is simply expo. , for 0., is independent of s,
as there is no other operator with which 0., does not
commute in this term. The next is the integral over s
of exp( Joi a, ds')p, . In the integral on s' we can split
the range, according to whether s'& s or s'& s;
exp(J a, ds') exp( Jo' a, ds')P, . The a, in the hrst
factor acts after the P, and is otherwise independent of
s', while the a, in the second factor is to act before
the P,. Hence, if we write these factors respectively
after and before the p, and imply the usual convention,
the a, will be independent of s' in the range 0 to s and
we may perform the integral. Hence, the result is the
integral on s of exp[(1 —s)a]p exp(sa) in agreement
with Eq. (1).

Incidentally, by applying new subscripts in another
way the term may be also written as Jo' exp[(1—s)a2]p,
Xexp(sa, )ds, in which case the integral may be im-

mediately performed to give

[(d/d~) exp(a+~P)].

=exp' a, ds'
I ~~ P.ds

E~, i),
1

I exp[(1 —s)a]P exp(sa)ds

= (expa~ e—xpa, ) (a .a—o) 'p-, .(6)

All the four expressions are equivalent as has been
shown, but only the 6rst and third are in a form in
which the operators are disentangled so that the con-
ventional expressions may be used. In the representa-
tion in which 0. is diagonal, it should be evident that
the matrix element of the last expression is that given
in Kq. (2)

Any operator function of 0,+P can, by replacing
a+P by Joi a,ds+ Jti P.ds, be manipulated in a mani-
fold of ways, many of which lead to useful formulas.
In a like manner, more complicated operator expressions
can be rewritten using ordering indices. They may then
be manipulated using all of the results of ordinary
analysis.

A word about notation: Inasmuch as in mathematics
and physics there are already many uses of the sub-
script notation, very often we shalt write a(s) for a, .
In a sense, a(s) is a function of s, namely, in the sense
that although the operator 0. may be de6nite, its order
of operation is not—so that the operator plus a pre-
scription of where it is to operate, a(s), is a function of s.
Furthermore, there will be many cases in which the
operator actually depends explicitly on the parameter
of order. In this case we should have strictly to write
a, (s) but will omit the subscript when no ambiguity
will result from the change.

%e may remark in a general sense about the mathe-
matical character of our expressions. Given an ex-
pression such as J&'P P(s)ds, we are not concerned with
evaluating the integral, for the quantity when separated
from other factors with which it might be multiplied is
incompletely defined. Thus, although Joi P,ds standing
alone is equivalent simply to P, this is far from true
when Joi P,ds is multiplied by other expressions such as
exp Joi a,ds. Thus, we must consider the complete
expression as a complete functional of the argument
functions a(s), p(s), etc. With each such functional we
are endeavoring to associate an operator. The operator
depends on the functional in a complex way (the
operator is a functional of a, functional) so that, for
example, the operator corresponding to the product of
two functionals is not (in general) the simple product
of the operators corresponding to the separate factors.
(The corresponding statement equating the sum of two
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functionals and the sum of the corresponding operators
is true, however. ) Hence, we can consider the most
complex expressions involving a number of operators
M, X, as described by functionals F[M(s), .V{s) ~ j of
the argument functions M(s), iV(s) (—=M„S, ).
For each functional we are to 6nd the corresponding
operator in some simple form that is, we wish to disen-
tangle the functional. One fact we know is that any
analytic rearrangement may be performed which leaves
the value of the functional unchanged for arbitrary
M(s), E(s) considered as ordinary numerical func-
tions. Besides, there are a few special operations which
we may perform on F[M(s), $(s) j, to disentangle
the expressions, which are valid only because the
functional does represent an operator according to our
rules. These special operations (such as extracting an
exponential factor discussed in Sec. 3) are, of course,
proper to the new calculus; and our powers of analysis
in this field will increase as we develop more of them.

2. APPLICATIONS IN QUANTUM MECHANICS

The wave equation i8$/Bt= HP determines the wave
function P(h~) at time t2 in terms of that at time t&, &i (t&).
In fact, they are related by a unitary transformation
&h(t&)=0(t2, t,)&h(t&). The unitary operator 0(t2, t&) can
be expressed as 0(t2, t&) =exp( i(t2 —t&)H—) in the case
that H is independent of the time. In spite of the
simple appearance of the analytic form of 0 in terms
of H, little has been done except formally with this
expression for the reasons outlined in the previous
section. We may readily re-express it as

0(tp, t&) =exp~ —i ll Hgdt ()
and may then find the expression easy to utilize.
Further, if H is an explicit function of the time H(t),
we can consider the 0 to be developed as a large number
of small unitary transformations in succession, so that
we have directly

t2

Hereafter in this section we shall make the convention
that time is the ordering parameter and simply write
H(h) for H, (h)

We can use this expression to derive many results in
quantum theory. Thus, if H(t) can be written as the
sum of two parts H& &(t) and U(t), we have

)&exp~ i ll U(t—)Ch ~. (8))
' This point of view is discussed in further detail in Appendix A.

If H(" is simple and U is small, an expansion in powers
of U is simple. %'e call Q&~& the operator corresponding
to the hamiltonian H("+ U and 0&"' that corresponding
to H"'. The hrst-order difference of 0(U)and 0{" is

t2 t2

U(t)Ch exp i—f H(t')dt',
JtI J„

which may be disentangled as

t2 t

i —lf exp i —~ H(t')dt' U(t) exp i —f H(t')dt' Ch

Jtl t JtI
t2

i l—~ 0&'&(t„ t) U(t)0«&(t, t,)dt, (9)
Jt,

as explained in connection with Eq. (6). This is a
standard result of time-dependent perturbation theory.

As a second example consider the perturbation term
of 6rst order in U and in V arising from the hamiltonian
H"&{t)+U(t)+ V(t) It is.

t2 t2 t2

f U(t')dt' f V(t")dt" exp —i lf H(t)ch .
Jtl

In order to disentangle this, we can break the t"
integral into two regions, t"&t' and t"&t'. The term
arising from the hrst region has V operating before U,
while the reverse is true for the other region. (The
integral on t for each region is then divided into three
parts determined by the relation of t to t', t" )Thus, .
the term becomes, when disentangled, the sum of two
terms:

t2

0&"(t., t') U(t') 0&'&(t', h") V(t")J„J„
x 0&'&(t", t, )ch"ch',

(10)
~t2 t2

J„J,, 0&"(t, t")V(t")0"&(h", t') U(t')

)& 0&'&(t', t )dt"Ch'

This is the way that the various terms corresponding to
the diferent diagrams arise in quantum electrodynamics
when an attempt is made to calculate explicitly a single
operator expression arising in perturbation theory.

The results here are very similar to those derived
from the lagrangian form of quantum mechanics as in
III. Here we have the advantage of being able to use
the more familiar operator concepts and to work in
greater generality from the start. For it is not necessary
that H be restricted to coordinate and momentum
operators only. Equations (7) and (8) are correct for
any IJ; for example, one containing creation and anni-
hilation operators of second quantization, or Dirac
matrices, etc.

The connection of these formulas to those given in I
is simple. K(x2, t~, x&, t&) is just a coordinate integral
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kernel representation of the operator Q(ti, 1&) so that,
for example, Eq. (9) gives directly

the expression (9) of I, while Eq. (10) translates immedi-
ately into the expression (30) of III.

As another type of application, consider two inter-
acting systems whose hamiltonian is H( '+H&"
+U[x&', x&'&], where H& & involves operators of
system (a) only, H&i& involves only those of system ()&)),

and U involves both. Then we may ask for the ampli-
tude, if at 3i system (a) is in state f& and system (b) in

P&, that at ti they are in fi, &f)i. This is the matrix
element

t,g t2

m= 2@2 exp —i H(' t dt —i I
H(" t dt

But this may be split into two problems. Ke may Grs t
find the matrix element

+!2
T&'[x&'&(t)]= f exp' i H—& &(t)dt2

for the system (&i) alone, considering that in the inter-
action potential U[x& ', x&~&], all operators referring to
(f)) are arbitrary numerical functions of t, (We have.
been writing as though U depends on (b) only through
the coordinate, x'~'; but the same method applies if it
is also a function of momentum, or spin, or other
operators on system (I&).) Then the matrix element T&'&

depends on the function x&'&(&). As we indicate, it is a
functional of x"&(&'). The final answer, m, is then a
matrix element (@i~M

~
@&)between the states P& and @&,

wherein now the quantities x&"(t) are considered as
ordered operators operating relative to each other and
to H&~&(t) in accordance with the time parametrization.

In this way we can analyze one part of a pair of
interacting systems without having yet analyzed the
other. The influence of u on b is completely contained in
the operator functional T& &[g&'&(t)]. This separation
may be useful in analysis of the theory of measurement
and of quantum statistical mechanics. It is the possi-
bility of such a separation which exists also in the case'
of the lagrangian form of quantum mechanics, C,

which makes that form useful in analyzing the quantum
properties of the electromagnetic Geld. We may there-
fore expect that with the present operator notation it
should be equally easy to make this analysis. That th, is
is indeed true we show by example further on. Since
this, the main advantage of the lagrangian form, can be
so easily managed with the new notation for operators,
this may well take the place of the lagrangian form in
many applications. It is in some ways a more powerful
and general form than the lagrangian. It is not restricted
to the nonrelativistic mechanics in any way. A possible
advantage of the other form at present might be a
slight increase in anschuglichkeit offered for the inter-
pretation of the nonrelativistic quantum mechanics.

3. DISENTANGLING AN EXPERIMENTAL FACTOR

There is one theorem which is very useful in disen-
tangling operator expressions. We shall give it in this
section. Suppose we have several operators M, S, etc.
(which may also be functions of time, or more generally,
the ordering parameter s), which are ordered in some
way.

Let us say the functional F[M(s), 1V(s) .] defines
the ordered operator. Now suppose we replace M(s) by
M'(s)=U 'M(s)U, 1V(s) by 1V'=U '1V U, etc. , where
U is some constant operator. Then, as is well known,
in F[M(s), 1V(s) ] in any product of successive
operators, such as M(s+ds)1V(s), the UU ' cancel out
in between (that is, M1V= U 'MUU '1VU= U 'MNU, —

etc.), so that there results

F[M'(s), 1V'(s) ]=U 'F[M(s), 1V(s) ]U, (14)

where the U's are written to operate in the correct
order. (If we wish to be more specific, we can imagine
the range of the ordering parameter to be s=0 to 1
and write the right-hand side as U, 'FUO. )

This is a simple rewriting of a well-known theorem
of equivalence transformations. However, a much more
interesting case is that in which U(s) is actually a func-
tion of the ordering parameter. That is, we contemplate
performing diferent transformations on the operators
M(s) depending on the value of s at which they are to
operate. Then in a product of successive operators such
as M'(s+ds). )V'(s), where

M'(s+ds) = U '(s+ds)M(s+ds) U(s+ds)

(operating in the order indicated by the position of U ',
M and U) and 1V'(s)=U '(s)1V(s)U(s), the factors
U(s+ds) and U '(s) will not cancel out, but we will
find the operator U(s+ds)U &(s) operating between
times s and s+ds, say at s+ ~~ds. If we assume U con-
tinuous, we can imagine U(s) differs from U(s+ds) to
the first order in ds, and hence that U(s+ds) U &(s)

equals to Grst order in ds:

U(s+ds)U '(s) = I+P(s)ds,

where P(s) is an operator defined by this relation in the
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limit ds—+0. We may write this relation

d U(s)/ds = P(s) U(s) (15)

U(s)=exp t P(s')ds' U(0), (17)

this last coming from integrating Eq. (15).We shall use
the theorem by writing it in the form

exp P(s)dsF[M(s), N(s) ]
= U(1)F[M'(s), X'(s) ]U '(0), (18)

in which form it serves as a rule for disentangling an
exponential factor from another expression. A word of
caution is necessary in reading Eqs. (18), (16), and (17),
for three diferent notations are used in the expressions.
In Kq. (18) the new ordered notation is used in its
complete form; for example, the s in exp Joi P(s)ds
gives the order in which the I' is to operate relative to
the M, E of the functional Ii which it multiplies. In
Kq. (16), however, all the operators are to operate at s,
but the relative order in M' of U, M, and U ' is as
given by the usual position convention. Finally, Eq.
(17) wouM be less ambiguous if it were replaced by the
differential equation (15). For in the solution (17), the s
are to bear no relation to the s in Eq. (16) or Eq. (18).
The operator U(s) is to be computed from P by Eq.
(17) first, then the whole operator U(s) is to operate in
Eq. (16), and then in Eq. (18) at the position s.

