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it is to abandon the simplified concepts and use a gen-
eral method as introduced by us in VI. %e are not
certain if Furry wants his results to apply to the scatter-
ing of very hard quanta; if this is the case then there
exist basic di8erences with the content of VII.

We want to express the hope that later investigations

of a deeper-reaching mathematical nature will lead not
only to a formulation as given here, but also to a com-
putation of the di8erences in the two schemes and
thereby present opportunities for an experimental deci-
sion between the two forms of the theory, which in our
opinion will doubtless show the validity of scheme II.
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The aim of this paper is to re-establish the reversibility of classical electrodynamics in terms of the
"expectation values" given by quantum electrodynamics. The reversibility requirement combined with
the charge conjugation necessitates that charged 6elds should obey certain types of statistics. However, the
reversibility requirement as such does not determine the statistics, showing that it is the requirement of
charge-invariance that has the power to determine the statistics of charged fields. A new interpretation will
be given to the old problem concerning the conflict of electromagnetic reversibility versus "retarded"
potential. Four diferent kinds of tensors, four difkrent kinds of spinors {pseudospinors), bi-spinors {eight-
component spinors) and bi-tensors are introduced as useful representation vectors of the entire congruent
group including spatial and temporal inversions.

I. INTRODUCTION
' 'N connection with the proof that phenomenological
~ - irreversibility originates essentially from the process
of observation, it seemed to the present author to be
of importance to ascertain the complete time-reversi-
bility of quantum mechanics. In an earlier paper, ' re-
versibility of the Dirac equation was demonstrated in
its one-particle interpretation, and the behavior of the
spin, electric moment and magnetic moment of the
electron in the "reversed" motion was examined in
detail. Then, the reversibility of quantum electrody-
namics was proved in the frame-work of Dirac's many-
time theory. ' It was thereafter noticed that the same
method can be applied to the theory in which the elec-
tron field also is quantized if a correct treatment of
charge conjugation is introduced. In all these consider-
ations, it was observed that commutation relations of
the field quantities, under certain assumptions, played
important roles in the proof of reversibility.

Now that many authors are interested in the problem
of necessary general forms of commutation relations, it
may be of some interest to publish a summary of the
results hitherto obtained by the author, clarifying the
relationship between reversibility and commutation re-
lations. In the meantime, Schwinger is reported to have
used in his lectures a similar consideration to deduce
the commutation relations from the requirement of

' S. %'atanabe, Le Deuxieme Theoreme de la Thernsodynam~ue
et la Mdcaniqle Oedllatoire {Hermann et Cie, Paris, 1935).

~ S. Natanabe, Sci. Pap. Inst. Phys. Chem. Research (Tokyo)
31, 109 (1937).' Unpublished.

reversibility. However, since his method as well as his
conclusion seems to be at variance with those of the
present author, perhaps they may justifiably be pre-
sented here.

Against a formal requirement of reversibility objec-
tions are often raised to the eGect that we can never
reverse the direction of time in our actual experience.
However, we can formulate the "reversibility" in such
a manner that it does not involve any hypothetical in-
version of time.

The reversibility of classical point mechanics can be
expressed in the following way. Let us call two states
of a mechanical system mutually reversed states if
particles have the same positions and the opposite
velocities. Then the reversibility of mechanics means
that, if a mechanical system, which was in the state S1
at the initial instant (t=0), 6nds itself in the state S2
at the 6nal instant (t=ti), then the fundamental laws
allow for another solution representing the similar sys-
tem which was in the reversed state of S2 at the initial
instant (t =0) and which 6nds itself in the reversed state
nf 5& at the final instant (t= ti).

To extend this notion of reversibility to electrody-
namics, we need only to add to the definition of reversed
states the condition that the electric field has the same
value and the magnetic field has the same absolute
value but opposite sign. Then the above statement of
reversibility holds again in the Maxwellian theory.

It is to be noted that this concept of reversibility does
not invoke any fictional time-reversal. Also, as far as

'Lectures by J. Schwinger, notes taken by M. L. Goldberger.
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Newton's laws and the Maxwell equations are correct,
this reversibility is guaranteed by their mathematical
structure.

Now the Maxwell equations have, other than their
I.orentz invariance, a trivial invariance under charge
conjugation. Namely, the simultaneous change of signs
of the electromagnetic 6eld quantities and change of
signs of the sources leave the equations unchanged. In
virtue of this charge invariance, we can modify the
definition of reversed states in the following way. In
the reversed states, particles of opposite charges are
performing the reversed motion, the magnetic field has
the same value and the electric field has the same abso-
lute value but opposite sign. Then the reversibility with
this modi6ed de6nition holds also insofar as the Max-
well equations are true. Physically, this modi6ed stand-
point corresponds to a combination of charge conjuga-
tion and reversal of motion.

Now we require that quantum electrodynamics
should provide this classical reversibility in the "expec-
tation values" of the physical quantities concerned.
More precisely, tmo state functions 0' and 0" are said
to represent mutually reversed states if the expectation
values of the physical quantities in the states 4 and 0'
satisfy the classical definitions of reversed states. Then
our requirement is that, if a physical system which was
in the state 4'i at the initial instant (t =0) develops with
time according to the Schroedinger equation and be-
comes 4'& at the final instant (t=ti), then the similar
system which is in the reversed state 4'2 of 4'2 at the
initial instant (t= 0) should become the reversed state
4'i of 4' at the final instant (t= ti).

