

by an impurity. The gamma-radiation from the source was examined with a sodium iodide crystal scintillation counter and pulse height selector. There appeared to be a gamma-ray of low intensity which decayed with a 3.7-hour half-life at approximately 1.3 to 1.6 Mev, but accurate measurements were not possible in the presence of the numerous gamma-rays from the small amounts of La¹⁴⁰ and La¹⁴² unavoidably present in the sample. Beta-gamma coincidences, subject to the same difficulties, were observed at a rate which compared to Sc46, was consistent with a beta-branch of 5 percent in La¹⁴¹. The only coincidences observed were with betas of energy less than 1.5 Mev.

After the decay of the La¹⁴¹, the gamma-rays from the Ce¹⁴¹ formed in one of the spectrometer sources were examined with the scintillation counter. The 0.14-Mev gamma-ray was found, but no others were observed between 0.3 and 0.6 Mev.⁴ If present, such gamma-rays could not have had intensities greater than 0.5 percent of that of the 0.14-Mev gamma-ray. Prompt beta-gamma coincidences were found, indicating that the 0.14-Mev gamma-ray follows a beta-branch.

These data are consistent with the decay scheme shown in Fig. 2. The levels shown for Ce¹⁴¹ are taken from the summary of previous work in the National Bureau of Standards Circular 499. The spin of the stable Pr¹⁴¹ has been experimentally determined⁵ and the other spins have been chosen to agree with the beta-decay data and the nuclear shell model of M. G. Mayer.⁶

We are indebted to many members of the Los Alamos Laboratory for help with these experiments, particularly to Dr. B. E. Watt and Dr. B. C. Diven.

* This document is based on work performed under the auspices of the AEC at the Los Alamos Scientific Laboratory, Los Alamos, New Mexico.
¹ I. Joliot-Curie and P. Savitch, J. phys. et radium 9 (7), 355 (1938).
² O. Hahn and F. Strassmann, Naturwiss. 27, 11 (1939); 30, 324 (1942).
³ S. Katcoff, Radiochemical Studies: The Fission Products (McGraw-Hill Book Company, Inc., New York, 1951), Paper No. 172, National Nuclear Energy Series, Plutonium Project Record, Vol. 9.
⁴ For a summary of previous work on Ce¹⁴¹, see Nuclear Data (National Bureau of Standards, Washington, D. C., 1951), Circular No. 499. A gamma-ray of 0.315 Mev has been seen by some investigators but not by others.

others. ⁶ H. E. White, Phys. Rev. 34, 1397 (1929).
 ⁶ M. G. Mayer, Phys. Rev. 78, 16 (1950).

A Further Study of the Natural Activity of Lanthanum

R. W. PRINGLE, S. STANDIL, H. W. TAYLOR, AND G. FRYER Physics Department, University of Manitoba, Winnipeg, Canada (Received October 18, 1951)

I N an earlier communication¹ it was announced that an activity due to the naturally occurring La¹³⁸ isotope had been found in a search which was prompted by the isobaric relation of La¹³⁸ to the nuclei Ba¹³⁸ and Ce¹³⁸. In this investigation a scintillation spectrometer of low resolution was used to test the possibility of a gamma-radiation associated with such an activity, and it was estimated that ordinary lanthanum gave rise to 0.7 quanta/sec-g

FIG. 1. Scintillation spectrometer pulse height distribution for the gamma-radiation of lanthanum, obtained with a five-channel kicksorter.

of energy 1.05 Mev although it was recognized that softer components might also be present. No search was made for the x-radiation which would be associated with a K capture process, but the absence of electrons or positrons suggested that the gamma-ray was to be associated with a K capture process to Ba^{12}

A further study of this activity has recently been made with a scintillation spectrometer of improved resolution to determine whether the initial activity could have been due to some unsuspected short-lived contaminant, and also to investigate the possible complexity of the gamma-ray spectrum. The same highly purified 39 g La₂O₃ source was used, and surrounded a ³/₄-inch cube NaI-Tl crystal mounted on an E.M.I. 5311 photomultiplier. The spectrometer was enclosed in a 3-in. lead castle. The resulting pulse height distribution (Fig. 1), obtained with a Harwell Type 1074A five-channel kicksorter, gives three lines A, B, and D, attributed to gamma-rays of energy 535 ± 15 kev, 807 ± 15 kev, and 1390 ± 30 kev in terms of the known gamma-radiation of I131 and Co60, used for calibration. The feature at C corresponds to the 1390-kev gamma-ray Compton edge at approximately 1100 key, and in the earlier low resolution experiment¹ had appeared to give the gamma-

FIG. 2. Oscillogram of the scintillation spectrometer pulse height distribu-tion for the gamma-radiation of lanthanum.

FIG. 3. Suggested disintegration scheme for La¹³⁸ (half-life 2.0×10¹¹ years).

ray spectrum end point. The distribution of Fig. 1 has been confirmed by photography of the spectrometer pulse height distribution displayed on the screen of a Tektronix 511A oscilloscope. Figure 2 corresponds to a 40 hour exposure at f:4.5 with fast ortho film. The top line in this spectrum is due to the 1390-kev gammaray, and below we have a broad band corresponding to the Compton distribution marked C in Fig. 1, and two sharper lines at 807 kev and 535 kev. A halo is observed on the film due to light coming from the oscilloscope filament.