We shall use this theorem in several applications
related to quantum electrodynamics. Most particularly,
we shall find a certain special case useful enough to
warrant special mention. It is the case that P(s) is of
the form n(s)P„where a(s) is a simple numerical
function, and I', is an operator whose form does not
depend on s but whose order of operation does. Then
if we call a(s) = Jo' a(s')ds', so that u(s) is also a nu-

with positional ordering. Hence, between s and s+ds
there should operate an additional factor 1+P(s)ds,
which for convenience we may write, valid to first order,
as exp[P(s+-', ds)ds). The s+-', ds in P(s+ ,'ds) -will

automatically locate the factor in the correct order.
But there is a factor of this kind appearing between the
operators for each value of s, or multiplying the factors
all together, we obtain the net factor exp JtiP(s)ds,
the product becoming a sum, or integral in the ex-
ponent. Hence, we have the general theorem:

F[M'(s), iV'(s) ]=U '(1)F[M(s), X(s) j
( t"

&(exp(
~

P(s)ds
) U(0),

)
where

M'(s) = U '(s)M(s) U(s)

merical function, Kq. (17)gives U(s) =exp[a(s)P, jU(0).
We shall further choose to specialize U(0)=1. (The
more general case corresponds to a final simple constant
equivalence transformation (14) with U(0).) Then our
theorem may be written

exp a(s)P,ds F[M(s), X(s) . ]

where

1

=exp Pi ~ n(s)ds F[M'(s), X'(s) ], (19)
Q

M'(s) =exp P, —a(s')ds' M(s)
aJ p

Xexp +P, a(s')ds' . (20)
0

Further, since this theorem with Eq. (20) substituted
into Fq. (19) is valid when a(s) is an arbitrary numerical
function, it is also true if a(s) is any ordered operator
0.(s) commuting with P for all s, provided that in alt
expressions involving a, the parameter s or s' is con-
sistently interpreted as giving the order in which the
0. operates. 6

The mathematical proof of the theorems (18) and
(19) offered here is admittedly very sketchy; but since
the theorems are true, it should not be hard to supply
them with more satisfactory demonstrations (see
Appendix A for an alternative demonstration).

There are a number of other interesting relations
which we may derive from Eq. (19),but which we shall
not need in this paper. One is included here because it
has been found useful in certain other applications. If
n(s) is considered in6nitesimal in Eqs. (19) and (20),
expansion in first order in n gives the following result
(or differentiate each side with respect to a(t) and set
n(s) =0),

P,F[M(s)j=P,F [M(s)) (PM M—P),bF/M —(s)ds

' To simplify such descriptions, in a situation involving two sets
of operators, any one of the erst set commuting with any one of
the second, it is often convenient to generalize to the use of two
different ordering parameters —one for first set, and one for the
second.

(if we assume F can be represented by a functional
having a derivative bF/bM(s)). We have taken F to
depend only on one operator M(s), but the generaliza-
tion is clear. Here, (PM MP), is conventional —ordering
is PM(s) M(r)P and is considered —to act as an entity
at s. The differential form

(dP&/dt)F[M(s)]= (PM MP) &bF/bM(t) (—21)

is also useful.
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If we suppose the properties of H(0) to be known and
simple, the right side of Eq. (8) may be disentangled by
means of our theorem (18). We consider —iH&'&(t) as
an operator P(s) and

t2

exp —i
~

UtCh
aJ ]I

as the functional E from which the

exp i ~—H&0(&t) &ft

is to be disentangled. Hence, a direct application of Eq.
(18) gives

exp —i H&'&(t)dt exp ~—U(t)dt
tI J ]I

where

t,g

=S(t,) exp —z ~ U'(t)dt S-'(t,), (22)

t

S(t)=exp i ~ H—&0&(t')dt'

4. THE INTERACTION REPRESENTATION

As a 6rst simple direct application of our theorem
consider again the perturbation problem (8) of com-

puting the operator

0' '(t2, t&)

~tg tg

= exp i—
~

H"'(t)dt exp i—~r U(t)dt . (8)J gI

results may be obtained by a unitary transformation in
the conventional way. Ordinarily, result (24) is not
written in this way, for it involves the time convention
on the ordering of the operators, (It is usually expressed
as a differential equation for 0'.) If the perturbs. tion U
represents an interaction between some systems de-
scribed by H"', the reduction of Eq. (8) to Eq. (24)
is called passing to the interaction representation.

5. SYSTEM COUPLED TO AN HARMONIC OSCILLATOR

As a further example of the use of the notation we
solve completely the problem of a particle or system of
particles coupled linearly to an harmonic oscillator.
This problem in greater generality is the main problem
of quantum electrodynamics. It has been thoroughly
studied in III, but we solve it again as an illustration
of the new notation. Let the hamiltonian of the com-
bined system be

H=H„(t)+H. .. F(t)q, —

where H„, is the hamiltonian of the oscillator alone,

H.„=(1/2m) (P'+ td'&f'),

where p is the momentum conjugate to q, the coordinate
of the oscillator. Further, H„, which may depend ex-
plicitly on time, is the hamiltonian of the particles, and
I" may contain any operators pertaining to the particles
as well as possibly being an explicit function of the
time. We ask for the matrix element for 6nding the
particles in state yf" and the oscillator in some eigen-
state m at time t", if at a previous time t' the particles
are in state yf, and the oscillator in its nth eigenstate.
It is the matrix element

(the lower limit u used in defining S is arbitrary; it may
be taken as t, so S(t&)= 1 if that is convenient), and

U (t) =S '(t)U(t)S(t) (23)

(operating in positional order). If we take matrix
elements not between states &P& and )P2 but between
&t'&'=S '(t&))p& and )p2'=S '(t2)&t2, we may call the
0-matrix 0' and omit the S(t~) and S '(t&) factors in

Eq. (22). These new time-dependent states )pt are
evidently states that would give rise to )p& at t, and &p2

at t~ (from some fixed reference time a) if the perturba-
tion were not acting. Then the time-dependent per-
turbation theory simply comes to evaluating

0'(t2, t&) =exp' ~ I" U'(t)"t I.
. &'", l

i

using the time ordering convention. As already dis-
cussed in Sec. 2, this can be considered as the matrix
element between states x~ and x&" of the matrix

M=exp( i H„(t)dt ~G„„, —
(

(2S)

where G„(the analog of T of Sec. 2), a functional of
F(t), serves to define the net effect on the particles of
their interaction with the oscillator. Calculation of G „
means evaluating

Expansion in power series, substitution of U' from Eq.
(23), and use of the relation 0&0&(t', t")=S(t')S '(t")
leads immediately to the formulas (9) and. (10), so that
Eqs. (23) and (24) give the simplest form to the time-
dependent perturbation theory. Of course, the same

in a general way as a functional of F(t). We are to
consider F(t) here as a simple numerical function, and
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only later utilize the fact that it is an operator involving
the particles when we go to evaluate the matrix M,
Eq. (25), between the particle states xz and xz . The
evaluation of 6 „ for an arbitrary numerical function
I'(t) may be performed in a variety of ways. One is by
the lagrangian form of quantum mechanics given
explicitly in III, Sec. 3, with the sole difference (which
is unessential for this part of the problem) that there
F(t) was called y(t) and was a functional of the coor-
dinates x(t) of the particles, while here we see we are in
a more general position as I'(t) may be a functional of
any ordered operators referring to the particles. %e
find, for example I III, Eq. (14)j,

culate the matrix element of

From Eq. (28) we readily calculate that'

Q'(t) -Qe-'"' and Q'*(t) =Q*e+ "
so that the problem becomes the disentanglement of

tI I

G'= exp i(2zo) r I'(t)e+'"zez~dt
Jt,

trr trl

Goo = exp —(1/4oo)
tr ai tr

exp( —izo}t—s})

trr

Xexp i(2zo) & -F(s)e '"'Q.ds .
t'

X r(t) r(s)dtds . (27)

The same result may also be obtained by a direct solu-
tion of the Schrodinger equation for the forced oscillator.
The great advantage of the operator notation is to allow
this formal solution for an oscillator forced by an
arbitrary potezztiat fizrzctiorz I'(t) to be equaHy useful
when the oscillator is actually in interaction with a
quantum-mechanical system ~

Thus, we have the answer for G„„in III, Eq. (57),
using I" for y. It is, however, interesting to see how this
expression for 6 „could be worked out directly using
the methods of the ordered operator calculus. %e want
to disentangle the operator

we 6nd

A(t) = i(2~)-' I'(t)e+'"dt,
t'

(to

G'=expLA(t")Q, *]exp i(2oo) z I'(t)e '"'Q"(t)dt,
J,,

%'e shall find it most convenient to disentangle this into
a form in which all the annihilation operators operate
first, and then come the creation operators (since the
nth state cannot suffer more than n annihilation
operators, Q"+'P vanishing, the expression will be
easy to evaluate in this form). To this end let us use
theorem (19) again, this time with P=e*,

a(s) =i(2oo) l't( )et+'"'

Calling, temporarily,

( t' ) ( f' ) where
G= exp} i —Ho "dt

I expl z P(t)q'dt
I

(26')
i L~, , i' e"«) = expL —A «)Q*jQ expo+A «)Q*&.

I,et us call, in the usual way, Q*= (2zo) l(zf izd 'P)—and
Q= (-', oo)&(q+izo 'p) the creation and annihilation
operators. They satisfy the commutation relation

QQ* —Q*Q= 1

The commutation relation (28) here gives'

e"(t)=e+A(t),
so that

G =..pLA(t-)e„, )

(32)

In terms of them H,..= z2oo(Q*Q+Qeo) and

V=(2 ) '(Q+Q*) (-'9)

tl

Xexp z(2oz) & I F(t)e '"'}Qz+A(t)}dt .
t'

Xow as a first step we pass to the interaction representa-
tion (Sec. 4). We use the theorem (20) with I', = iH„„—
u(s) =1, to disentangle the expL iJ'H. „(t)dt]—factor,
obtaining

tl r

G=S(t") p (2 ) ' " I'(t)LQ'()+Q'*(t)jd S '(')
t'

where Q'(t) =S—'(t)QS(t), Q'*(t) =S—'(t)Q*S(t), and
S(t) =exp( —ztH„,). IIy redefining the wave functions
so they contain S(t), or, for eigenstates, the energy
factors exp( —iE„t) for the free oscillator, we can
eliminate the S(t") and. S '(t') and need merely cal-

G'= exp(iP*ez *) exp(iPez )Goo (33)

' For, Q'(t) = exp(itII )Q exp( —itH~) implies dQ'/dt=i5 '(t}X(8'~—QH~)S(t)= —icoQ'(t), since H~ —QH = —eyQ by
Eq. (28). Thus, since Q'(0) =Q, one obtains Q'(t) =e 'Q.