It will be shown that this condition can be restated
as follows: the probability of 6nding the physical system
which was in the state 0'g at the initial instant in the
state 4& at the final instant is equal to the probability
of 6nding the system which was in the reversed state of
4'~ at the initial instant in the reversed state of 0 ~ at
the final instant, where 0'& and 4'& are arbitrary states.

Here again, attention is drawn to the fact that our
conception of reversibility does not imply any hypo-
thetical inversion of time.

Our analysis will show that if we use the "modi6ed"
de6nition of reversed states, the reversibility require-
ment in quantum electrodynamics can be satis6ed only
if the charged 6eld quantities are assumed to obey cer-
tain types of commutation rules. But if we translate the
original de6nition of reversed states in the quantum
theory, the reversibility requirement does not determine
the commutation rules. This shows, in its physical impli-
cations, that it is not reversibility but charge conjuga-
tion that has the power of determining the commutation
relations of the charged 6eld quantities.

It is interesting to notice that if we consider the
reversibility from a purely formalistic point of view,
i.e., if we search for the simplest transformation that
keeps the mathematical expressions covariant for the
time-reversal, vie hit upon a transformation which

corresponds to the "modified" definition of reversi-
bility. This, of course, does not preclude the original
de6nition of reversed states from being mathematically
formulated.

One may raise an objection to the theory already
sketched and contend that the classical electrodynamics
is not reversible, because we have always to choose only
the "retarded" solution out of the possible solutions.
To answer to this question, we shall show, in Sec. IX,
that the reversible quantum electrodynamics indeed
gives one-half the retarded potential plus one-half the
advanced potential; however, that in spite of this formal
symmetry of past and future, this advanced potential
refers to the mathematically constructed future and
can be transformed into the retarded potential, thus
leading to a full retarded potential. This expression in
terms of full retarded potential is the only permissible
one, if we admit as a postulate that any physical law
should be formulated in the form of a prediction based
on a past observation.

As a matter of fact, in classical electrodynamics, the
dismissal of advanced potential cannot be logically rec-
onciled with the basic reversibility except by resorting
to a statistical assumption of some kind. ' In contrast
to this, in quantum electrodynamics, the reduction of
advanced potential to the retarded potential, and there-
fore the elimination of the former, can be done on a very
general basis, see Sec. IX.

This situation presents an instructive parallelism
to the problem of entropy inci'ease. In classical physics,
decrease of entropy can happen, seldom as it may be,
while, in quantum physics, increase of (microscopically
defined) entropy by the act of observation is definitive.

Our understanding of these problems can then be
summarized in the statement that the fundamental
laws per se are completely reversible, while the irre-
versible phenomena appear as the result of the particu-
lar nature of our human cognition. In classical physics,
this conflict between basic reversibility and phenomeno-
logical irreversibility cannot easily be clari6ed, because
the physical quantities (and the state) are, in this
theory, taken for "reality" rather than for "potenti-
ality, " i.e., mathematical instruments to correlate one
observation to another observation. Indeed, reversi-
bility in quantum physics pertains to this "potentiality. "

Section II of this paper will give a c-number la-
grangian formalism of electromagnetic interaction,
which is completely covariant for any congruent trans-
formation including time-reversal. This c-number theory
will also help understand the mathematical gist of the
time-reversible q-number theory, which is developed in
the following sections. In the q-number theory of re-
versibility, a unitary operator E, introduced previously
by' the author under the name of reversion operator, '
will play a central role. This paper is essentially a study
of the nature of this reversion operator.

'See for instance, J. A. Wheeler and R. P. Feynman, Revs.
Modern Phys. 17, 157 t,'1945),
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tensors and a bi-spinor:The customary tensor- and spinor-analysis are very
inadequate for a problem like the present one. The
mathematical instrumentalities introduced in this paper
are believed to prove useful for many other problems
involving spatial and temporal inversions. For this
reason, they are explained in some detail in the Ap-
pendix. Those who want to use spinors in a 5-dimen-
sional space will also find our de6nition of spinors par-
ticularly convenient.

(a") fu)'(u )
Eb~i kv) E v)

(2 4)

Lw)
'

EP)

And to represent the current we introduce two bi-
tensors byII. COVARIANT FORMULATION OF

ELECTROMAGNETIC INTERACTION t'' (u)l f's (4)l
&i~(v) & Es»(q) )

(2.5)

In virtue of the theorem given in connection with (A.60),
I& is a regular bi-vector whatever property u (and v)

may have. S& is a second kind pseudo-bi-vector accord-
ing to (A.61).

Case (I): We can then using (A.47), (A.53), and
(A.55) easily build a, regular scalar lagrangian density
by replacing (2.2) and (2.3) by

(2.1)&=&i+&a+&3+&n+&is,
with

Zi(a) = —(1/2)(Ba„/Bx„)(B&a/B x),

Zi(u) = (Bu—/Bx, ) (Bu/Bx") ii'uu—,

& (0') = (1/»)4'f(BIBx )E

22'i ———(1/2) (BA„/Bx„)(BA &/Bx")
(2.2) = Z, (a)+S,(b)

2Z's ———(BU/Bx„)(BU/Bx") «' U—U(B/Bx„)E—„+2imEi7$„

%e consider the electromagnetic field e& interacting
with the electric current generated by a spinor field P
and a complex scalar (or pseudoscalar) 6eld u. The
ordinary lagrangian density Z can be written in the
form:

2»(a, u) =ca~i„;

i„(u)=if(Bu/Bx&)u u(Bu—/Bx&) j, . (2.3)

&ii(a, 4)=«"s.; s.(4)= 4EA—
The second order (in e) interaction term in Zii is

dropped, for inclusion of such term does not affect our
discussion in the following.

