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In this paper, a start is made toward the development of a statistical mechanics that will be suited to the
treatment of dynamic changes in thermodynamic systems and which, at the same time, will be in the
appropriate form for a relativistically invariant theory. The formal device consists of making the time
coordinate one of the canonical variables. As a result, stationary ensembles no longer occupy a privileged
position among all conceivable Gibbs ensembles, and it becomes necessary to redefine and to reformulate
most statistical and thermodynamic concepts. This has been done with the concept of a canonical ensemble,
with entropy, temperature, heat Aux, and performance of work. With a suitable definition of the entropy
of an individual system, a new formulation of the H-theorem is provided, which in turn leads to a formulation
of the Second Law.

I. INTRODUCTION

ARLIER attempts to formulate a consistent
~ relativistic thermodynamics' ' have usually been

concerned with giving the concepts of entropy, tem-
perature, and heat a relativistically invariant sig-
Di6cance. Except for the very early work by Einstein
and Planck, these attempts have been largely on the
so-called phenomenological level, without any reference
to the underlying statistical concepts. As a result, many
of these papers appear rather formal in approach,
achieving their results primarily by the method of
seeking Lorentz-invariant modiacations of the concepts
familiar in ordinary thermodynamics. Eckart' has
pointed out that ordinary thermodynamics is frag-
mentary in so far as it deals only with equilibrium situ-
ations and with quasistatic processes. Essentially
dynamical processes are outside its scope. On the other
hand, relativistic theories become necessary in physics
only if velocities are involved which by ordinary
laboratory standards are very large. While it is always
possible to introduce a local framework in which any
one velocity is reduced to zero, a truly relativistic theory
is likely to give novel and therefore interesting answers

only if velocities are involved that are very large relative
to each other. But if two streams of matter interact with
each other whose relative velocity is comparable to that
of light, then no observer can describe that interaction
as a quasi-static process, and the approach of formal
invariantization breaks down.

These considerations lead inescapably to the con-
clusion that the development of relativistic thermo-
dynamics can be tackled successfully only as part of a
more comprehensive program, to develop a theory of
heat that is independent of the concept of thermal
equilibrium. Such a theory we shall call a generalized
theory of heat, for want of a better expression. Such a
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development is bound to lead to a much more complex
theory than the conventional thermodynamics, for the
simple reason that a stationary situation has fewer
degrees of freedom than one in which time derivatives of
the thermal variables also enter into the description.
The conventional theory is quite trustworthy in its
assertion that a violent development leading from one
stationary situation to another stationary situation is
bound to increase the entropy. But if there is neither
a stationary initial situation nor a stationary terminal
situation, then we cannot assign entropies to two states
succeeding each other in the course of time without
going beyond the confines of conventional thermo-
dynamics. It is not that conventional thermodynamics
gives the wrong answers; it fails to give any answer
at all.

If we are to generalize the conventional theory of
heat, then we must, in this writer s opinion, start out
with the fundamentals, and that means not with ther-
modynamics, but with statistical mechanics. Hence this
paper is devoted to the development of a statistical
mechanics independent of the notion of the stationary
ensemble. Formally, we shall proceed by depriving the
time coordinate of its privi1. eged role vis-a-vis the usual
canonical coordinates. While the formal method is well
known and amounts to the addition of two further
dimensions to the ordinary phase space (time and its
canonical conjugate, the negative Hamiltonian), the
description of an ensemble in this new phase space in
terms of the density of its member systems is com-
plicated by the fact that all the systems are constrained
to move on one hypersurface, and furthermore, each
individual system is no longer represented by a point
but by a curve, its trajectory. Thus, the ensemble must
be described in terms of the density of a 6eld of curves
on a hypersurface. Fortunately, such a description in
terms of geometric invariants is quite feasible and leads
to the introduction of a single invariant quantity which
for all practical purposes assumes the role of the usual
density in phase space.

The development of this description occupies most of
the following two sections. The invariant description
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of an ensemble of quantum-theoretical systems is also
indicated. From then on, vre shaH reformulate the
concept of the canonical ensemble, and vrith it that of
the ensemble entropy. %e shall 6nd that in general a
single temperature is not sufhcient to characterize a
canonical ensemble, nor can the interaction of a thermo-
dynamic system with its surroundings be adequately
described in terms of a scalar "heat transfer" and
another scalar "performance of work. " But there are
natural generalizations of these aH-important quan-
tities, and there exists a relationship between the
generalized heat transfer, multiplied by the generalized
reciprocal temperature, and the increase in entropy.