8 For, differentiation of the expression for Q"(t) gives dQ"{t)/dt= —A'(t) exp( —A{t)Q*)(Q*Q—QQ*) exp(+A{t)Q~) =A'(t) by Eq.
(28), so integration gives Q"{t)=A(t)+Q, since Q"(t') =Q, inas-
much as A(t') =0.

In the last factor Qz can be replaced by Qz since t is in
any case less than t", so that all the Q, 's come before
the Q,"*,and Q, need not be ordered relative to itself
as it is a constant operator. Hence, we may, with a
slight rewriting (for example, ij3* for A(t")), write
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with G«equal to expi(2re) &J& "I'(h)e ' 'A(t)dt and
therefore identical to Eq. (2/), and with

tie

r(t)e *"d-t,

(34)

th=(2~) '
4 tr

P*=(2co) & F(t)e+' 'dt
4t

just as in III, Eq. (58). The operator G' is now com-
pletely disentangled. Its matrix element between n and
m we call 6 „.The matrix element may be evaluated

by ordinary methods, since the t' and t" in Q a,nd Q*,
respectively, in Eq. (33) are unnecessary if the posi-
tional notation is used. That the element for n=0,
m=0 is just what we call Gop is evident, for if exp(iPQ)
be expanded as 1+PQ+P'Q' and the result applied
to ~to, all the terms beyond the first give zero for
Q4O

——0. Thus, this exponential may effectively be
replaced by unity. Likewise, the second can be replaced
by unity for 40*Q*=0.

The case of more general values of m, n, may be
worked out by writing

operators rather than as amplitudes associated with a
path. The result in general is Eq. (43) below Lin agree-
ment with III, Eq. (48)j, and there is no need to go
into the details again of summing the eGects of all the
oscillators to obtain this result. We will pass directly
to a discussion of the complete electromagnetic field.

6. QUANTUM ELECTRODYNAMICS

There are available several equivalent formulations
of quantum electrodynamics. "' We shall give a very
brief outline of their interrelationships using the ordered
operator notation. We can start with the usual for-
malism of Heisenberg, Pauli, and Dirac. ' The wave
function of the system, consisting of the electron-positron
field and of the electromagnetic field in interaction,
satisfies a wave equation i8$/Oh=He, where the
hamiltonian for the system may be written H =H +Hf
+H;. , where H is that of the electron-positron field free
of potentials, H~ is that of the electromagnetic field in
empty space, and H, represents the interaction of the
two fields. The problem is to obtain the wave function
at time t2 in terms of its value at a previous time ti. It is
therefore a study of the operator

so that
4.=(.!)-1Q*"~., (35) tg

exp i!t—tH„(h)+H, (h)+H, (h) jdh .
~J t1

G-= (4oI (m')-'(~')-'Q"e""'e'"Q*"I Vo)G«. (36)

Then, since e' &eQ~= (Q~+iP)e'eo (as in Eqs. (31), (32)),
repetition rt times gives e' Qeo*"=( Q+ 'pi)" e' eo, and
likewise Q"e'e"&"=e'e*q'(Q+it3*)" We fin. d

G,„„=(4, 1(m!)- (n t)-"e'e" . o(Q-+ip*) "

X(Q*+iP)"e'"I4o)Goo (3&)

The exponentials may now be replaced by unity as
previously discussed. The other factors expanded by
the binomial theorem give

(m ) (N'!
G..=( .)-:-( )-'ZI IXI I(~*)"-v

~ (r ) ~ &s&

X(iP)-- (gaol Q"Q'I 4 )Goo

The next to last factor by Eq. (35) is

(e')'(r')'(4. 14.)= (e')'(r')'~. ..
so that finally

tmy pe~
G „=(m!s!) 'PI II Ir!(it!*)™"(iP)" "G 0 (38)

as in III, Eq. (57).
Having this form for the behavior of a system of

particles interacting with a single oscillator, we could
go on and discuss the quantum electromagnetic field as
a set of such oscillators. It is evident that to do so would
be simply to repeat the steps described in III, Sec. 4,
using I' for y and reinterpreting the symbols as ordered

9e can simplify this by first disentangling the expo-
nential factor

exp i —[H„(t)+H;(t)jdt .

That is, we go directly to the interaction representation,
and find that we must analyze

~t2

exp i H—(t)dt
tl

We shall always use the interaction representation and
shall omit the prime here for simplicity of notation.
Furthermore, it will be sufhcient for our purpose to
consider only the case t&—+—~ and t2—++~, so that
quantum electrodynamics is a study of the operator"

oo

S=exp i~" j„—(x, t)A„(x, t)d'xCk,
—oo 'W

(39)

where the A„(1) is the operator potential of the electro-
magnetic field and j„(1)is the operator current of the

' See, for example, P. A. M. Dirac, The Principles of Quantum
mechanics, (The Clarendon Press, Oxford, 1947), third edition,
Chapter 12.

' For systems with particles of spin zero or one, 5 may be written
in this same form by use of the Kemmer-DufIIn matrices p„, as is
shown by C. N. Yang and D. Feldman, Phys. Rev. 79, 972 (1950),
for example, Eq. (33'). Thus, all of these results given here for the
Dirac freld are equally correct for spin zero or one if p& is replaced
by P„. See also M. Neumann and K. H. Furry, Phys. Rev. 76,
1677 (1949), and R. Moorhouse, Phys. Rev. 76, 1691 (1949).
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Dirac electron-positron Geld. They, of course, commute
with each other, since they refer to different systems.
Further, "A „(1),A „(2)commute if 1 and 2 are separated
by a spacelike interval, as do j„(1),j„(2). In the ex-
pression for 5 the operators are ordered in accordance
with the time t.

We may thus define the problem of quantum electro-
dynamics as a study of the operator S.Let us imagine
for purposes of discussion that we disregard the deriva-
tion of 5 given in the preceding paragraph. We imagine
the problem is given directly as the analysis of the
operator S defined in Kq. (39) (assuming the commuta-
tion rules, reference 11). Let us see how the various
formalisms are simply different ways of expressing or
analyzing S.

First, we might try to deGne 5 in some way which
would not require the use of the ordering notation.
Suppose we split the range of integration of t into two
regions —~ to v. and 7 to ~, Then the integral may
be split into two parts. We can write the factors, as

S=exp i —j„(x,S)A„(x, t)d'xdt

Q(r) =exp i j„(x,S)A„(x—, t)d'xdt .

If T is changed to 7+d7, an additional factor appears
operating in front of all other t & 7-, namely,
expL iver J jp(x, r)A„(x, r)d'xJ. Hence, Q(r) satisfies
the differential equation

idQ/dr= j„(x, r)A„(x, r)d'x Q(r),
J

(40)

the operators operating in positional order.
Thus, we are lead to a differential equation, the

solution of which can be used to define S (for S is

Q(r) as r~+ oo when Q(r) is that solution of Eq. (40)
which ~I as r~ ~). If we—define iP( —oo) as an initial
state wave function, clearly, iP(r) = Q(r) P(—~ ) sa.tisfies
the same equation as Q. This is the Schrodinger equation
in the usual formulation if written in interaction repre-
sentation. (We probably would not be led to go back

"See, for example, J. Schwinger, Phys. Rev. 74, 1439 (1948).
In his n,otation (except that we put a factor e in A„rather than
j„),the commutation relations are t his Eqs. (2.28 )and (2.29) $

Pa„(x), a„(x'))=4 WS„,8{x—x')

and j„(x)=p(x}y„p(x)with Ip {x),pp(x') I= —i5 p{x—x') if no
external potential is acting. Other combinations commute.

Now, since t'& t, all the operators on the last factor act
before those of the first factor, so they are disentangled
relative to the Grst factor. Hence, we are led to define
an operator function of ~,

to the ordinary representation as this is an unnecessary
increase in complexity. )

The apparent lack of covariance implied by using
time to deGne the differential equation can be remedied

by analyzing 5 in a slightly different manner, suggested
by Tomanaga and by Schwinger. '

The variables x, t over which one integrates in Eq.
(39) may be divided into two groups in another way;
those previous to and those following an arbitrary space-
like surface r.

S= exp i —j„(x,t) A, (x, t)d'xdt
b

Xexp —i) j„(x', l')A„(x', t')d'x'dt',
a

where the region a of integration of the second factor
are those points of space-time previous to cr, while b

are those following 0.. Now again the factors are disen-
tangled. It might at first be argued that since there are
some values of I' greater than t, the corresponding
operators in J; should follow, not precede, those in Jt.
But for those t' which exceed t, the points x, x' are
separated by a spacelike interval (as o. is a spacelike
surface); hence the order of the A„(x, l) and A„(x', t')
as well as of j„(x, l) and j„(x', t') is irrelevant, as these
commute. Hence, the operators are, in fact, disen-
tangled; and we can deGne

&(a) = exp i j—„(x, l)A „(x, t)d'xdt
a

S=exp i j„(1)—A„(1)dri (42)

(with the point 1 representing xi, ti and dri=d'xidti)
and assume the convention here that if two operators in
Eq. (42) corresPond to Points seParaled by either a time
like or a sero interval, that operales fi,rst which corresponds

~ I. Schwinger. Phys. Rev. 74, 1439 (1948).

as an operator deGned as a functional of the surface 0.
A small change in surface at x, t changes the operator by

80(&r)/bo(x, l) = ij„(x, t)—A „(x, t) Q(&r), (41)

the equation of Schwinger'2 for D(o) (and also for f(&r)
defined by Q(o)f(—oo )).Again, S is Q(o) as the surface
0. is removed to +~.

These differential equations (40) or (41) are therefore
needed to dehne the operator S if one is limited to con-
ventional notation. The form (41) has the advantage
of putting the relativistic invariance more into evidence.
However, the solution (39) is common to both and is
more easily used. It is likewise evidently invariant if we
write it
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30 the earlier time. If they are separated by a spacelike
interval, no de6nition is necessary, for they commute.

The other developments consist in methods of
actually evaluating Eq. (42), given the commutation
relations" of the A„(1). The method explained by
Dyson' consists of making a power series expansion of
5 and disentangling it term by term. For example, the
second-order term is

functional of B„(1)and a function of e':

S,'LB]=exP x—ie']t tj„(1)j„(2)8+(s»')dr&drs

)&exp i—
,

I j.(1)B.(1)dri . (44)
J

j„(1)A„(1)dr,) j„(2)A.(2)drs.

This term may then be analyzed into the conventional
notation by reordering the operators. In this example
it is necessary merely to break the region of integration
in I& up into two, t&&t& and ~I2&t&. Actually, because of
the symmetry they give equal contributions, so that
the result is

j„(1)A„(l)d'xidf& I I j„(2)A„(2)d'xdf:„s

the ordering now being conventional. From here the
matrix elements are computed between given states by
use of the commutation relations (46) below. For further
details we refer to Dyson's papers. ' The result is that
given by the rules of II.