This lagrangian has, of course, a wrong property for
transformations of the classes 8 and 2 (o &

———1). (See
Appendix. ) For Zi and Zi are regular scalars whatever
kind of tensors a& and u may be, whereas Z3 is a second
kind pseudoscalar. 2~2 and 2~3 are necessarily of differ-
ent kinds from each other, for s„is a second kind pseudo-
vector while i„is a regular vector.

All the terms (2.2) (2.3) can be brought to any one
"kind" of scalar by the method developed in the Ap-
pendix whatever kinds of property we may assign to
a& and u. We shall, however, discuss only two of the
various possibilities:

(I) g: regular scalar; a&: regular vector

(II) 2: regular scalar; a": 2nd kind pseudovector.

The method consists in introducing two tensors or
two spinors to represent one 6eld. These two tensors or
two spinors are not only transformed according to the
ordinary transformation rules but also interchanged
whenever we perform a transformation with 0 &

———1.
Corresponding to a", u and f, we introduce, respectively,
(a&, b&), (u, v) and (P, q), which constitute two bi-

= Zi(u)+gi(v) . (2.6)

—(B/Bx„)E„+2imEijIIX

22'ii=eA&I, =eu&i„(u)+eb"i„(v)

2Z'ii= eA&1IS„=ea"s„(P) eb"s„(vi)— (2.7)

In expressions (2.6) and (2.7) the terms in a", u, u,
P, P, and the terms in b&, v, 8, p, p should be written in
such a way that corresponding factors are placed in the
same order in both. This is essential for the later re-
interpretation in q-number theory.

Case (II): 2'i, 2'i and 2'i in (2.6) need not be
changed. (2.7) should however be changed into

2Z'ii= eA "III„=ca~i„(u) eb"i„(v)—

22'ii = eA "S„=ea"s„(P)+eb "s„(w)
(2.8)

Thus we have succeeded in writing the lagrangian in
a covariant form for the entire congruent group in the
c-number theory.

Although the quantum-theoretical consideration of
reversibility is being developed in the later sections, the
mathematical core of the results obtained there will now
be given in anticipation.

En the q-number theory all the field quantities are,
of course, to be regarded as matrices, and the require-
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ment of reversibility is then expressed by certain rela-
tions involving these matrices and their transposes. In
terms of bi-tensors and bi-spinors, these relations will

imply certain connections between their 6rst and second
parts involving the operation of transposition.

The operation of transposition is of course not com-
mutable with the ordinary unitary transformations.
But, for a reason which will be explained later, we need
not here specify the representation which is to be used.

It should be borne in mind that the second half of a
bi-tensor or of a bi-spinor must belong to the same
transformation rules as its 6rst half, except for their
interchange. Therefore, we can expect without a de-
tailed analysis that the aforementioned connections
between the erst halves and the second halves will turn
out to be certain combinations of the following possi-
bilities (see (A.32)):

v= uv or v= ur, 8=uv, ' (2.9)

(v= Pv or &t)
= fvK, rp= gK

Case (I):In this case, the conclusions drawn from the
requirement of reversibility in q-number theory can be
summarized in the following two items:

(a) b)'= art'; v=uv; v=er; y=fr; (( =P, (2.10)

(b) z'=z", (2.11)

where 2' is the sum of all the 2"s of (2.6) and (2.7). The
symbol of equality in (2.11) is to be understood in the
sense of "equal except for an additional c-number. "

If relations (2.10) are substituted in (2.6) and (2.7),
condition (2.11) lets us draw conclusions as to the com-
mutation relations for the u-field and the P-6eld. The
condition that 2')2 ——2 '(2 and 2')3=2 '))) with (2.10)
evidently requires:

(Bu/Bx") u u(Be/B—x)') =u(Be/Bx)') (Be/Bx—)')e, (2.12)

which can be true only when

fP+ fP= c number, -

uu —uu= c-number.

It can easily be seen that (2.13) guarantees the condi-
tions 2'2= Zv'2 and 2'))= Zv'3 in (2.6).

The foregoing method applied to the electromagnetic
6eld a& entails no conclusion as to its commutation rule.
For (2.10) for a" automatically satisfies Z') ——Zv') with
(2.6). Indeed, if a" obeyed the Fermi statistics, 2) would
become essentially a c-number, so that such an assump-
tion can hardly become a subject of the present
consideration.

Case (II): Reversibility requirement here takes the
form:

(a) b)'=ax)' v=uv v=uv &t)=gvK p=gvK ' (2.14)

(b) z'=z", (2.15)

with (2.6) and (2.8),

It can be verified that (2.14) substituted in (2.6) and
(2.8) automatically satisies (2.15), so that no conclu-
sion as to the commutation rules can be drawn.