In this generalized statistical mechanics, the develop-
ment of a relativistic, i.e., Lorentz-invariant, theory
depends solely on the availability of a relativistic
Hamiltonian. Such Hamiltonians are, of course, knovrn
and of particular importance in covariant 6eld theories
(such as the theory of the electromagnetic field). Thus,
relativistic thermodynamics requires no additional con-
cepts.

II. PARAMETMZATION

In the ordinary formulation of analytical mechanics,
the time t is not a dynamic variable vrhile the generalized
coordinates g are. In Lorentz transformations, on the
other hand, the time appears symmetrically vrith the
spatial coordinates, and the (negative) energy with the
linear momentum components. It is, therefore, de-
sirab1e, to modify the usual. analytical mechanics in
such a manner that the privileged position of the time
coordinate and its canonical conjugate, the (negative)
energy, is destroyed. Similar comments apply to the
analogous quantum-mechanical situation.

A. Classical Mechemcs

Consider a system with f degrees of freedom whose
generalized coordinates shall be designated by qI, and
their canonical conjugates by P», fi taking values from
1 to f Let the H.amiltonian be a known function
H(q», p», t) It is no. t necessary to assume for what
follows that the system be conservative, i.e., that the
Hamiltonian be explicitly independent of t. In the
phase space S with the coordinates q», p», the trajectory
of the system is then a single curve which depends in a
de6nite manner on the time t. In other vrords, if we
solve the equations of motion, the resulting functions
q»(t), p»(t) represent not merely a convenient para-
metric representation of the mechanical trajectory, but
t is a physically signi6cant variable of its own, though
not a coordinate of our present phase space.

It is well known that the canonical equations of
motion are the Euler-Lagrange equations of a varia-
tional principle in phase space,

»=0, S=~t PZ. pA»/dt H(q», p., t)j«. (2.1-)

and takes the form

B8/at&0, (2.3)

f' ( f dq» dt'l
bS=O, S= i

) Q p» +E id8
d8 d8)

t' (f+i dq„) p (f+I
I ~p. Ida=

I ZpA. I,
~ E.-i dai

(2.4)

where we have used the abbreviating notation

qua+i= ti py+»=E K= 1 f+1 (2.5)

The variational principle (2.4) with the subsidiary con-
dition (2.2) in the expanded phase space is equivalent
to the principle (2.1) in the original phase space. The
canonical equations of motion are obtained by the
method of Lagrange's multipliers and come out as

dq„/d8 aaH/BP, =—0, dP./d8+ aaH/Bq„= 0. (2.6)

The multiplier n cannot be determined uniquely. Its
arbitrariness reQects the fact that the parameter 8 is
arbitrary, and that this new formalism is invariant with
respect to arbitrary parameter transformations. Instead
of keeping the multiplier in the equations of motion
(2.6), we shall incorporate it in the subsidiary condition
and set, from novr on.

dq./d8= BH/B p„dp,/d8 = —BH/Bq„
H=O, (2.7)

where H is an arbitrary function of H and (2f+1)
canonical coordinates, so that H=O where B=O, and
that for H =0 the derivative (BH/BH) does not vanish.

The canonical transformations in the expanded phase
space are all those which will not change the form of the
variational integral (2.4). The form of the subsidiary
condition is usually changed by the substitution of the
new variables for the old ones. In the special case of an
in6nitesimal canonical transformation, the changes in
the coordinate values at any 6xed point in the ex-
panded phase space are

Bq,= ar/ap„ap. = —ar/aq„r= r(q„p,). (2.g)

bH vanishes by de6nition. But if we consider H as
'a function of its arguments, then its functional de-

If we wish to "symmetrize" with respect to the variable
t, we may interpret the variational principle as one in a
(2f+2) dimensional space, possessing the coordinates
q», p», t, E (the latter being equal to H)—. The variation
in that higher-dimensional space, which we shall call
the "expanded phase space, " is, however, restricted by
a subsidiary condition,

H= H(q—», p», t)+E=O. (2.2)