Another method is to notice that the entire de-
pendence of 5 on A„can be directly evaluated. As far
as the states of the field are concerned, the evaluation
of matrix elements of 5 is exactly the same as though
j„(1)were a numerical function (since it commutes with
all A„(1)). Hence, these may be worked out by first
obtaining the result for a field interacting with a given
unquantized current distribution j„(1).This can be
done, for example, by using the lagrangian methods
described in III. For example, the matrix taken between
states in which the 6eld is empty of photons initially
and finally is

I

Sss ——exp ',ie' t
I

j—„(-1)j„(2)b+(sit')dridrs (43)
aJ

as is shown in III (for j„a numerical function). This
may now be interpreted as follows: The matrix element
of 5 for a transition in which at I,= —~ there are no
real photons and the matter is in state x, to the state
at +~ also empty of photons with the matter in state
y+, is the matrix element of 500 between y and y+,
where S,s, given in Eq. (43), operates now only on
matter variables, the order of operators j„(1), j„(2)
being determined just as in Eq. (42). This expression
forms the basis for the author's treatment of virtual
photon processes (II).

If an additional unquantized potential B„(1) is

present, the expression (42) for S is altered just by the
replacement of A„(1) by A„(1)+B„(1).

The matrix corresponding to Eq. (43) would be a

It is evident by direct substitution, that S,~LB] satisfies

dS,&/d(e') = gi )t )
8'S,~/bB„(1)bB„(2)6+(si.')drtd. rg

(45)

Since the equation is linear, any matrix element of S,"-,

say T, [B],between two states of the matter satisfies
same equation. This is Eq. (45) of III, ivhich is shown
in III to be a general statement of the rules given in II
for solving electrodynamic problems. Evidently, the
case of real photons in initial or final state can be carried
through in parallel to the discussion in III, with j„(1)
now as an operator.

This completes our discussion in a general way of the
relations between the various representations of electro-
dynamics. However, we wish to add a word concerning
the derivation of Eq. (43). We have indicated how this
may be done using the lagrangian method. However,
we have seen from our example with the single forced
oscillator that the same results may be obtained directly
with the operator method, in just as simple a manner.
Of course, by considering the field as a set of such oscil-
lators we will arrive at Eq. (43), thus completely avoid-
ing the lagrangian formulation. However, since the
relation between Eqs. (42) and (43) is so fundamental,
we should like to show how the operator method
permits a simple direct passage from Eq. (42) to Eq.
(43)." (We are simply following the steps leading from
Eq. (26') to Eq. (33) for the single harmonic oscillator,
but are using A„(1) to replace q. )

The field operator A„(1) can be split into two parts
A„(1)=A„+(1)+A„(1),where the first A„+(1) anni-
hilates photons, and the second A„(1) creates them. "
They satisfy the commutation relations (positional

13 M'e omit the usual extra complications in all such demon-
strations concerned with showing that disregard of the supple-
mentary conditions on BA„j8x„is legitimate.

"Ordinarily, the field operator A&(1) is expanded into modes
A„(1)=Z;A„;{x){Q,~e~"+Q;e ~"), where A„; is the numerical
function Dor example, cosines or sines, III Kq. (1)j describing the
classical mode i of frequency co; and Q;*, Q, are the creation and
annihilation operators into which q;, the coordinate of the oscil-
lator of this mode, has been split (29). The factors e+~' result
from use of interaction representation (30). Then, we have
A„(1)=ZQ»(x)Q;*e~" and A„+(1)=Z A (x)Qe '"" The
commutation rule (46) then results from that of the Q and Q* (28}.
Using the representation of III Kq. (1), the right-hand side
of Eq. (46) comes fram Kq. (28) directly in the form

{2~)~e'b„,J' expI —ik(tg —11)j cos(K. xI—K xg)d'K/k,

which on integration for &&t& )see III Eq. (22)j is Eq. (46). The
separation has been accomplished directly in coordinate space by
J. Schwinger, Phys. Rev. H, 651 (1949).
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ordering)

A„-(1)A,+(2)—A„+(2)A„-(1)= i—e'b„„b+(siss) (46)

for ti(ts W. e have set sis = (ais—ass)(sis —ass).
On the basis of this commutation rule, we are to

disentangle the operator

S=exp i)—tj „(1)A~ii (1)dri

Xexp i~ j„—(2)A.~s+(2)drs, (42')

where for de6niteness we indicate the time of operation
by the subscript. This is already of the exponential form
of theorem (18), using —iJ'j„(1)A,is (1)dsx& as P(s),
s= $2. Hence, the result is

S=exp i
~

—j„(1)A„(1)dri

the A operators being entirely disentangled (the j's are
still entangled). The ordering index ts on A~is+ has been
changed to —~ in Eq. (49), since all the A+ commute
and act before A„„,so that no ordering is necessary.

Taken between states empty of photons the result is
)ust Sps of Eq. (43), for the annihilation operation A+
on the state of zero photons is zero, and creation opera-
tion of A has zero amplitude of leaving a state without
photons. H there is one photon present initially and we
ask that no photons remain, we shall have to annihilate
it and create none, so that if the A and A+ exponentials
are expanded in power series, we must take only the
term linear in A+ and independent of A . This is
equivalent to a 6rst-order action of the potential 8„
in Eq. (44) in perturbation. The corresponding rules
for higher numbers of real photons are readily derived
from Eq. (49). In this way we have completed an inde-
pendent deduction of all the main formal results in
quantum electrodynamics, by use of the operator
notation.

Xexp i —j„(2)A.is"+(2)dri,

~tg

A.ii"+(2)=exp +s j„(1)A„(1)dry A.i,+(2)
a! —00

Xexp i i j„(1')A „—(1')d ri, (47)
QO

where in Kq. (47) we suppress the ordering rules for A+,
A and use instead positional notation (but maintain
the rules for j„).

The commutation rule (46) permits Kq. (47) to be
written"

t2

A.~;"+(2)=A.is+(2)+)t e bs(+s& )sjs„(1)dr,. (48)

Hence, we have

S=exp s)rj„(1)A—„„(1)dri

Xexp xsie' —j„(1)j„(2)5+(s»')dr&drs
~J

Xexp i ' j„(2)A—„„+(2)drs, (49)

"This restriction at erst sight looks unrelativistic. For t1 &tg we
would have the complex conjugate of —ie'b»b+(s&p), but —ib+(s122}
is real in spaceiike regions (as e+(x) =e(s) —+$ ).

"For, if A„~~"+(2) of (47) is considered as a functional of j„its
6rst variation with respect to j„{3)is {tg&t2).

i exp +i j„A„dv PA„{3)A,+{2)—A,+(2)A„(3)j
tg

Xexp —i jQ„d~ =ps„„b+(s»}

by Eq. (46). The first variation of expression (48) gives the same
result, so that Kq. {48) is correct for all j„,since it obviously is
correct for j„=o.

(iV 8—m)$=0— (30)

with suitable boundary conditions and interpreting the
solution as described in I. For convenience we shall
always solve, instead,

(iV 8 m)f—=iF, —

where F is a source function, by writing

P=(iV —8 m) 'iF—
and interpreting the reciprocal operator in the dehnite
sense implied by the limit of the operator when m has
a vanishingly small negative imaginary part. If, for
example, we wish the ordinary solution for t& to which
at t= ts has the form f(x) representing an electron (i.e. ,

f(x) has only positive energy components), that solution

7. mE DrRAC EqUAnoN

Up to now we have discussed the matter system
using the description of second. quantization. It was
pointed out in I in the case of the electron-positron 6eld
where a small number of charges is involved, another
simple interpretation is available. In this section we
should like to discuss this from an operator point of
view and, to give in the following sections the formulas
in this picture for electrons interacting through the
agency of the electromagnetic 6eld.

We begin by discussing the behavior of a single
charge (plus the virtual pairs produced from it) in an
unquantized potential B=y„B„, omitting the con-
tributions from closed loop diagrams. This section will

therefore constitute a brief summary of I using operator
notation.

The behavior of a single charge is obtained by solving
the Dirac equation
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P(2) = t E+&s&(2, 1)F(1)dr,. (54)

The perturbation theory, considering B as a per-
turbation on the free particle, arises from Kq. (53) from
a power series expansion in B.For any pair of operators
A, 8 we have

(A+8)—& —A —& A —18A—&+A —IBA—18A—1. . . (55)

so that with A = (iV m),—8= —8 we have

(iV 8 —m) '=(i—V' m) '+—(iV m) '8—(iV m) '—
+(iV m) —'8(iV m) —'B(iV m) —'+.— (56)

or in space representation (putting

E+(2, 1)=i(iV m) —'b(2 1))

E+&s&(2, 1)=E+(2, 1)—i
~ E+(2, 3)8(3)E+(3,1)dr,

. t

~J~E+(2, 4)8(4)E~(4, 3)B(3)E+(3,1)dr4dri, (57)

as in I, Eqs. (13) and (14). The corresponding mo-
mentum representation is evident directly from Kq.
(56), for (iV—m) ' is (P—m) '.

If F is to represent an initial state, it is also convenient
to use the free particle solution f(1)= (iV' —m) 'iF(1)
to represent the state. We are often interested in the
amplitude that the system is in a final state g(x). In
this case, we can de6ne a sink function 6 and a corre-
sponding free particle solution g=iC(iV —m) ' (where
we write the adjoint so that it will correspond to the
solution g(1)= —i(iV—m') 'G(1) corresponding to m'

having the opposite sign of the imaginary part to m).
The matrix element to go from f to g is then the space-
time integral of

iC(iV —8—m) 'F.

The expansion (56) gives for this element

iy Bf ig B(iV —m)-'B—f—
igB(iV m) 'B—(iV m) —'Bf . —(59)—

'7 For t &t0, the p from Eq. C', 52) would be zero and would not be
the solution desired; it can be obtained only from F with a different
de6nition of the poles of the reciprocal operator. We assume we
are only interested in the solutions in regions of space-time later
than the time the "initial" electron wave functions are specified
and earlier than the "initial" positron function is given. Since we

is the P obtained from Eq. (52) by setting" F(1)
=y&b(t& —t»)f(xr). If f contains negative energy com-
ponents, Eq. (52) gives the desired solution for these
components for i&to.

From the definition of E+'s&(2, 1) in I, Eq. (15), we
can write

E~&s&(2, 1)= (iV—8—m)
—'ib(2, 1), (53)

so that iE—+&a&(2, 1) is the space-time representation
of the operator (iV—8—m) ' needed for Eq. (52).
Thus, the solution (52) is

(iV—8—m) '. (61)

We may now turn to the quantum electrodynamics
of such a particle, or system of particles. For simplicity
we may restrict ourselves to the case of all virtual pho-
tons. The real photon case can, of course, as always be
obtained by considering also the e6ects of external po-
tentials. For simplicity further assume, at first, zero ex-
ternal potential. Our central problem, then, is the calcu-
lation of the matrix element

8= o((iV A m—) ')0— — (62)

of (iV—A —m) ' between states of the field empty of
photons initially and finally. Here A= &„A„and A„(1)
is the operator A„+(1)+A„(1)acting on the field coor-
dinates and satisfying commutation rules (46). This
problem is relatively hard to solve directly. We do have
the matrix element of any exponential form in A„ in

(43); but with A„ involved in a reciprocal, it is another
matter. We shall represent the reciprocal as a super-
position of exponentials in the next section.