It is interesting to notice that we in reality do not
need all of the conditions enumerated in (2.10) or (2.14)
in order to obtain the foregoing results. In fact, we need

only b&=a & and 2'=2 ', if we knew that the choice
of ~ and y should be made out of the possibilities indi-
cated in (2.9).

Z(&) Z(2) ~ (3.2)

The statement that the mechanical law is reversible
means that if Z(»(t) is a solution then it allows for a
second solution Z&»(t) such that, if at a certain instant v

then
Z () Z»(),

rev

Z(» (v+ t) Z(,) (v—t)

(3.3)

(3.4)

for any value of t. In virtue of the displacement group
in time that the mechanical law allows for, we can write,
instead of (3.3) and (3.4),

rev

Z(» (t)~Z(» (—t). (3.5)

This is true not only in the absence of external forces,
but also in the cases in which the external forces for Z(~)
at t are the same as those for Z(2) at —t. Frictional forces
which change their signs in the reversed motion invali-
dates the reversibility.

There are now two "standpoints" by which the con-
cept of reversibility can be adapted to electrodynamics.

According to one standpoint, the reversed states Z(~)
and Z(2) are de6ned by

*()) x(»~ P 0) P (»~ (» )(

P(» P(»

~'(0= ~ (2) ~ (&) = (~) a (&) = a'(&)

a (&)
= a (2)

'
~(&)=~(2)

(3.6)

where it' and a& are, respectively, the current and the
potential vectors. This standpoint corresponds to the

III. REVERSIBILITY OF CLASSICAL
ELECTRODYNAMICS

The reversibility of point mechanics can be stated in
the following manner. Two states Z(~) and Z(2) are
called "reversed" states of each other if

x'(» = (»~ P'(»= —P'(» (a= 1~ 2~ 3)~ ( )
P (» P (2) i +(» +(»P

where x)', p"(t(= 1, 2, 3, 0) and E stand, respectively, for
the positions of the particles, their momenta and the
total energy of the system, and the subscripts (1) and

(2) refer to the two states. This situation (3.1) will be
written symbolically as
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Z'(I) =$ (2)) & {i)— ~ (~)~ ~ (i) —a (2)1

~ {i) ~ (2) i ~(i) +(~)

This modified definition of the reversed state will be
referred to as (I) in the following. It is obvious that this
standpoint (I) is nothing but the combination of the
reversal of motion in its proper sense and the reversal
of charge. The latter means the change of signs of the
charges and the fieM quantities, for which the equations
(3.7) remain invariant. If the electrodynamics is re-
versible in standpoint (II), it is also reversible in stand-
point (I), and vice versa, provided the charge invariance
is guaranteed.

In both standpoints, electromagnetic waves in the
reversed states propagate in opposite directions, with
the same direction of linear polarization. There is how-
ever a phase difference of 180 degrees between (I) and
(II). It is also clear in both standpoints that, if in Z&»
a light pulse is emitted at instant t, the corresponding
light pulse is absorbed at instant —t in Z(2).

IV. REVERSION OPERATOR

In the following sections, use will mainly be made of
the interaction picture, in which the state function 0'
changes with time according to the Schroedinger equa-
tion with the interaction hamiltonian:

dO/dt= iH@, — (4.1)

while all the physical quantities Q changes with time
according to the Heisenberg equation with the non-
interacting hamiltonian:

dQ/dt= i(H,Q QH,)— (4.2)

"original" standpoint in our "Introduction" and will be
hereafter referred to as standpoint (II).

Then it can be proved that the classical electrody-
namics guarantees the reversibility which can be written
as (3.5). This is because we can regard the ield quan-
tities (2", f"", the current i" and the four-velocity 2&" as
pseudo-tensors of the second kind in the Maxwell
equations:

0&2~(x) = i~—(x) = P-e(&~(22')b(x x')-;

Ba~/a2;~=0 }. (3.7)

f""=(ta "/(t2;„8&—2"/()2:„' 2}2()"=ef""(&„

(the proper time is a second kind pseudoscalar).
Ke now notice that, in these equations, we can alter-

natively regard (2", f"", i(' as regular tensors. This en-

tails, since the velocities must be second kind pseudo-
vectors, that e should behave as a second kind pseudo-
scalar. This means that, in the reversed state, particles
of the opposite charges are performing the reversed
motion. In symbols".

*.(»(~)=z (2)(~); P'(»(~) = —P (2)(~)

P (»(~)= P'(2) (~)
(3.8)

The values of 0' at ]j and at t~ are related to each
other by

where

with

e(t,) = U(t„t,)e(t,),

()U(tl t2)/&)tl 2H(tl)U(tl t2)

aU(tl t2)/Pt2=+iU(tl, t2) H(t2)

U(tl, t2) = 1 for

(4 3)

(4 4)

(4.5)

+(»(tl)-+(2) (t2). (4 8)

Now the requirement of reversibility demands that, if
4&»(t) is a solution of the Schroedinger equation, it
should allow for a second solution 4'&2&(t) such that for
any value of t,

rev

+&»(t) +(»(—t)

(4.9) is a summarized expression for

de(»(t)/dt = —iH(t) 4(» (t);
de&, & (t)/dt = —iH(t) e&,& (t),

and

(4.9)

(4.10)

(4«&(t), P(t)%'&»(t))=(%(2&(—t) Q(—t)4&2&(—t)). (4.11)

6 Classical electrodynamics is a mixture of particle picture (for
charge Gelds) and wave picture (for electromagnetic field). Ke
can reformulate all the reversibility requirements consistently in
terms of wave picture. In this point of view, requirements regard-
ing particle numbers such as the one indicated in the text can be
dispensed with, if requirements are fulhlled regarding momentum
density, energy density, current density, charge density, spin
density, and electromagnetic moment density.