The variational principle itself can be formulated con-
veniently if we introduce an arbitrary parameter
8(q», P», t, E), subject only to the inequality
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pendence changes, and the left-hand side of the sub-
sidiary condition undergoes the infinitesimal change

b'H=(r, H). (2 9)

We 6nd that the whole formalism is invariant with
respect to in6nitesimal transformations which are
generated by constants of the motion, i.e., dynamical
variables (which may depend on t explicitly) whose
value does not change along a trajectory. Incidentally,
the Poisson bracket symbol (I', H) is to be understood
in terms of the expanded phase space,

f+j(8A 8B BA 8B )
(~, ~)-=z

i

c ~ 48q~ Bpg Ops Bqg)
(2.10)

In Sec. III, we shall construct ensembles in the
expanded phase space. Let it be noted that only trajec-
tories satisfying the subsidiary condition may be incor-
porated in any ensemble that is to be meaningful. On
the other hand, any trajectory satisfying the subsidiary
condition at one point satisfies the condition every-
where. The subsidiary condition is itself a constant of
the motion.

3. Quantum Mechanics

In quantum mechanics, one might think 6rst of
parametrizing by starting out from the wave-mechanical

picture, introducing the time t as an additional dimen-

sion of configuration space. While this procedure is per-
fectly feasible and leads to the desired results, it suGers

from the aesthetic disadvantage that the results ob-
tained are not obviously independent of the represen-
tation chosen. That is why we shall adopt a diGerent

approach. Without changing the usual definitions of
norm, Hermitian operator, etc. , we shall introduce, in

addition to the usual operators in Hilbert space, the

operations of multiplication by, and differentiation with

respect to, time, applied in the Schrodinger representa-
tion. . Considered at first merely as linear operators in

the linear vector space of time-dependent Hilbert
vectors (i.e., Hilbert vectors as functions of t), these new

operators obviously commute with the operators p», q»,

and with each other they satisfy the commutation
relation

(E, t5 =h/i, E= (f»/i) 8/Bt (2.11).
It is not possible to extend the definition of the usual
Hilbert space so that these new operations become
Hilbert operators. That is because the operation (H+ E)
also is conjugate to t (satisfies a relation like (2.11)),and
therefore as a Hilbert operator cannot have any
normalized eigenfunctions. On the other hand, every
solution of the Schrodinger equation is a null vector of
the operator (H+E). Hence, E and t cannot both
become Hilbert operators.

On the other hand, it is quite possible to construct
new operations from the set q», p», i, E which as linear

operations satisfy the standard commutation relations.
It is appropriate to call the transition to a new set of
(2f+2) such operations an expanded canonical trans-
formation. The question arises how among all these
linear operations one can characterize the Hilbert
operators, which alone can have the mathematical
properties that enable them to represent measurable
physical quantities.

To this end, we shall consider, among all the con-
ceivable time-dependent Hilbert vectors, the subset of
those satisfying the condition

(B+E)P=0,

i.e., the Schrodinger equation. This equation has a
meaning independent of the Schrodinger representation,
because the operations t and 8, while de6ned originally
only in the Schrodinger representation, can be gener-
alized by the proviso that in any other representation
they are to be realized by the corresponding trans-
formed operations. Ke can bring the subset of time-
dependent Hilbert vectors consistent with Eq. (2.12)
into one-to-one correspondence with the set of ordinary
Hilbert vectors, by identifying each ordinary Hilbert
vector with the one in the time-dependent subset which
is identical with it at the fixed time to. Moreover, on the
strength of this identification the concepts of norm and
of scalar bracket can be transferred to the subset of
time-dependent Hilbert vectors in a unique manner
which is independent of the choice of representation.

Briefly, the subset forms again a Hilbert space, with all
its ordinary properties. An "operation" will be an
"operator" in that Hilbert space if it maps members of
the subset into the subset again. The operation t, for
instance, clearly does not possess this properly. It is
not an operator in the new Hilbert space.

The new Hilbert space consists of solutions of the
Schrodinger equation. An operator in our new sense
must be an operation that applied to a solution of the
Schrodinger equation produces another solution of the
Schrodinger equation. Operations having this property
are ordinarily called constants of the motion. In a
Heisenberg representation, they are the operators that
are constant in time.