From Eq. (62) we can derive in a simple direct manner
the perturbation series results of II. For we know" that

0(A «(1))o=0, 0(A q(1)A „(2))0=ie b„„b+(s&P), etc. (63)

will take matrix elements between two states, this represents no
real limitation (see I).' The order of the A„operators in Eq. (63) is according to the
time convention. If we put A=A++A and use Eq. (46) to
rearrange factors, they are evident, since A„on the initial (and
A„ into the final) photon-free state vanishes. They are identical
to the lagrangian relations III, Eq. (52), and form the basis of
Dyson's description.

(assuming g, f are orthogonal states, J'g(1)F(1)dr&=0
so the leading term vanishes). In space representation
the first two terms of this are I, Eq. (22), and I, Eq.
(23); in momentum representation the second term is
I, Eq. (35).

If more than. one real charge is present without
interaction, there is an operator (iV 8——m) ' for each
charge, operating exclusively on the space and spinor
coordinates of that charge. Operators corresponding to
distinct charges commute. Matrix elements are taken
in the antisymmetric way described in I, Sec. 4, for
accord with the exclusion principle.

The contribution from closed loops is a factor
C, =exp( —L), where L is not very easily defined
directly in operators. But the hrst-order change on
changing the potential from 8 to 8+68 is

EL=tr acct I(iV—8 m) ' —(iV m—)—'IABj, (60)

where the "trace" means the diagonal integral in coor-
dinates and the "Sp" on the spinor indices, in space-
time representation just I, Kq. (29).

This completes our summary in terms of operators of
the results given in paper I on the theory of positrons.
The main point is that aside from the problems of
closed loops, one is merely analyzing by various tech-
niques the consequences of Eq. (52) and, therefore, in
general, the properties of the operator
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Hence, if we expand the reciprocal in power series as
Eq. (56), in coordinate representation (57), with 8
replaced by A (or by A+ 8 if an unquantized potential
8 is present along with A), we may readily write down
the zero-zero matrix element of each term. For example,
third term of Eq. (57) gives the self-energy contribution
in accord with II, Eq. (6). The other results of II are
just further consequences of this series expansion as we
have emphasized in III.

so that changing the order of integration, one 6nds
immediately from

exp[iv(i% m)—)de=i(iY —m)
0

the result —i(iW —m) '8(AT —m) ' as required.
The contribution L of a closed loop can be written

directly in exponential form. It is easily shown from
Eqs. (60) and (65) that

Xexp( —imW). (67)

(The second term in Eq. (60) actually has zero trace
and was added only to make convergence problems
appear less dificult. It has been omitted in writing Eq.
(67). Also, the value of Eq. (67) when 8=0 may be
subtracted away, if desired, for a constant addition on
L changes only the normalization of all probabilties. )

Incidentally, the method of rendering this expression
convergent (see II, Sec. 7) for further calculations, is to
call its value for mass m, L(m') and then to calculate

i(iV —8 m) '= —I exp[i(iV 8 —m)W—]dW, (64)
40

the definition of the singularity (as the hmit with m
having an infinitesimal negative imaginary part) being
automatically represented. (See, however, the remarks
at the end of this section. ) We can also write this in the
ordered operator form,

8. USE OF A FIFTH PARAMETER IN
DIRAC'8 EQUATION dS'

L=
~

trace exp i ~' (Ã(w) 8—(w)) 'dw
In this section we discuss the representation of Jp I W

the reciprocal operator in exponential form. Since
J0" exp(i Wx)d W=i/x (or rather lim, Di/(x+ic)), we
we may write

QO W'

exp i f {i'7( )wB(w—)}dw exp( —imW)dW, (65)
40 Jp where

L = I [L(m') —L(m'+X')]G(l()dl{,
0

where we have written 8(w) for y„(w)8„(x„(w)), where
x„(w) are the four () = 1 to 4) coordinate operators, of
which 8„is a function, ordered by the ordering param-
eter w and p„(w) are the four Dirac matrices similarly
ordered. Likewise, we have i{7(w)=y„(w)i{)„(w), where
i{)„(w) are the four ordered momentum operators con-
jugate to x„.

In this form B can be replaced by A and the expec-
tation value for virtual transitions can be taken. This
is done in the next section. We continue here with a
more complete discussion of Eq. (65).

The perturbation expansion in 8 of Eq. (65) should
lead, of course, to Eq. (56). For example, the term 6rst
order in 8 in Eq. (65) is evidently

i exp—(im W)
40

W F
Xexp i

J
iV(w')dw' Jj 8(w)dwdIV. (66)

0 0

Now the range of the m' may be divided into two regions
and the quantities reordered (just as in Eqs. (5) and
(6)) to

d Wdw exp[i(W —w)(Ã —m))B
0 0

Xexp[iw(Ã —m)),

or) oo

G(X)dl(= 1 an{1
'

X'G(X)dX =0
0 Jp

and to assume that L~ is to be used as the correcI: value
of L in place of L(m'). This is equivalent to replacing
the factor exp( —imW) in the integrand of Eq. (67) by
another function F(W), where

F(W) = [exp( —imW) —exp{ i(m'+—X')'W}]
4 ()

XG(X)dX.

For large W this approaches exp( —imW), but for
small lV it falls oB, the real part of it, at least, varying
as W'. This renders Eq. (67) convergent. (The imaginary
part of F(W) does not seem to lead to momentum space
integrals whose convergence would be in question. ) This
suggests a general method of maintaining convergence;
by keeping processes corresponding to small intervals
of m from occurring with large amplitude. This is briefly
discussed in III in reference 22. What is said there
applies qualitatively as well to the Dirac case analyzed
here, with I replaced by zo.

If there are several charges in the system, we must
associate a separate m, for each, say m„ for the nth.
Each must have its own set of matrices y„&"' and coor-
dinates x(") (y's for different charges commute). If we
call

8{») ~ (»)(w )8 (x(»,))
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the total matrix for all S particles is

W'«s

exp i fiV(")(u„)—B("&(«o„)jdw„
«s~1 4 p

Xexp( —imW )dW„. (68)

If in addition there are present a number of closed
loops, the corresponding number of factors I must be
multiplied in.

One might try to give a kind of physical or, rather,
mathematical view by which the form of Kq. (65) can
be appreciated, in the following manner:

%e may deal. with the Dirac equation somewhat in

analogy to the method used in the discussion of the
Klein-Gordon equation in the Appendix A of III.
Consider a fifth variable m in addition to the four x,
and that we have a wave function d (x, u), which is to
satisfy

i8y/—8ur = (iV B)—y (69)

Then since the potentials B„(x) are independent of w,
the equation is separable in w, so that p(x, ro)

=exp(imw))P(x) is a solution of Eq. (69), if )P(x) is a
solution of the Dirac Eq. (50). Also, if we have any
special solution of Eq. (69), p(x, w), we may obtain a
solution of Eq. (50) by finding

P(x) = @(x, w) exp( imw—)dw . (70)

Hence, by studying Eq. (69), we are at the same time
studying the Dirac equation.

Given the wave function «b(x, 0) for w=0, the wave
function at m=8' is given by

the integral in all cases. Although this is satisfactory in
a formal way for operators, it means that our inter-
pretation cannot be taken literally. For example, we
cannot obtain an unambiguous integral representation
of 8(W) in coordina, te space, for the requisite integral
J' exp( —iPW) exp( —iP x)d'P is undefined. This is
because it is probably not possible to obtain the wave
function (71) at any value of W from that at W=O
from Eq. (69) without further definitions. At least, the
corresponding second-order equation (8'(t)/BI,') V2&—
—8'p/8W'=0 is apparently not of the kind for which
this type of Huygens principle applies.

An alternative method of parametrizing the equation
which does not seem to suGer from this interpretational
difFiculty is given in Appendix D. It leads, however, to
more complicated (although algebraically equivalent)
expressions for matrix elements than does Kq. (64).

9. DIRAC ELECTRONS IN QUANTUM
ELECTRODYNAMICS

Returning now to quantum electrodynamics, for a
single charge we want the expectation between photon
free states of R in Kq. (62). This by Eq. (65) is the
integral over all positive W of exp( —imW) times

expi t [iV(w) A(w—)]dw
0 0

~ ~

0

This is just exp(i J'0~ iV(w)dwj times (the ()( )0 refers
to the photon states, that is, affects A„only)

ex)e —i)f x„(w)A„(x(w))iw),

which is of the form

y(x, W) =8(W)«I(x, 0),

where the operator 8(W) is

8(W) =expi [iV(w) B(w)5d—w
~ ~

40

(71)

(72) of Eq. (42) with

exp i tA—„(1)j„(1)dT&
0 0

j„(1)= p„(w) b'(x. («o) —x„&)dw,for S'&0 and, for convenience, " we take 8=0 for
iV&0. The important operator for the Dirac equation,
in view of Eqs. (70) and (71), is where x,& is the Geld point at which j„is calculated and

8'(x.«
—x,i) means 8(2, 1). Thus, we may find the ex-

pectation value with the relation (43). With this value
of j„substituted on the right side of Eq. (43), the 8'

functions are immediately integrable, and we find
6n ally

8(W) exp( —imW)dW,

Ie
W (eSx

Xexp x«ie' — y„(«o')y„(w")
~o 4o

X b+(s' .„")dw'dw" exp( —imW)dW, (74)

which is just Eq. (65)
This interpretation suGers from a difhculty, however.

For a free particle the operator 8(W) in momentum I'" t'

space is 8(W)=exp(iWP)=cos(WP)+i(P/P) sin(PW),
where P= (P') ~. The integral of this times exp( —imW)
is really not always deaned, even if m has a small
negative imaginary part, for in intermediate states p'
may be negative and p imaginary, so that 8 contains
positive exponentials in 8" and the integrand is oscil-
lating with ever increasing amplitude. %e therefore
look at Eq. (64) as a formal definition of the value of
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in which we have written s' „"for Lx„(w') —x„(w")j
X L~.(~') —*.(~")j.

This expression then contains a description of a Dirac
electron interacting with itself. If an extra factor
exp( i—JO 8(w)dw) is included, it describes such an
electron also in an external potential. The terms may
be expanded in powers of 8 and e', and each term may
then be simplified in the way we have described many
times before, for example, in connection with Eq. (66).

When several charges are present, the result from
Eq. (68) is the integral"

exp iP
~o 0

Li|7&"'(w.)—mjdw„

p ~n ~@'m

Xexp —-', i Q Q e' '

n m "0 o

(n)(~ )~ (m)(iii )

Xh+(s'~ ~ )du desi„dWidW dH'„. (75)

The contributions from closed loops may be obtained
from this by choosing some value of n, say, n= ~, to
represent matrices applying to a loop, dividing under
the integral sign by 8';„and taking the trace with
respect to the variables i.

The various present-day meson theories of nuclear
interaction may be set up in quite analogous ways. For
example, a nucleon interacting with itself through the
agency of neutral pseudoscalar mesons with pseudo-
scalar coupling is evidently described by Eq. (74); but
with m replaced by the proton mass, and the interaction
term altered by the replacement of e' by g', p„by &5,
and b+(s') by 4n.I+(s'), the appropriate propagation
function for mesons of mass si (I+ is defined in I, Eq.
(32), but m= si). Charged mesons may be represented
by the use of isotopic spin operators also ordered by m.