The transformation function U(tl, t2) has the properties:

U(tl, t2)=U }(tl, t2)=U(t2, tl). (46)

%e now proceed to define the reversed states in the
quantum-mechanical language. 0'&»(tl) and %&»(t2) are
said to be reversed states of each other if the expecta-
tion values of physical quantities for %&»(tl) and those
for 0 &»(t,) are related by the conditions which charac-
terize the reversed states in classical electrodynamics,
i.e., relations (3.8) in standpoint (I) and relation (3.6)
in standpoint (II). These conditions will then take the
general form:

(+(»(tl)l +(tl)+(»(tl)) (+(2)(t2)t Q(t2)+(2)(t2)) ~ (4 7)

For instance, in standpoint (I), I' = &2', Q= —&2';

8=X+(k), Q=Xp( —k); etc. , where 1V+(k), for ex-
ample, means the number of positively charged particles
of a certain field having momentum k.' There are quan-
tities in the quantum theory which do not have direct
counterparts in the classical theory. The physical mean-
ing of such a quantity, however, always enables us to
deduce its transformation property from the kndwn
transformation properties of the physically related
quantities.

If relation (4.7) is satisfied for all the relevant phys-
ical quantities, we say that %&»(tl) and +&»(t2) are
reversed states of each other and write
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If )I)'&»(t) and 4'&g(t) are normalized they can be
linked by a yet to be determined unitary operator E:

(4.12)4'(2) (—t) =4'*(» (t)R,
with

(4.13)

The star on 4' means its complex conjugate. The "rever-
sion operator" R is to be determined by (4.11).

Substitution of (4.12) in (4.11) gives, because of the
hermiticity of P and Q,

(+&»(t)~ P(t)+(»(t))
=(+& &(t), RQ'( —t)R-'+ (t)), (4 14)

Q(—t) = (R-'P(t)R)'. (4.15)

As for the Schroedinger Eqs. (4.10), they can be
rewritten as

de*&»(t)/dt=ie' ,&())tH(t);

de(2) (—t)/dt = i@{2)(—t) Hr (—t),
(4.16)

which cannot be made compatible with each other by
(4.12) unless R is independent of time and

which must hold for any value of t. Since the choice of
4&» is independent of (P, Q), it follows from (4.14) that

H~ —RHr, =O. (4.24)

This is only a special case of (4.15) for Ho.
Hence, if the reversion operator defined by (4.15)

exists, it automatically satisfies the requirement that it
should be time-independent.

(4.24) gives an interesting information: The time-
independent R commutes with Ho in the particular
representation in which Ho is diagonal. Since Ho is a
degenerate operator, this does not i~ply that E. is
diagonal in this representation.

Since P and Q must be interchangeable in (4.15) and
since we have not specified the sign of t, we can write

P(t)=(R 'Q( —t)R)r=lPR 'P(t)RRr ' (4.25)

which implies that R~E. ' commutes with I'. If we were
allowed to make an assumption that any arbitrary
hermitian operator I' should have its associated oper-
ator Q satisfying (4.7), then (4.25) would mean that
R~E ' should be a c-number, i.e.,

from which follows

dR(t)/dt= i(H&(t) —R(t) H'.), (4.23)

because Ho is independent of time. The time-independ-
ence of E. implies

H( —t) = (R-'H(t) R) r. (4.17) E~= cE., or E~=&E. (4.26)

This last relation is nothing but a special case of (4.15)
for H(t).

Therefore, the reversibility requirement is equivalent
to the requirement of existence of a time-independent
unitary operator R which is defined by (4.15).

Under a time-independent unitary transformation
which transforms hermitian operators (and ordinary
unitary operators) Q into T 'QT and state functions 4'
into T 0', the reversion operator will, according to its
definition, be transformed into

E—. +T 'ET~ '=T 'ET* (4.18)

which preserves (4.13). This particular transformation
warrants invariant meanings to the operation of trans-
position and to the operation of taking complex conju-
gates of state functions, which have been involved in
the foregoing formulas.

Solutions of (4.2) can be expressed in terms of a time-
dependent unitary transformation:

Q(t) = Uo '(t)Q(0) Uo(t), (419)

It is interesting to note that the symmetry or anti-
symmetry of E. is preserved under the transformation
(4.18). However, such an assumption is obviously too
hasty a generalization. In fact, we shall encounter in a
later section a concrete example of E. which without
being symmetrical or antisymmetrical warrants the
symmetry of relevant physical quantities with respect
to t and —t as expressed by the commutability relation
(4.25). Physically, however, R and Rr have the same
meaning.