The characteristic of a constant of the motion is that
it commutes with the operation (B+E), which hence-
forth we shall designate by H. Since B certainly com-
mutes with itself, it is an operator, albeit a trivial one:
all quantum-mechanical states are eigenstates belonging
to the eigenvalue 0. Ordinary operators, such as "the
value of q& at the time t&" can be converted into con-
stants of the motion by a simple expedient: at all other
times we identify with the operator q&(t,) that operator
Q(t) which has the same bracket (Dirac bracket) value
with any two states at the time t that q&(i&) has at the
time t&. The operation t cannot be so extended except
in a trivial manner. "The time t at the time t&" is simply
the c-number t&.

These new characterizations of the ordinary tools of
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quantum mechanics have the advantage that only
invariant formations occur and that they are invariant
with respect to the expanded canonical transformations
in which the time t is handled symmetrically with other
canonical variables. Even without the explicit intro-
duction of the parameter 8, which we used in the clas-
sical part of this section, it is clear that t no longer plays
a special role.

III. ENSEMBLE DENSITY

Fxo. i. Domain of
integration,
Eq. (3.2).

e=e,

Trajectories

In the ordinary construction of a Gibbs ensemble in
classical statistical mechanics, the density of the repre-
sentative points in phase space is described by a variable
p, a function of the canonical variables q~, pq and the
time t, which satis6es Liouville's theorem

8~/8~+(&, a) =0, &dr= 1. (3.1)

The ensemble average of an observable A is given by
the integral J'pAdX. In the quantum-mechanical for-
mulation a similar role is played by a Hermitian operator
p, , constructed in such a manner that the ensemble-
average expectation value of any observable A is given
by the trace tr}pA },with tr}p}=1.

In the expanded phase space, the individual systems
are described not by representative points, but by
representative trajectories. Moreover, these trajectories
cannot form a 6eld of curves throughout the expanded
phase space, but only on the hypersurface given by Eq.
(2.2). Our problem is then to introduce in some fashion
a quantity describing the density of trajectories on this
hypersurface. %e shall 6nd again that this density will
be a scalar with respect to (expanded) canonical trans-
formations.

To describe the situation, we shall, in addition to the
(2f+2) canonical coordinates qq, pq, introduce (2f+2)
new coordinates, call them "parameters" for purposes
of distinction, P, . , P~, 8, H. The parameters are not
necessarily assumed to be canonical, but the Jacobian
of the equations leading from the coordinates to the
parameters is assumed to be finite and difFerent from
zero, H has the meaning given in Eq. (2.7), and tt

satisfies Eq. (2.3). A 2f-dimensional hypersurface S,
8=const. , H=O, will intersect all mechanical trajec-
tories. The desired ensemble density m will have such a
signi6cance that an integral extended over part of the
hypersurface just introduced,

I= ~" md@ dP~
"H-o e e

(3.2)

will equal the fraction of trajectories within the en-
semble that are intersected by the chosen domain of
integration. If extended over the whole hypersurface,
its value should be i. Qnce having obtained such a
density, we shall also want to be able to carry out
similar integrals in terms of the original canonical coor-
dinates.

Clearly, the integral I, denoting as it does the ratio
between two integers (both of which may be 6nite or
infinite) must be an invariant. Moreover, its value must
be independent of the location of the hypersurface 5
cutting across the (2f+1)-dimensional hypersurface
H =0, providing the bounding (2f—1)-dimensional edge
intersects the same trajectories, Figure 1 represents
this requirement.

It is well known that in the (2f+1) dimensional
"reduced space" H =0 all these requirements are equiv-
alent to the one that the integrand ns be the 8-component
of a contravariar. t vector density C whose divergence
is zero,

BC~/8$'=0, i = 1, , 2f+1; P+'—=8 (3 3)

and which is everywhere parallel to the trajectories. The
direction of the trajectories is given in the expanded
phase space by the equations of motion. In the reduced
space these directions can be represented adequately
through projection operations and come out as

8$' BH 8$' BH
=(e H)

Bggg Bpgg Bp~ Bgo
(3.4)

In the absence of a metric, a direction is given only
modulo an arbitrary factor. Let it be noted in passing
that the expressions (3.4) transform as the components
of a contravarient vector with respect to parameter
transformations in the reduced space, i.e., with respect
to parameter transformations not involving H.