10. SUMMARY OF NUMEMCAL FACTORS FOR
TRANSITION PROBABILITIES

The exact values of the numerical factors appearing
in the rules of II for computing transition probabilities
are not clearly stated there, so we give a brief summary
here '-'

The probability of transition per second from an
initial state of energy E to a final state of the same total
energy (assumed to be in a continuum) is given by

'9 This equation with its interpretation v as proposed as a formu-
lation of the lavrs of quantum electrodynamics (for virtual pho-
tons) by the author at the Pocono Conference of Theoretical
Physics (1948).The notation for ordering operators was explained
there. However, at this time, the author had no complete formal
derivation of Kq. (75) from the conventional electrodynamics, nor
did he know of a satisfactory method of dealing with the closed
loop divergences.

& In I and II the unfortunate convention was made that d'k
means dk4dkfdkgk3(2~)~ for momentum space integrals. The
confusing factor (2x)~ here serves no useful purpose, so the con-
vention AH be abandoned. In this section d k has its usual meaning,
dk4dk Idkgka.

(ls= c=1),
Prob. trans/sec = 2~iV —'

~
5K

~
'p(E),

where p(E) is the density of anal states per u'nit energy
range at energy E and ~OR

~

' is the square of the matrix
element taken between the initial and final state of the
transition matrix BR appropriate to the problem. X is a
normalizing constant. For bound states conventionally
normalized it is 1. For free particle states it is a product
of a factor X; for each particle in the initial and for
each in the final energy state. X; depends on the
normalization of the wave functions of the particles
(photons are considered as particles) which is used in

computing the matrix element of 5K. The simplest rule
(which does not destroy the apparent covariance of
DR), is" V;=2&,, where e; is the energy of the particle.
This corresponds to choosing in momentum space, plane
waves for photons of unit vector potential, e'= —1.
For electrons it corresponds to using (uu) = 2m (so that,
for example, if an electron is deviated from initial Pi to
final Ps, the sum over all initial and final spin states of
~5R~' is Sp/(Ps+m)3R(Pi+m)5R]). Choice of norma-
lization (gy&u) =1 results in sV;= 1 for electrons. The
matrix 5R is evaluated by making the diagrams and
following the rules of II, but with the following defini-
tion of numerical factors. (We give them here for the
special case that the initial, final, and intermediate
states consist of free particles. The momentum space
representation is then most convenient. )

First, write down the matrix directly without
numerical factors. Thus, electron propagation factor
is (P—m) ', virtual photon factor is k s with couplings

y„. A real photon of polarization vector e„con-
tributes factor e. A potential (times the electron charge,
e) A„(x) contributes momentum q with amplitude a(q),
where a„(q)=J'A„(1) exp(iq x&)d'xi. (Note: On this
point we deviate from the definition of a in I which is
there (2~) ' times as large. ) A spur is taken on the
matrices of a closed loop. Because of the Pauli principle
the sign is altered on contributions corresponding to an
exchange of electron identity, and for each closed loop.
One multiplies by (2s) 'd'p=(2sr) 4dpidp+pgp, and
integrates over all values of any undetermined mo-
mentum variable P. (Note: On this point we again
differ. "-')

The correct numerical value of BR is then obtained
by multiplication by the following factors. (1) A factor
(4m)&e for each coupling of an electron to a photon.
Thus, a virtual photon, having two such couplings,
contributes 4~e'. (In the units here, e'= 1/137 approxi-
mately and (4z)&e is just the charge on an electron in
heaviside units. ) (2) A further factor i for each —virtual
photon.

For meson theories the changes discussed in II,
Sec. 10 are made in writing 5K, then further factors are

2'In general, LV; is the particle density. It is X;=(u&&e) for
spin one-half fields and i/(&*8&/Bt) —q&p*/Bt) for scalar fields.
The latter is 2~; if the field amplitude p is taken as unity.
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(1) (4sr)&g for each meson-nucleon couphng and (2) a
factor i—for each virtual spin one meson, but +s for
each virtual spin zero meson.

This sufFices for transition probabilities, in which
only the absolute square of BR is required. To get 5K

to be the actual phase shift per unit volume and time,
additional factors of i for each virtual electron propa-
gation, and —~ for each potential or photon interaction,
are necessary. Then, for energy perturbation problems
the energy shift is the expected value of ~BR for the
unperturbed state in question divided by the normal-
ization constant S;belonging to each particle compris-
ing the unperturbed state.

The author has profited from discussions with
M. Peshkin and L. Brown.

APPENDIX

In this Appendix (A, 8, C} an attempt will be made to discuss
some of the properties of ordered operators and of functionals in
a somewhat more general way.

Almost certainly many of the equations will be incorrect in
their general form. This is especially true of those involving fourier
transforms in function space. However, it is expected that they
are correct in the special cases in which the formulas have been
applied in the main part of the paper. Therefore, at least at first,
when new results using these methods are derived, care should be
taken to check the final result in some independent way. It is
analogous to using power series expansions, or fourier transforms,
in a calculation in a situation in which the conditions for the
validity of the power expansions or of the transform have not been
checked, or are not khown to be satisfied. The physicist is very
familiar with such a situation and usually satisfied with it,
especially since he is confident that he can tell if the answer is
physically reasonable. But mathematicians may be completely
repelled by the liberties taken here. The liberties are taken not
because the mathematical problems are considered unimportant.
On the contrary, this appendix is written to encourage the study
of these forms from a mathematical standpoint. In the meantime,
just as a poet often has license from the rules of grammar and
pronunciation, we should like to ask for "physicists' license" from
the rules of mathematics in order to express what we wish to say
in as simple a manner as possible. (These remarks do not apply
to Appendix D.)

I
R= exp M(s)ds (1-a)

is defined as the value G{1)at s= 1 of that solution of the operator
differential equation

(2-a}

A. Relation to Theory of Functionals

In this section we ~ould like to suggest how a general theory of
ordered operators might be built up, and in particular, to point
out certain relations to the theory of functionals. For clarity of
exposition in this Sec. A, only, we represent all operators by
bold-faced letters M and ordinary functions in regular type M.
We have mentioned that with every functional FI M{s), E(s} ]
of the argument functions 3E(s), E(s) we wish to associate an
operator (by identifying M{s}with an operator M(s) interpreting
s as an ordering parameter with the operators M{s), N(s) sup-
posedly known and with known commutation relations). The
general theory of these associations might instead have begun by
de6ning the meaning'for the special case of the exponential func-
tional expfo'M(s)ds (we assume throughout this section, for
convenience, that the range of s is 0 to 1). The corresponding
operator

which is the identity operator at s=0, i.e., 6(0)=I. We have
thereby defined the operators corresponding to more complex
functionals such as F exp fo't p{s)M(s)+v(s}N(s)+ ~ .]ds, where
p(s}, v{s). ~ ~ are numerical functions and M, N arbitrary operators
(which need not commute) as the G(1} from

dG(s)/ds= t:p,(s)M(s)+u(s) N(s)+ ]G(s) (3-a)

with 6(0)=I. For clearly y{s}M(s)+v(s)N(s)+ . . can be con-
sidered as a single operator function of s, the M(s) in Eqs. (1-a)
and (2-a).

Next we make the general definition that the operator to be
associated with the sum of two or more functions Fife(s), $(s}~ ~ ]
+F2[M(s), X{s) -]is the sum of the operators Fit M(s}, N(s)
+F2(M(s), N(s) . .] corresponding to each separately.

Considering a derivative as the limit of a difference, we can use
this idea of superposition to further extend the range of functionals
for which operators are defined. As an example, in virtue of the
fact that J0' M(s)ds Jo' ${s)ds is the first derivative with respect
to both p, , v of expfo'[pM(s)+vX(s)]ds evaluated at p., v=0 we
may define the operator corresponding to Jo'M(s)ds Jo N(s)ds
as the corresponding derivative of the operator expfo't pM(s}
+vN{s)]ds. Then from a study of the properties of the solution of
Eq. {3-a) expanded in powers of p,, v we may readily verify that
fo'M(s)dsf0'N{s)ds could also be evaluated directly by con-
sidering s as an ordering index on the operators.

Thus, the superposition rule permits a wide increase in the class
of functionals for which we have defined operators. In fact, with
some mathematical license, we have de6ned the operator for any
functional. We wish to imagine that any functional can be repre-
sented as a superposition of exponential ones in a manner analogous
to the representation of an arbitrary function as a superposition
of exponential functions. Thus, we expect to be able to write for
any functional FI M(s)] {the true mathematical restrictions are
completely unknown to me)

Ft M(s)]= exp
' i p{s)M(s)ds FLp(s}]Sp(s), (4-a)

where SLp(s)] is a new (complex) functional, the functional
transform of FI M{s)], and J . X)p(s} represents (some kind
of an) integration over the space of functions p(s}. For simplicity
we take the case of just one argument function M(s). If F/3f {s)]
is given, F can be determined perhaps from

FLIs(s)g=f exp if y(s—)3E(s)ds FLM(s)]0M(s) (5-a)

with suitable normalization. Then, if P is known, we de6ne the
operator FLM(s)] as

1

FLM(s) j=f exp if p(s)M(s)ds PLp(s) jSp(s), (6-a)

where p,(s) is a numerica, l function. Since we have already defined
the operator expt iJo' p.{s)M(s)ds] (by Eq. (3-a) with p, replaced
by ip), we now simply require superposition of such operators for
various p, (s). The extension to functionals of several variables is
evident.

With these de6nitions of operators in terms of exponential func-
tionals, the various theorems are easily proved. For example, the
theorem (18) of Sec. 3 is 6rst readily demonstrated for the special
case that F is an exponential (1-a). Thus, to calculate

1 1
a=exp P(s)ds exp, M(s)ds

we must solve dG(s}/ds=LP(s}+M{s)]G{s). We try a solution
G(s) = U(s)X(s), so that dG/ds= (dU/ds}X+UdX/ds=PG
+UdX/ds in virtue of Eq. (15). Thus, we have a solution if
dX/ds= U MG= U 'MUX= M'X with M' as in Kq. (16). Since
G(0)= 1, if U{0)= 1, we must have X(0)= 1 so the solution of the
X equation is expfo' M (s)ds in accordance with the definition
(1-a}, (2-a). (If U{0)&i, replace X by XU '(0) throughout. )
Hence, Eq. (18) is established for exponential functionals. And
since the theorem involves F linearly, it is therefore true for any
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superposition of exponentials and hence for any functional which
can be defined by means of such superposition.

B. Momentum and Coordinate Operators

In nonrelativistic quantum mechanics, without spin, all
operators can be made up of coordinate operators and their con-
jugate momentum operators. We show in this section how, at
least in principle, all such operator functions can be disentangled.

We can consider the case of one degree of freedom Q, and its
momentum P. (When more variables are present, they present no
new problem as variables corresponding to different independent
coordinates commute. ) Thus, we are to disentangle the general
operator F{P{s),Q(s)'j subject to the condition

PQ —QP= —i. (7-a)

This is the problem solved in this section. We can satisfy the com-
mutation relation by putting P=-id/dQ {so that our solution

may have applications outside quantum mechanics for the com-
bination of operators I, d/dX are of frequent occurrence). Then
the operator F can be de6ned by giving the function g of Q resulting
from

«Q) =FLP{.), Q() jf(Q) (8-a)

for arbitrary functions f(Q), where Q(s) and P(s) are interpreted
as multiplication by Q, and —i times diGerentiation with respect
to Q in the order de6ned by F.