Application of (4.3) to (4.12) yields

U' '(t, t) =R 'U-(t—, —t)R.-
If the reversion operator exists, we can demonstrate
the following statement with the help of (4.27): The
probability of finding a physical system, which was in
state 0 at —t, in state 0 at t is equal to the probability
of finding a system, which was in the reversed state of
0 at —t, in the reversed state of 0 at t. This can be re-
garded as an alternative expression of the "reversi-
bility. "The first probability is given by

with

d U, (t)/dt = iH, U.(t); —U, (0)= 1. (4.20)
and the second by

I(O, U(t, —t)n)I', (4.28)

The defining relation for R (4.15) then takes the form:
I
((fl*R), U(t, —t)(o*R)) I-' (4.2(&)

Q'(0)=(U' '(—t)R(t)Uo '(t))
The latter is, in virtue of (4.6), equal to

showing

R(t) = U -'(t)R(0) U' -'(—t)

I (0, RU'-'(t —t)R-'O)*I'

(4.22) which coincides with (4.28) on account of (4.27).

(4.30)
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Finally, the method of Sec. II can be linked to the
consideration of this section in the following manner.
The lagrangian density, on account of its relation to the
hamiltonian density, must have the same sign in the
reversed state:

with

z(t) = (R-'Z( —t)R)'

z'(t) =z"(t)

(4.31)

V. CHARGED SCALAR FIELD

Z'(i) = Z(~)+R 'Z( r-)R. — (4.32)

Relations (2.10) or (2.14) give the field quantities trans-
formed by the reversion operator, from which the fac-
tors due to the congruent transformation (time-re-
versal) are dropped. In the following sections, we shall
investigate the effect of the reversion operator on the
field quantities, determining this operator by (4.15), in
which P and Q should be taken in accordance with (3.6)
or (3.8). The lagrangian (2.1) will be assumed.

ment is true "except for an additional c-number. " On
this point, see Sec. VIII. Since choice of the sign in (5.3),
which refers to the "kind" of the u-Geld, does not essen-
tially afI'ect the argument, the positive sign will be
adopted.

It should be noted that the two relations of (5.3) are
just hermitian-conjugate of each other, provided the
unitarity of R (4.13) and the hermitian-conjugate rela-
tion between u and u. The transpose of a relation in
(5.3) becomes identical with the original relation with t
and —t interchanged if R~= &R. Hence, we can expect
here a symmetrical or antisymmetrical E.

It can easily be ascertained that the transformation
(5.3) leaves the commutation relation:

u(x, t)u(x', t') —u(x', t') u(x, t) = iD„(x—x', t —t,') (5.—4)

unchanged, because the D„-function is an odd function
of 3—t'.

We now want to pass to the particle picture by the
expansion:

In the three sections that follow, standpoint (I) will

be adopted, while Sec. VIII will be reserved for the
discussion in standpoint (II).

In the case of a scalar or a pseudoscalar 6eld, we shall
have to consider the current i& and the noninteracting
hamiltonian density Ho as the physical quantities under
the time-reversal:

i = i[(8u/Bx„)u u(8u/—Bx„)j,

u(*, ~) =ZL1//(2V~ P~)){u (k)

Xexp(ikx i
~

k—'
~
t)+u (k)

Xexp( —ikx+i~ 0'~t) I

u(x ~) =ZL1/v'(2I'l~'1) jtu+(k)

Xexp( —ikx+i~ k'~ t)+u (k)

Xexp(ikx i
~

k'~ —t) I

(5.5)

Ho (Bu/Bt) (Bu/—B—t)+ (Bu/Bx, ) (Bu/Bx')+~'uu. . (5.1)
with

(a=1, 2, 3)

The requirement of reversibility is now expressed as the
requirement of existence of E such that

k'+ ~'= (k')' (5 6)

i '(—t) =R 'i (t)R; ir (—t) = R'io(l)R;—
Hr, (—t) =R 'Ho(t)R.

(5.2)

R-'u(x, &)R= au'(x, —i);
R—'u(x, t)R= Wur(x, t)—(5 3)

For this proof we need once change the order of u and
tc using the Bose assumption. Hence the above state-

We need not consider the interaction hamiltonian be-
cause the correct transformation of the current guaran-
tees the correct transformation of the interaction hamil-
tonian provided the electromagnetic 6eld satisfies the
correct transformation. Regarding the particle num-
bers, see (5.9).

Ke shall 6rst show that the assumption of Bose
statistics permits the existence of E, and then show that
the Fermi statistics is incompatible with the exist-
ence of E.

It is easy to prove that conditions (5.2) are satisfied by

Then

X~(k) =u~(k)u+(k); X (k) =u (k)u (k), (5.7)

bear the usual meanings. The transformation (5.3) ap-
plied to (5.5) now take the form:

R-'u (k)R=ur (—k) R—'u~(k)R=ur~( —k) (5.8)

from which follows:

(R 'E+(k)R)r=X (—k)
(R-'X (k)R) r =X+(—k).

(5.9)

R-'up(k)R =u~( —k). (5.10)

The reversion operator can now be written explicitly

This is exactly what was expected in the discussion
given below (4.7). (5.9) shows that R commutes with

H0 in the representation in which the particle numbers
are diagonal. See (4.24). In the S-representation, (5.8)
can be written as
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as a matrix in this representation:

( Ar'+(k, ), 1''~(—k;) . 1'�' (k;),

x' (—k)" lRl" S" (—k)
1Y" (k) S" (—k)1P' (k) ~ )

=II'(X'+(k,), X" (—k,))

Xb(A', (—I,), X" (k,))

Xb($' (k;), Ã' (—k;))

&& b(X' (—k,), 1lt'",(k,)).