We may conclude that the vector density C must be
parallel to the vector 9, and that the constant of pro-
portionality must be a scalar density. The principal
shortcoming in this preliminary result is that 9 also
changes when we transform H, even though this trans-
formation has no geometric meaning in the reduced
space. The most obvious approach, to construct a vector
density in the expanded space and project it into the
reduced space, is actually geometrically not feasible.
Speci6cally, although projection leads from a vector or
tensor in the higher-dimensional space to a vector or
tensor in the lower-dimensional space, the same is not
true of densities.

A difFerent approach, seemingly more elaborate, is
geometrically sound and leads to the desired vector
density in the reduced space. In a space without a
Riemannian metric, the completely antisymmetric con-
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travarient tensor densities of weight one have the
special significance that they can be used to construct
invariant integrals of lower dimensionality. In par-
ticular, in an n-dimensional space a skewsymmetric
contravariant tensor density of rank (n —m), m&n,
permits the construction of an integral over an nz-dimen-
sional domain. If we describe this domain by means of
a set of m parameters u' and if the coordinates in the
original space are called x', the integral

1 p m
t

Bz&~

Bar 'aa-4i ps''' " gI ds
(n —m)! a-i & Bn' j

(3 5)
&1" s= &y ba&as' +Saga =0& etc

is invariant. Now suppose we construct a space of n'
dimensions, imbedded in the original n-dimensional
space, with m&n'&n. Then a tensor density can be
constructed in the n'-dimensional subspace, such that
it leads to exactly the same integral I of Eq. (3.5). If

we call the parameters of the n'-dimensional subspace
e", we have

g&l ' ' '~n~ m pe 'rn& gaS1 Smg ... ~ . . .p
m!(n —m)!

The rank of the new tensor density in the n'-dimensional
subspace is lower than the rank of the original density
in the expanded space by (n —n'). The operation charac-
terized by Eq. (3.6) is, in a certain sense, also a pro-
jection in that the new density has fewer components
than the original density, and the original density
cannot be reconstructed uniquely from the new one.
The partial equivalence between the new and the
original density is expressed mathematically by the
identity

1 ~ (Bzs' y 1 ~ f Bv"
(3.7)

(n —m)! u ~-~ k Bnf ) (n' —m)! ~ u '-& &Bn' )
%ithout going into a lower dimensional subspace, we can also gain densities of lower rank by processes of

dBFerentiation. The "curl"

'CL'n ~+1 —$C~ ' 'an~
yrxn-m+1 (3.8)

satisfies the theorem (a generalization of Gauss' and Stokes' theorems) that if the (m —1) parameters w" describe
the edge (closed surface) of the m-dimensional domain (n'), then

1 8 sa (Bgs'
Bai ~ ~ aa &x pcs " "+') as-a+& g I

dn'
(n —m)! '-i ( Bnf' j

1 m —I (Bgs&"...y" s. ,~' '.= g I
dw I. (3.9)

(n m+ 1)—! ~ a-i $ B~I )

~'=~'(5, 8) (3.10)

where p.
' is a scalar density, projects into a vector

density in the reduced space whose components are
proportional to the Poisson brackets (3.4). The proof
is almost trivial because we are using the same param-
eters (except for P~+'—=I) in both the reduced and the

Our problem is now to find a vector density in the
reduced space which is parallel to a given field of direc-
tions and whose divergence vanishes. In the expanded
space, we should have to find a contravariant tensor
density of rank 2 whose surface integral vanishes for any
2f-dimensional closed surface lying wholly in the
reduced space. Or, we may require (and this require-
ment is equivalent) that the divergence of the tensor
density, while not zero, vanishes when integrated over
a (2f+1)-dimensional surface forming a part of the
reduced space.

Let us call the (2n+2) parameters $, a=i,
2f+2 We shall 6rst s.how that the contravariant tensor
density

s-s, =
I

&BP„' Bg.i
(3.12)

In terms of general parameters, this vector density in
the expanded space has the components

B(V. p.)
S~~.s=(P, p)J, J=det, p'= Jp, (3.13)

B(P' B I)

expanded space. In that case, Eq. (3.6) reduces to a
rule which requires that we strike out rows and columns
in which not at least one index is H.