To obtain the relation of g, f suppose the P-dependence of F
can be expanded as a functional transform, (p(s), q(s), e(s) are
numerical functions)

1

F((p(s), q(s}g=f exp i p—(s)v(s)ds Fpq(s), v(s))Sv(s), (9-a)

where F is a functional of v{s) and of q(s). Now to evaluate the
operator

exp if P—{s)v(s)ds FLQ(s), v{s}& (10-a)

we use our theorem (20) to disentangle the P(s) operator. We use

n{s)= —io(s) in Eq. (20), calling y(s)= Jo'e{s')ds', so that Eq.
(10-a) is

v-(vn)&(()PLQ'(s) v(s) j {»-a)
where Q'(s) =e+'It&'& Q& '3t&'&P. As is well known from Taylor's
theorem, the operator e~t'~ displaces x by h so that~

Q'(s) =Q.+y(s). (12-a)

Substitution into Kq. (11-a) finds all the Q, preceding the P(1)
so the operators are disentangled and Q. may be written simply

Qp, whence we have

1

F{P{s),Q(s) j=f exp iP) v(s)ds—

X t)t Q()+J v{s')ds', v(s) Sv(s), (13-a)

which in principle, at least, solves the problem.
We can go a bit further and assume Eq. {9-a)can be inverted as

PLq(s), v(s) j=f exp if p(s)v(s)ds Fgp(s), q(s))Sp(s), (14-a)

where p(s) is a numerical function for transforming F. Also,
y(s)= Jp'e(s)ds is as good a function as e(s) for purposes of
integration/3 and we may write, substituting Eq. (14-a) into Eq.

~Or, differentiating Q'(s) with respect to s, 6nd dQ'{s)/ds
=ie'2g{'} (PQ —QP)e '&&& dy/ds. If we use the commutation rela-
tion, this is dy/ds, whence Q'(s) differs from y(s) by the constant
operator Q, the evident value of Q' for y(s) =0, establishing Eq.
(12-a).

~' For, if Se(s) be considered as the limit as 5—A of an integra-
tion over all the variables e;=e(s;) with s;+i—s;=d, then the
change is from the variables e;=(y;+&—y;)6 '. Integration over
y; for all i&0 is equivalent to integration on all e;. (Since
de;=5 dy;+&, the jacobian of the transformation is 6 &'1~},which

(13-a),

F[P(s), Q{s)] f=f exp iP—)y(1)+if p(s)t't(s)ds

XFI.p( ), Qo+y(.))Sp(.)Sy(), (15- )

the integral extending over all p(s), and all y(s) subject to y(0) =0.
Considering P aa —id/dQ, the operator FLP(s), Q(s}] may be

considered to operate on a function f(Q) to produce another
function of Q. In particular, we are often interested in quantum
mechanics in the projection of this 6nal function into a given
"6nal state" function g; that is, F is often defined through its
matrix element

(g*Ff) f=g'{Q)FLP( ), Q( ) jf{Q)dQ

If we substitute into this expression (15-a), the Pi can be con-
sidered to act entirely on g*(Q) and since exp(+iyP) g(Q) =g(Q+y),
we find

(g*Ff)=f gv(Q. +y(1)) exp if p(s)tt{s)ds FLP(s), Qv+y{s)]

X Sp(s) Sy(s) f(Qo)dQo.

De6ne q(s) as the numerical function q(s) =Qo+y(s) and write
finally (qp ——Qp)

(g*Ff)=ff g*(q)) exp if p(s)q(s)ds Fpp(s), q(s) j
X Sp(s) Sq(s)f(qo)dqodqi, (16-a)

where the integral Sp(s) is over all p(s) and the integral Sq(s)
is over all trajectories q{s) which go between the initial position

qp and the final one qi, the 6nal integration on dq& being repre-
sented explicitly. This represents a complete reduction of an
ordered operator F)P(s), Q{s)j involving conjugate operators P,
Q (7-a)to a property of the corresponding numerical functional

F[p(s), q(s)$ for in Eq. {16-a) p(s), q(s) are numerical functions
so that all the operators have been eliminated.

This is obviously related to the lagrangian form of quantum
mechanics of C. In fact, for transitions, we are interested in the
operator S=exp f—iJo H(t)dt), where, for example, H= (1/2m)&
+V(Q, t). The matrix elements of this, according to Eq. (16-a)
are (use t for s in range 0 to T)

(g*Sf)=ff g*(qr) exp if p(t)q(t)dt if (1/—2vt)p{t)'dt

if V(—q{t), t}dt f{qv) Sp(t) Sq{t)dqvdqr.

The integral on p(t) is easily done. (See Appendix C for a more
general discussion of gaussian integrals. ) Substitute p(t) =mq
+p'(t), so that

f, D1/2vt) p(t)' p(t) q{t)jdt —= (1/2vt) f p'(t)'dt ttvtf q{t—)'dt

Also, Sp(t) = Sp'(t), since p and p' differ by a constant at each t

{keeping q(t) integration until later). The Sp' (t) integral then
separates out and integrates to some constant. Hence, within
such a normalizing constant, the matrix element is

(a sf) fg'(q ) 'w{=+'f (,' ((t)*—v(q(0, vtdi}

Xf(qp) Sq(t)dqodqz'. (17-a)

That is, the transition amplitude from point qp at t=0 to qT at
t= T is the integral over all trajectories connecting these points
of expi Jp Lfg(t), q(t) jdt, L being the lagrangian for this problem.
This is the fundamental theorem on which the interpretation of
C is based.

The fact that the nonrelativistic quantum mechanical operators
(other than spin) can be expressed in terms of an integral over

is only a change of normalization, and we are disregarding nor-
malization factors. )
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trajectories is based on the fact that the operators involved satisfy
Eq. (7-a). If other operators are involved, such as Pauli's spin
operators e, or Dirac matrices y„,which satisfy different commuta-
tion rules, a complete reduction eliminating all the operators is
Iiot nearly so easily aGected. It is possible to eliminate the p
operators in the Dirac or Pauli equation and get forms like Eq.
(17-a), but the amplitude for a single trajectory is then a hyper-
complex quantity in the algebra of the y„or o. We give an example
of this.

Without disentangling the y„operators we shall disentangle
the momentum operators p„=i8/Bx„ from the operator e(W)
of Eq. {72), which is a key operator in the analyses of the Dirac
equation.

If we write

R
e(W') =exp i y„(mr}p„(mr}dz exp —i B{x{m),wIdw,

p
" "

p

the p„operators are already in exponential form and no fourier
transforms are necessary. We may disentangle the p„ in the first
integral by a direct use of the theorem (20} with P{s)=p„(mr)
{p„ for each value p is disentangled separately) and a(s) = ip„(m)).
The resulting x„'(mf} operator is x„(mr)+Jp" y„{m&')dmr' just as in
Eq. (12-a) so that we obtain

6{8')= exp ip„{$') y„(mr)dm,
p

X exp if —B s„(0)+f y„(w')dw', w dw . (18-a)

Here the x„and p& are completely separated, but the y„are
thoroughly entangled. The mr in 8 keeps track of the fact that
the y„ in its de6nition acts at the order w; thus, it is
p„(mr)B„)x„{0)+Jp"p„(ml')der']. A similar separation may be
made in the operator for self-action {74) which now is

« f «&«=c.c.«)t ,«{„&'"ff-C.( ~c~ -)

X 8 L {C„{mr')-C„{mr")I']dmr'der" ) exp( —An%')dF', (19-a}

where one must substitute C„(mr) =Jg" y„(m')dw', G„(mr) =y„(mr)
(p„, refers to the momentum operator operating on the 6nal
state) ~ All reference to space coordinates have disappeared. The
problem of self-energy of an electron is reduced to the algebraic
one of disentangling a combination of pig in an expression in
which, however, they are almost hopelessly tangled up. Not much
has been done with this expression. (It is suggestive that perhaps
coordinates and the space-time they represent may in some future
theory be replaced completely by an analysis of ordered quantities
in some hypercomplex algebra).

Since the spin operators are so simple and fundamental to
quantum mechanics, they present some interesting unsolved
problems. For example, if F/x(s), y{s), z(s)] is a known functional
of a three-space trajectory x(s), y(s), z(s), evaluate in terms of
this functional, the operator Fga.,(s},o.„(s),o,(s}],where the o„
o„, cr, are the anticommuting Pauli operators of unit square satis-
fying fr,o„fr,=i. The corresponding problem with Dirac operators
is a kind of four-dimensional generalization of this. Alternatively,
since the Dirac operators can be represented as the outer product
of two commuting sets of Pauli operators, the solution of the
problem with Pauli operators could be directly extended to the
Dirac case. The Pauli matrices (times i) are the basis for the
algebra of quaternions so that the solution of such problems
might open up the possibility of a true in6nitesimal calculus of
quantities in the field of hypercomplex numbers.

C. Gaussian Functionals

In a large number of problems the operators appear in- ex-
ponentials only up to the second degree. For this reason it is handy
to have available a formula for the integration of gaussian func-
tionals. We can de6ne a gaussian functional Gfy{s)], of one
function y{s), as one of the form, 6{y(s)]=expiEQ{s)] with

f GLy(s)5y(t) &y(s) =g(t)ILA, B5. (2?-a)

Di6'erentiating a second time, since 8g(t)/BB(t') = —X(t, t'), one
6nds

f GLy(s)5y(t)y(t')K)y(s) ={g(t)g(t')+iN(t, t')5ILA, B5, (28 a)

etc., for higher powers of y.
Incidentally, this permits us to obtain the properties of J. For

the left-hand side of {28-a) is also —2ibI)A, B]//bA(t, t'). In the
special case B=O, we have g=0 from (23-a), and since J(A)
=I)A, O], we find

8J/bA (t, t') = —
)can (t, t')J. (29-a}

E{y(s)] quadratic. Thus, we have
1 1 1

EI.y(s)]= $ „A(t, s)y(t)y(s)dtds+ B(s)y(s)ds, (20-a)

where A(t, s), B(s) are functions independent of y (that is, G is
gaussian if the second functional derivative of lnG is independent
of y). Gaussian functionals of several variables are of frequent
occurrence. All the quantum Geld theory hamiltonians and
lagrangians are of this form in the 6eld variables. A formula for
the integral of G{y(s)5 over all paths y(s) has been found useful.
It will be developed here. Consider the integral (we suppose 4(t, s)
real, or at least has a positive de6nite imaginary part)

ILA, B5=f exp{iE[y(s)5I Sy(s). (21-a)

It is a functional of A(t, s) and B(s) ~ First, the dependence on B
may be determined, as follows.

Let g(s) be that trajectory which makes the exponent Efy(s)]
an extremum. That is, g is a solution of (assuming 4 symmetric)

1

A(t, s)g(s)ds= —B{t). {22-a)

Or, if E be the reciprocal kernel to A (which can often most easily
be found merely by solving Eq. (22-a)),

1

g{s)= — X(t, s)B(t)dt. (23-a)

Then put y{s)=g(s)+x{s). (Note, X)y{s)=X)x(s).) In virtue of
Kq. (22-a), one finds E(y]=E/y]+ qJp' Jp'A (t, s)x(t)x{s)dtds.
Here, ELg(s)] can also be written explicitly as —~2J'p'fp B(s)
&(X(t, s)B(t)dtds, using Eq. (23-a). Substituting this into Eq.
(21-a), we see a factor exp{iE[g(s}]I=Grg(s}] may be taken
outside the integral, as it is independent of x(s}.Hence, we have

I/A, B5=6/g(s)5I[A5, (24-a)
where

1 1
Jr A]=exp qi A(t, s)x(t)x{s)dtds Sx(s}=ILA,0] (25-a)

does not depend on B, and

GLg(s) 5= exp {iEkg(s)5 I

1 1= exp —~~i B(s)X(t, s)B(t)dtds . {26-a)

Often this is as far as it is necessary to go, as the dependence ofI on B may have been all that is necessary to know, JLA ]being
a kind of normalizing factor that is not of importance or that can
be obtained in some other manner.