(5.11)

Let us now proceed to examine the assumption of
Fermi statistics for the I-6eld. In this case, we realize
that there are two and only two possible ways to ful611

(5.2), ois

R 'u(x, t)R= W(1/c)ur(x t);-
R—'u(x, t)R= &cur(x, t), —

R 'u(x, t)R=W(I/c)ur(x, —t);
R—'u(x, t)R= &cur(x, t)—

(5.12)

(5.13)

u(x, t) =Pl 1/g(2Vl k'l)5

&& I u+(k) exp(ikx —i}k'l t)+u (k)

xexp( —ikx+ il k'l t) }

o(x, t) =ZLI/v'(2I'I k'1) 5

X Iu+(k) exp( —ikx+ilk'lt) —u (k)

Xexp(ikx —i}ko} t) }

(5.15)

~ W. Pauli, Prog. Yheor. Phys. 5, 526 {1950).

(N.B. Double sign is inverted in two relations of each
group. ) c is arbitrary. (5.12) requires, in the process of
proof, the change of order of I and u according to the
Fermi-statistics, while (5.13) does not.

It can now easily be seen that either choice, (5.12) or
(5.13), destroys the hermitian relationship between u
and u, if R is to satisfy (4.13). Therefore, there cannot
exist a reversion operator in the case of Fermi statistics.
This is what was to be demonstrated.

The incompatibility of the hermitian relationship
between u and u and the two relations in (5.12) or (5.13)
leads us to attempt a formalism in which 8 is not the
hermitian conjugate of N. Such a formalism has recently
been discussed also by Pauli. To avoid confusion, Q in
the foregoing will be written 8 in the following.

The first thing to notice is that either transformation
(5.12) or (5.13) leaves the following Fermi type commu-
tation relation unchanged:

u(x, t) v(x', t')+a(x', t')u(x, t)

iD.(x x', t t'—). (5.1—4)—
Instead of (5.5), u and 8 will here be developed as

R 'u (k)R= —ur~( —k)
7

R 'u+(k)R= —ur (—k).

R—'u (k)R= —ur~( —k)

(5.16)

which does not contradict with the hermitian relation-
ship between u(k) and u(k), assuming (4.13). (5.16) evi-
dently gives the desired transformation for the particle
numbers:

(R 'Xg(k)R)r=X~( —k).

VI. CHARGED SPINOR FIELD

(5.17)

According to the standpoint (I), the quantities which
should change their signs in the reversed state are the
charge s', the electric moment e and the spin 0', and
those which should keep their signs are the current s,
the magnetic moment p, and the noninteracting
energy H0.

s~(—t) = R's'(t)R—; ore( —t) = —R 'o (t)R;

or = —R 'o'(t)R (61)
sr (—t) =R 's (t)R; ur ( t) =R 'u'(t—)R;

Bro( t) =R 'Ho(t—)R, (6.2)

where

oa PE&E~y -ua- gEoEay.

o'= gE'E'P i. (6.3)

Bo=f[E (8/Bx ) E(8/Bx )+2—imE'5f

In (6.3) all the numerical factors are dropped for the
sake of simplicity. In the expression of the electric
moment o, (a, b, c) must be an even permutation of a
given order, say (1, 2, 3). Requirements regarding the
particle numbers will be considered later.

%e shall 6rst show that the reversion operator exists
if the Fermi statistics is assumed for the spinor field. .

Under the Fermi assumption, it is easy to prove that
all the foregoing requirements can be satis6ed, except
for an additional c-number (see Sec. VIII), by

R 'P(t)R= cE'P'-( t);-
R V(t)R= (1/c)P'( —t)E,,

(6.4)

where c is arbitrary. In the process of proof, we must
once invert the order of P and g according to the Fermi
statistics. In order that all the physical quantities be
hermitian, it is necessary that P and P*=gJ Lsee
(A.23)5 be hermitian conjugate to each other. For this
reason, the two relations in (6.4) can be compatible
with each other only if c~c= i or c e", in virtue of

while (5.'I) retains its meaning. Of the two possibilities
(5.12) and (5.13), the 6rst one will give (adopting the
upper sign and c= 1)

R—'u+(k)R= —ur (—k).
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[E"(g/dx")+ipgEo jP=0 '

g[E&(8/Bxo) —AnEo] =0.

(6.7)

If we, according to (A.32), decompose P and P into
charge conjugate waves by

4=4++4-it; 0=4++4~ ', (6 8)

(4.13). To fix our further calculation, we shall adopt
(t= or/2:

R 'f(t)R=iEogr( t)—.
(6.5)

R'$(-t)R= i@—( t)E—,.
By adopting this value for c, we can expect to obtain a
symmetrical or antisymmetrical R. Indeed, the trans-
poses of relations (6.5) are identical with the original
relations (with t and —t interchanged) if Rr= &R.

If we adopt 8=0 or g= or, (6.4) coincides with (A.48).
It can also be shown that transformation (6.4) trans-

forms the usual commutation relation:

P,(x, t) P,(x', t')+ P,(x', t') P„(x,t)
= [E&(8/Bxo)+imEo5„,D (x x', t——t') (6.6)

back into itself.
%e shall now examine the effect of E. on the particle

numbers. In the interaction picture, P and f obey

the same equation. And moreover they belong to the
opposite spin if p has the same value. We therefore
establish the correspondence between a' and 0/' by

a'(k) =E'Eu'( —k); a'(k) —E'Eu'( —k). (6.13)

Theorem (A.17) proves that the two relations (6.13) are
identical. The orthogonality of 0.' and 0.' is guaranteed
by the fact that e' and n' can be considered as eigen-
functions belonging to different eigenvalues of a spin
operator, say, 03.