Next, we shall form the divergence of S &, S t', p, but
in a canonical coordinate system, In a canonical coor-
dinate system the tensor density 5 t' assumes the values

0, pB'")
S-&=

I I. .. x= 1, ",f+1. (3.11)! pb'", 0 ]—
Its divergence, therefore, is
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(e, H)a~dÃ" deaf. (3.16)

With this expression, it is now possible to describe
arbitrary Gibbs ensembles in terms of the expanded
canonical formalism. If the function I is chosen so that
it serves as the Hamiltonian, with 8 the argument
appearing in the canonical equations of motion, then
the Poisson bracket in Eq. (3.16) equals 1.

The introduction of the ensemble density operator p
in quantum mechanics is much more conventional and
requires no diGerential-geometrical derivation. Assum-
ing that to each possible Hilbert vector we assign an
ensemble probability P» (where k is a parameter which
may either take discrete or continuous values), so that
the sum or integral P» P» equals 1, then, in Dirac's
bracket notation, p, is

p=P» P»~ k) (kj. (3.17)

The average expectation value of any observable A is
given by the expression

(&)»,= tr{p& I, (3.18)

and this expression corresponds to the classical integral
J'yAdX.

IV. CANOMCAL ENSEMBLES

With an invariant ensemble density, we can now
proceed to d.uplicate the procedures of classical statis-
tical mechanics. The chief difkrence is that we cannot
single out the total energy of the system from among
all the other vari'. bles of state to construct canonical
ensembles. We shall, therefore, generalize the concept of
canonical ensemble and call an ensemble canonical
whenever it has the same distribution in phase space
(or in Hilbert space) that it would assume if its systems
were not isolated, but components of much larger

where J is the Jacobian of the transformation leading
from any canonical coordinate system to a parameter
system (the Jacobian of a canonical transformation is
always 1). The variable p (without prime) is a scalar.
The vector density (3.13) will have vanishing integrals
if its H-component is zero, if, in other words,

(3.14)

This last equation is the invariant formulation of
Liouville's theorem in the expanded phase space. It is
not a condition satisfied merely by stationary distribu-
tions, but a perfectly general condition obeyed by the
scalar p.

With the help of the expression (3.10), where we now
replace the density p.

'
by the expression pJ, we can

form the vector density C in the reduced space that
leads to the formation of ensemble densities. We have

(3.15)

The integral (3.2) turns into

with
p, =Z—' exp( —P, P;A;), (4.1)

g= (g, H)J exp( —P;PA )dP .dP' (4.2)

systems (with infinitely many degrees of freedom, in the
asymptotic limit) which in turn form a microcanonical
ensemble in their phase space.

This generalized definition is based on the physical
notion of statistical equilibrium in interaction with a
very large constant-temperature bath. Ordinarily, we
motivate the assumption of canonicity by saying that
a system will assume canonical distribution if it is in
interaction with a very large temperature bath and if
nothing is known about the combined system except
that the total energy lies within a specified narrow
interval (E~, E»). In that portion of phase space (for
the combined system) that is bounded by the energy
surfaces Ej and E2 the ensemble density is, therefore,
assumed to be constant. The canonical distribution is
not sensitive to a transition to an energy interval of
zero width. To generalize this approach, we must extend
it to other variables, and to combinations of other vari-
ables. We must assume that it is possible to provide the
type of interaction with a large system (bath) in which
not only the energy, but also other constants of the
motion (for the isolated system) are exchanged, and we
must then determine the distribution of the system in
which we are interested on the assumption that for the
combined system certain variables (e.g., total energy,
total linear momentum) are limited to narrow domains,
but that within that domain the ensemble density is
constant.

This approach will be physically interesting only if
the result is insensitive to the detailed structure of the
large temperature bath and to the precise nature of the
coupling bath and thermodynamic system. That will
be the case only if the variables we are interested in are
"additive, " i.e., if we can naturally construct constants
of the motion for the combined system which are sums
of two terms, one depending only on the state of the
system, the other only on the state of the bath. If that
is the case, then all that matters is that the coupling
parameter may be permitted to go to zero, and the size
of the bath to go to infinity, without destroying the
physical meaning of the whole setup. Most of the
variables ordinarily of interest will have this property
of "additivity. " Aside from the standard integrals of
the motion, total energy, linear momentum, and angular
momentum, the density at a particular location, all
sorts of occupation numbers, intensity of radiation in a
particular part of the spectrum (all the latter taken at
a particular time), and so forth, are additive variables
in the sense explained here.