Having this form for I, we may obtain other integrals. For
example, since

»LA, B5/»(t) = &f G{.3 (s) 53 (t) 2)y(t),

this integral can be immediately evaluated by differentiation of
the expression (24-a) for I with respect to B(t). Since

t'GLg(s)5/»(t) fag(s) 5sE=(g(s))/»(t)
1= —i B(s)V{t,s)ds. GLg(s)],

we find



AN OPERATOR CALCULUS

This property of J determines it to within a numerical factor
independent of A ~

Ke have used these theorems, or something like them, on
various occasions. One example was the passage from Eq. (16-a}
to Eq. (17-a). In more generality, put

P=exp i—fB(fz(s), q(s))ds

where H is quadratic in p. The integrations on p(s) in Eq. (16-a)
now represent an example of our theorem with y= p and EI p(s) j
= J'fpq —H{p, q}jds. The extremum requires BIJ/Op= q. If the
solution of this is p, considered as a function of g, q, then the
integral on p produces within unimportant factors an exponential
of J'Qq H(P, q—}$ds, that is, iJLds, w'here L is the lagrangian.
This example shows that in our discussion, we have not been
sufIiciently rigorous mathematically, for the important problem
of the order of noncommuting operators p, q, in the original
definition of II does not seem to have arisen.

A second example is the integration of exp(i JLdt) when L is
quadratic in q, q. For the forced harmonic oscillator where
L=&(g—Hq')+p{t)q(t), the integral was carried out in III,
footnote 7. The operator A(t, s) is —Dd /dP)+oP/b(t —s), the
inverse X of which involves sines and cosines but is not unique.
However, in this case boundary conditions exist at the end points
q(0), q(T), and these boundary conditions determine N and also
restrict the range of y integration. The footnote serves a model of
what to do under circumstances and will not be discussed further
here.

The problem of integrating

exp if j„—(1}A„(1)drz exp i (i)A„/i)zz„}sdr (8zrez) '

over all distributions of field A„{1}required in III, Sec. VIII,
serves as a further example. Here y{s) is replaced by A„(1},and
B(s}by j„(1).The operator A(t, s) becomes pb(2, 1), the inverse
of which is again not unique. The inverse X{t,s) required in III
is 8+(si2 ). {The boundary conditions required to define this par-
ticular inverse are probably related to the condition that no
photons are supplied in the past and none are wanted in the
future, so that the inverse must have no positive frequencies for
t—&—~ and no negative ones to t ++ ~.) Thus, ELg(s) j becomes
the important quantity —

q JJ'j„(1)j„{2}b+(s&p)dv&d~&,so that
Eq. (24-a) gives Eq. (43) or III, Eq. {48), which we had taken
such pains in III to derive in a more rigorous manner. In none of
these examples do we require J.

A more complicated example is that of the analysis of the
opera, tors corresponding to the electron-positron field given in I,
Appendix. If electrons obeyed Bose statistics, the commutation
rules would have been altered, the net effect being just to change
a few signs in the final expressions. Analyzed as an Einstein-Bose
field, however, the operators %' can be considered as ordinary
functions, and the lagrangian technique may be used. The problem
then requires gaussian integrals (actually, integrals of exponentials
of bilinear expressions, but these are as easy to work out). The y
corresponds to %' (or %'*), the A(t, s) is related to the Dirac
hamiltonian, and its inverse E+&~&(2, 1) replaces E. The problem
of determining C, corresponds to that of finding j{Aj. The
problem is complicated somewhat by the necessity of keeping the
order of the p„-operators correctly.

The relation of problems with operators obeying Fermi-Dirac
statistics and those with the same operators obeying Einstein-Bose
commutation rules is very close. The results of the former in
practical cases/4 at least, may be obtained from the latter by
simply altering some signs. The Einstein-Bose case is very easily
analyzed by ordered operator algebra (as in Sec. 7) or by the

"The only known practical case, of course, is the electron-
positron field. Here the problem has been completely worked out.I seem to be affected by the disease so prevalent today in theo-
retical physics, to delight in seeing a very general method of
solving a problem, when actually in physics only one example of
the type of problem exists and this has already been worked out.

lagrangian integral methods. The anticommuting operators seem
at first sight more complicated; but this they cannot be, as the
results are just as simple. It would seem worth while to develop
the analysis of anticommuting operators in much more detail than
has been given here. Presumably, good use can be made of the
similarity to the Einstein-Bose case. The theorems developed in
analysis of this problem may conceivably have application in the
problem of disentangling Pauli spin operators.

D. Fock's Parameterization of the Dirac Equation

%e wish to call attention to an interesting alternative method of
parameterizing the Dirac equation, suggested by Fock. It, like
that of Sec. 8, would also have permitted us to pass directly to
the formulation of electrodynamic problems. It is more readily
interpreted than that of Sec. 8.~

As a consequence of the Dirac equation (iV—B)/=md, f also
satisfies {iV—B)(iV—B)g=m'f. Expanding the operator, this is
equivalent to

$(i8/8x„) —B„Pf——0 &„F&„f=m2$, (30-a)

with cr„„=~i(y„y„—y,y„). This differs from the Klein-Gordon
equa, tion only through the addition of the term —+o„,F„„where
F„„=(BB„/Bx„)—BB„/Bx„is the field tensor.

Just as in the Klein-Gordon case, III, Appendix A, this can be
converted by the aid of a fifth parameter to Fock's equation,

jay/au = $$(ia/axe, )—Bp]'y —~o yyF pygmy (31-a)
for which the special solution @=exp( —qim~u) P leads back to Eq.
(30-a). It can then be analyzed by the lagrangian method. The
final result is that the amplitude to go from one point to another
Lsee III Eq. {5-a)g is the sum over all trajectories x„(u) of the hy-
per complex amplitude

exp if P—(dxzz/dzz)z+(dxzz/dzz)Bzz(x)

——,
' „„(u)F„„(x(u))jdu, (32-a,)

the order of operation of the O.„„being determined by the parameter
u. This, in fact, is the lagrangian formulation of the Dirac equation
suggested in C, Sec. XIV.

A rotation {and Lorentz transformation) by angle ar„„ in the
pv-plane, is represented in Dirac theory by the operator
exp(-', i~„~„„).(The summation on both p and v accounts for a
factor 2.) Hence, we can say that Eq. (32-a) means that the am-
plitude for arrival is exp(iS), where S is the classical action—J P{dx„/du)'+B„dx„/du jdu, but the orientation represented
by the hypercomplex amplitude has rotated at each point in its
path at an angular velocity (per du) equal to the field strength at
that point. (Angular velocity in four dimensions is an antisym-
metric tensor of second rank, as is the field strength. }

Since the potentials appear in exponential form, this may be
directly connected to the form representing the action of virtual
photons. The result is a set of rules like that for the Klein-Gordon
case, Sec. IX, but with an additional coupling F„„p„py.They may
be shown to be algebraically equivalent to the rules usually given
for the Dirac equation, but are somewhat more complicated and
not very interesting. There are some properties of the Dirac
electron, however, which are more obvious in this formulation
than in the usual one, and these we will discuss.

It is apparent from Eq. (32-a) that in the classical limit the
trajectory is that of minimum 5 and therefore satisfies

d x~/du~ = (dx„/du) F„~, (33-a)
(Hence, {dx„/du)'= {dsjdu)~ is a constant of the motion where s
is the proper time, and the minimum action S is —~~(ds jdu)~u plus
a term independent of u. Since this is to vary as —ammu, we find
ds=mdu. } As 5—Q, the magnetic moment approaches zero and
does not affect the trajectory. But since the intrinsic spin angular
momentum also goes to zero, the rate of precession of spin has a
classical limit. For completeness we should also give the equation

"Y.Nambu, Prog. Theor. Phys. (Japan} 5, 82, 1950.
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of motion of the spin axis (just as the spot on a billiard cue ball
has a motion, although it does not affect the trajectory of the
ball). From Eq. (32-a) we see the spin axis precesses at angular
velocity F» (per du). (These are well-known results of the %KB
approximation method when appli+ to the Dirac equation. )
Since Eq. (33-a} says only that dh„/du precesses at the same an-
gular velocity, we can summarize the classical equations of
motion, and of spin precession for a Dirac electron as: The velocity
vector and spin plane are fI,xed in a four-dimensional coordinate
system turning at each instant at an angular velocity per unit proper
time equal to e/m, Hmes the fI,eld strength acting on the electron at that
instant. (For example, for a slowly moving electron in a magnetic
6eld S the velocity vector revolves about the magnetic Geld as an
axis at angular velocity au= (e/m)S, the cyclotron frequency. The
spin does likewise precessing therefore at the same frequency,
which is twice the I.armor frequency. )

I have expended considerable e6'ort to obtain an equally simple
word description of the quantum mechanics of the Dirac equation.
Very many modes of description have been found, but none are
thoroughly satisfactory. For example, that of Eq. (32-a) is in-
complete, even aside from the geometrical mysteries involved in
the superposition of hypercomplex numbers. For in (32-a) the
Geld enters in two apparently unrelated ways, once into de6ning S
and again in the rotation rate. In the classical limit both eBects
of the Geld can be neatly stated in one principle. What makes
things particularly simple in quantum mechanics if, for a diffusing
wave, a rotation at rate F» is accompanied by a phase shift equal
to the line integral of A&F&

"If the qo„„F„, term is considered to have a coefBcient 0.
analogous to a kind of anomalous magnetic moment, difBculties

In the case that the 6elds P» are constant in space and time,
the operator factor exp()iuo»P») is independent of the trajectory
and factors out of Eq. (32-a). The remaining path integral is
gaussian and can be carried out exactly (Appendix C), giving the
results of Fock' and Nambu. ~

If the operator on the right-hand side of Eq. (31-a) is considered
as a type of hamiltonian, the rate of change with u of all the rele-
vant physical quantities (given by the commutator with this
operator) are very easily interpreted by classical analogy.

There are, of course, twice as many solutions of Eq. (30-a) as
solutions of the Dirac equation (50}. (The others correspond to
Eq. (50) with negative m.) If x is a solution of Eq. (30-a), the
projected part f= (2m) '(iV' —B+m)p solves the Dirac equation
(50). Projection operators must still be used, therefore, in cal-
culating matrix elements if Eq. (30-a) in perturbation is used
instead of the Dirac equation. ~7

arise in the resulting theory unless a=1 or a=O. Thus, the real
part of L, in the amplitude for a vacuum to remain a vacuum,
C,=exp( —L), should always be positive if the theory is to be
easily interpreted (see I, Sec. V). For general 0., it seems that the
real part of L is positive for some processes (or potentials}, negative
for others. It is always positive only if a=1. But for a=O it is
always negative, so we can reinterpret the theory in this case as
referring to Bose particles, in which case C, should be exp(+L)
(I, Sec. V}. For a=O, Eq. (30-a) becomes the Klein-Gordon
equation, of course.

~7 A convenient way to make the correspondence of solutions x
of Eq. (30-a) and P of the Dirac equation unique is to assume x
is also an eigenfunction of y~, that is, y~x=iy. This is possible, as
yq commutes with the operators of Eq. (30-a). Then, for each p,
the corresponding x is x= (1—iy~)P.