Use was made of the known variation of instrumental detection sensitivity with gamma-ray energy to estimate the relative intensities of the gamma-rays at 1390 kev, 807 kev, and 535 kev as 1:0.65:0.3, respectively. If we recognize that, within the limits of error for the measurement of the gamma-ray energy, the 1390-kev gamma-ray appears to correspond to a crossover transition, we are then led to a decay scheme of the form given in Fig. 3, in which the gamma-rays have been associated with a K capture process to Ba¹³⁸. A search for electrons or positron's with a thin window Geiger counter indicated that the number of these particles with energy greater than 100 kev is less than 0.2/sec-g of ordinary lanthanum. On the basis of the proposed gamma-ray transitions of Fig. 3 and their estimated relative intensities, the activity of La¹³⁸ has been estimated at approximately 0.45 disintegations/ sec-g of ordinary lanthanum, corresponding to 0.6 gamma quanta/ sec-g of all energies. In obtaining this latter figure a comparison of the observed gamma-activity was made to the gamma-activity of a known mass of potassium salt (giving rise to 3.3 gammaquanta/sec-g.2

It remained to find evidence for the proposed decay scheme of Fig. 3 in the Ba x-rays which should accompany the K capture process. Figure 4 gives the result of a search for this radiation in

FIG. 4. Scintillation spectrometer pulse height distributions in the x-ray region, showing (left) the 32-kev radiation associated with the natural activity of lanthanum, and (right) the x-radiation associated with the decay of I¹³¹ for calibration.

which the height distribution of the scintillation spectrometer pulses was examined in the region of 30 kev. For calibration and comparison the 29-kev x-ray following the decay of I¹³¹ is also given in Fig. 4. We are led to the conclusion that an x-radiation of energy 32 ± 1 kev is associated with the decay of La¹³⁸, a value which corresponds better to the Ba x-ray line at 31.4 kev than to the 33.7 kev x-ray line of Ce which might arise if La¹³⁸ decayed by beta-emission to Ce¹³⁸. In order to estimate the number of x-rays emitted, a much smaller sample ($\frac{1}{3}$ g) was used, and a value of approximately 0.4 x-rays/sec-g of ordinary lanthanum was found, in good agreement with the number to be expected on the basis of the proposed decay scheme. We conclude that the half life of La¹³⁸ is approximately 2.0×10^{11} years.

Our thanks are due to the National Research Council of Canada for the support of this work.

¹ Pringle, Standil, and Roulston, Phys. Rev. **78**, 303 (1950). ¹ G. A. Sawyer and M. L. Wiedenbeck, Phys. Rev. **79**, 490 (1950).

Coincidence Studies in the Decay of La^{140*}

BEROL L. ROBINSON[†] AND LEON MADANSKY Johns Hopkins University, Baltimore, Maryland (Received October 5, 1951)

PREVIOUS work on the decay of La¹⁴⁰ has been confined largely to energy determinations.¹⁻³ The coincidence experiments that have been reported were absorption measurements⁴ performed with Geiger counters. Two different decay schemes have been proposed.^{1,2} Therefore it might be of interest to investigate the decay of this isotope using the new techniques based on the proportional properties of scintillation detectors.⁶

A sample of La¹⁴⁰ was obtained by neutron irradiation of lanthanum oxide in the Oak Ridge pile. Using a thick source (~ 0.1 g/cm³) a beta-gamma coincidence experiment was performed. The beta-ray detector has been described elsewhere.⁶ The gamma-rays were detected in a 3-cm cube of NaI(Tl). This experiment indicated that the 1.60-Mev gamma-ray is in coincidence with the most energetic beta-rays. Gamma-gamma coincidence experiments showed that the 1.60-Mev and 0.82-Mev gamma-rays are coincident.

The angular correlation⁸⁻⁸ between these two gamma-rays was also investigated. Again the 1.60-Mev quantum was detected in a 3-cm cube of NaI(TI). One discriminator was set to accept those pulses in the unresolved "Compton plus photoelectric" peak of the pulse-height spectrum. The 0.82-Mev quantum was detected in a cleaved piece of NaI(TI) having dimensions $\frac{5}{8}$ in. $\times \frac{1}{8}$ in. The pulse-height spectrum from the thin crystal showed a strong photoelectric peak for the 0.82-Mev gamma. A second discriminator was set to accept this (0.82-Mev) photoelectric peak. The outputs of the discriminators were fed to a coincidence circuit. Parallel channels of fast amplifiers and a fast coincidence circuit served to reduce the accidental coincidence rate by requiring a fourfold coincidence. Some 2-3000 fourfold coincidences were counted at each of four angles. The results are shown in Table I.

We may begin to build a decay scheme by observing that the most energetic beta-ray branch of energy 2.26 Mev,¹ is followed by the 1.60-Mev gamma-ray; probably to the ground state of Ce¹⁴⁰. The softer beta-ray branches¹ must lead to the 1.60-Mev level through the emission of the 0.82-Mev gamma-ray, and to other levels of Ce¹⁴⁰ through the emission of the other gamma-rays which have been observed.¹⁻³ We assume a partial decay scheme

TABLE I. Angular correlation of La¹⁴⁰ gamma-rays.

	W(90°)	W(120°)	W(150°)	W(180°)
Experiment Theory (see text for assumptions)	1	1.016 ± 0.027	$1.146\pm\!0.031$	1.147 ± 0.033
	1	1.033	1.112	1.157

FIG. 2. Oscillogram of the scintillation spectrometer pulse height distribution for the gamma-radiation of lanthanum.