With these assumptions, the system under scrutiny
will always assume a distribution in phase space which
has the general form
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(k being the Boltzmann constant and po an arbitrary
constant), then the canonical ensembles are those in
which the entropy is maximized under the subsidiary
conditions that a set of ensemble averages (A;)A„assumes
specified values. The larger the number of these subsidi-
ary conditions, the smal&er the value of the entropy.
Naturally, we always have the one subsidiary condition
(3.1), that (1)A„equals 1.

The value of the entropy for a canonical ensemble is

S k(luego+&nZ+g; P(A;)A„). (5.2)

VVith the help of this expression, the partition function
itself may be represented as a function of purely "ther-
modynamic" (i.e., macroscopic) variables:

i
Z= exp -(S—Qg P,(A;)~—

input) .
k

(5.3)

The variables A; are those additive constants of the
motion for which we have specified the microcanonical
distribution in the combined system (or the mean
values in the isolated system), Z is the partition function
of the ensemble under these conditions, and the P; are a
set of parameters whose values are determined by the
required values of the ensemble averages (A;)A, . It is,
of course, assumed that the quantities A; are all inde-
pendent of each other; that none of them may be
expressed as a function of the others nor as a function
of the other A's plus the Hamiltonian constraint H.

It is clear that the expression (4.1) is invariant with
respect to a transformation that leads from the set A;
to a set AI,

' consisting of linear combinations of the A;.
Therefore, an ensemble distribution is relativistically
covariant automatically if with any component of a
vector or similar covariant among the A; the other
components are included, too.

Equation (4.1) is the natural de6nition for canonical
distributions in the generalized theory. It is interesting
to note that with this definition an ensemble may be
canonical if its average energy and linear momentum
are specified, but also if only its average energy is
specified. These two ensembles are by no means iden-
tical, but there appears no valid reason for accepting
one of them as physically interesting and rejecting the
other. It is, of course, true that if we choose as the A;
the four components of the energy-momentum vector,
then this choice is relativistically invariant. If in one
system we choose just the energy, then in another frame
the corresponding choice is a particular linear com-
bination of energy and linear momentum.

V. ENTROPY

All canonical ensembles can be obtained by means of
a variational problem with subsidiary conditions. If we
define the entropy of an ensemble by means of the
integral

(5.1)

We shall call the entropy de6ned by Eq. (5.1) the
"ensemble entropy. "Because of Liouville's theorem, it
is an integral of the motion. In order to find another
variable, the "system entropy, " which will change its
value in the course of the motion, we may proceed as
follows. Regardless of whether we have a single system
or a canonical or noncanonical ensemble, we define the
system entropy S* by means of Eq. (5.2), where the
partition function Z and the multipliers P; are all
determined by the average values (A,)„„on the 6ctitious
assumption of a canonical ensemble. System entropy
and ensemble entropy have the same value for a
canonical ensemble, for all other cases the system
entropy is the larger of the two. That is because for
given values of the (A;)A„, the canonical distribution is
the one that maximizes the ensemble entropy, and the
system entropy equals the ensemble entropy of this
"corresponding" canonical ensemble. In contrast to the
ensemble entropy, the system entropy is not a constant
of the motion.

Now consider a set of dynamical variables A; which
are constants of the motion and which depend explicitly
on the parameter 8. Naturally, if we construct an
ensemble that is canonical with respect to this set of
variables, it will remain so, and thus its system entropy
as well as its ensemble entropy will have the same value
for all values of the parameter 8. But now we can
introduce a new set of variables, 8;, by means of the
defining equations

(5.4)

and the further requirement that the 8; also be con-
stants of the motion. This requirement is particularly
suggested if we should have chosen a set of parameters
in which the Hamiltonian constraint H is independent
of the parameter 8. Such a choice preduces formally a
conservative system, and in this case Eq. (5.4) together
with the requirement that both the A; and the 8; be
constants of the motion leads automatically to the
stronger relationship

8;(p, . . ., p~, 8)=A, (p, , pr, 8+80—8g). (5.5)

In other words, the two sets of variables are quite
similar in nature and differ only by a rigid translation
of the "time" scale. Ke shall now consider both the
ensemble entropy and the system entropy of an en-
semble that is canonical with respect to the A;, but not
with respect to the 8;. Because the ensemble is in
general not canonical with respect to the 8;, the system
entropy with respect to the 8; will exceed the ensemble
entropy. The ensemble entropy, on the other hand, is
an intrinsic property of the ensemble and does not
depend on whether we consider the g; or the 8;. It can
therefore be asserted that the system entropy with
respect to the 8; for our ensemble exceeds the system
entropy with respect to the A;.

Intuitively, the diGerence between the set of A; and
the set of 8; is that I3; represents the "same" set of
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variables, but observed a "time" (8~—
Hp) "later"—

"earlier" if (8~—Hp) is chosen negative. With respect to
the "fixed" observable A, , i.e., those 8-independent
observables which permanently equal A;(80), our
ensemble is canonical only at the "time" 80. Therefore,
at all other "times" the ensemble entropy S is a lower
bound for the system entropy S~, determined with the
help of the averages of the A; .

I.et it be noted in passing that this version of the
H-theorem holds for the "past" as well as for the
"future" —in our theory, all results must be symmetric
with respect to the time because nowhere have we
introduced into the foundations any element of asym-
metry. However, we may introduce this element of
asymmetry by focusing our attention on the present
and the future only, assuming that any observation
requires interaction with our large and bulky measuring
devices in such a manner that as a result of this inter-
action our state of knowledge about the system under
observation immediately following the measurement(s)
is adequately represented by a canonical ensemble.
Repetition of the "same" measurements, i.e., deter-
mination of the "fixed" A, at some subsequent time
will then show an increase of the system entropy.
Whether this method of introducing thermodynamic
concepts (the Second Law) is completely satisfactory
shall not be examined in this paper. At any rate, this
approach is the natural analog of that usually taken
and, at least, requires no assumptions concerning
equilibrium or quasistatic processes.

VI. HEAT FLUX

In order to formulate ordinary thermodynamics, it
is necessary to introduce into statistical mechanics the
concepts of performance of work and of transfer of
heat; these concepts are required to formulate both the
first and the second law of thermodynamics. The most
satisfactory manner of defining these two quantities in
statistical mechanics is first to define the mechanical
work and then describe the heat transfer as the differ-
ence between the change in energy and the work done
on the system. The heat transfer obtained in this
manner then leads to an exact differential (the change
in entropy) when divided through by the absolute
temperature.

In our generalized theory, very similar results may
be obtained, but with one significant difference. Instead

.of the single inexact differential "work, "we have such
a difFerential for each of the constants of the motion A;,
describing the adiabatic change of its ensemble average.
Starting with a canonical ensemble, we obtain the
change in (system) entropy by multiplying the "heat
transfer" of each separate variable A; by its appropriate
P, and adding them all together. We first define, for a
canonical ensemble, the adiabatic change in (A;)a, as

the expression

b~(A;) p„= pbA, dX,

p= —e
—x»», dX= (8, H)dg. . .dP~,

z

(6.1)

which is the analog of the definition given by Schro-
dinger. ~ Our parameter system should be chosen so that
b/(8, H) y] vanishes. If the total change in (A;)A, is de-
noted by b(A;)A„we find then for the change due to
random interaction with the surroundings the expression

bq(A;),„=b(A, )A„—b,s(A;)A,

=) A;bpdX. (6.2)

These expressions are the analogs of the heat transfer.
Finally, if we multiply each of these expressions by its
p, and add, we get

Q, P;bo(A;)A, =Q, P,A;8 AX

VQ. CONCLUSION

In this paper, we have confirmed the intuitive assump-
tion that entropy should be retained as a scalar; but it
turns out that the energy, work, and heat concepts
must be adjusted in each case to the physical situation
encountered and to each other. It is planned to develop
the general framework further and to attempt its
application to interesting situations far removed from
the conventional quasistatic process.
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E. Schrodinger, Statistica/ Themodyeamics (Cambridge Uni-
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= b)t(Q; P,A,)pdX Jt pb~, P—,A,)dX

=b(g; p, (A,)A„)+blnZ=k 'bS~. (6.3)

This result shows that in a relativistic thermodynamics
it is natural to retain the concept of a scalar entropy;
but work must be replaced by a set of quantities having
similar transformation properties as the chosen A;, and
the same holds for the heat transfer. Thus, if we for-
mulate thermodynamics for a system having a dis-
tribution in space (e.g. , a finite volume element within
a fluid), the heat transfer across its bounding surface
should not be a vector, but a tensor or tensor-like
formation, which respresents not only a Aux of energy,
but also of linear momentum.