E&,a~(k) = wEoa~(k). (6.14)

Now we construct, remembering (6.13), the right
sides of (6.5):

iE y'( —t)

=(1/v'1')Z. 2, L{g'+'(—k)(i '(k)&)

+g'+'( —k)(—i '(k)&) }

Xexp( —ikx+i{k
~
t)

+{g'-'( —k) (i~'(k))

+(7'-'( —k) (—i~'(k)) }
(6.15)

Xexp(ikx+i~ k'{t)]
—iP (—t)Eo

0(t) = (1/v'1')Z. Z. Lg+'(k) ~'(k)

Xexp(ikx —i~ ko~ t)+g &(k)n~(k)R'

Xexp( —ikx+i{k'{t)j
0(t) =(1/v'l')Z. Z. [g+'(k)~'(k)

Xexp( ikx+i~k—o{t)+g ~(k)n~(k)K

Xexp(ikx —i {
k'

~
t)j.

(6.9)

then each of P+ and f will again obey the first equation
of (6.7), and each of g+ and f will obey the second
equation of (6.7).

We now expand P and P into their fourier com-
ponents by

= (1/QV)p„go[{g+'(—k)(—ia'(k)K —')

Pgr '(—k)(ia(k)R' ') }exp(ikx —il kolt)

+ {P-'( —k) (—i~'(k))

+g '(—k)(in'(k)} exp( —ikx+o~k'{t)j.

which yields, by comparison with (6.9),
R-'g '(k)R=Wigr '( k)—
R—'g~'(k) R=a igr~'( —k)

R 'g~'(k)R= Wigr~'( —k) .

R—
~(7 '(k)R=~igr '(—k) .

(6.16)

where the index p= 1, 2 corresponds to the spin freedom.
0' and g are supposed to satisfy

g~'(k)g+ (k)+g+ (k)g+'(k) = b,.etc. , (6.10)

and the c-number spinors 0. and a are solutions of

(k~. {ko~Eo+~Eo)a~(k)=0
(6.11)

a'(k) (—k~ + ~

k'
~

E'—mE') =0.

They should be orthogonal and normalized so that

a&(k)E'a (k)= —5,.; a'(k)n (k)=0. (6.12)

This normalization is certainly possible in the hermitian
system (A.19). Then X+'(k) = g+'(k)g+~(k) represents
the electron numbers of the speciied kind.

From (6.11),we see that a'(k) and EoR'cx'( —k) obey

(0 iq ( 0 Oq

Eo oi &-i oi

(6.18)

This entails the desired transformation rule for the
particle numbers:

(R-'X~'(k) R)r=X~'(—k);
(R—'Xg'(k)R)r=X '(—k).

The matrix elements of R can now be obtained. For
simplicity, we consider here only those matrix elements
which affect X+'(k) and X '(—k). Assigning to the
matrices g+' and g

' the values:

)0 1y to 0~
I; g+'={,

0 0 (2 0&
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PEoEvf (6.21)

By a simple inspection, we learn that, under the Bose
assumption, there are two and only two possibilities
to satisfy (6.20), vis

R 'P(t)R= V %oyr( t)'—
R 'g(t)R—= pr( t)E—oU—

we obtain

(X' '(k), 1P '(—k) iRiX" '(k) 1P' '(—k))
= (1—21P+'(k)) (1—21P '(—k))

Xb(1P+'(k) 1P' '(—lt))

X~(&' '(—&), &"+'(~)), (6.»)
which obviously satisfies (6.16). This R is symmetric.

Now we want to demonstrate that the Bose statistics
is incompatible with the reversibility requirement in
standpoint (I). Let us first consider only two of the
requirements:

R-'s&(t)R= sr„(—t). R—'ts&"(t)R-= p"„„(—t), (6—.20)

with

hermitian conjugate relation between P and f* and
the unitarity of R (4.13).

In consideration of (6.26), the second possibility
(6.23) takes the form:

R-V(t)R=(1/c)Eo&P( t)-
R 'g(t)-R= P'( t)K—'Eo.- (6.28)

VII. ELECTROMAGNETIC FIELD

According to standpoint (I), the requirements re-
garding the electromagnetic Geld can be written as

This, however, gives the wrong sign for the require-

(6.29)R-'H, (t)R= H', ( t)—
Thus, we conclude that, as far as we take the stand-

point (I), the Fermi statistics is allowed for the charged
spinor Geld but not the Bose statistics, in order to fulG11

the reversibility requirement.
It suggests itself that we could save (6.27), and

through it the Bose statistics, by abandoning the her-
mitian relationship between f and f*

R-'f(t)R= V 'EoEfr( t);-
R 'f(t)R=P ( t)E 'E'U— (6.23)

ar'( —t)=R 'a'(t)R (b=1, 2, 3);
a'( t) = ——R 'a'(t)R

('7.1)

where, in both cases, the yet undetermined nonsingular
matrices U and V must satisfy with

Hro( —t) =R 'Ho(t)R, (7.2)

UEsV '=El' UE—"E"V '=E"E", (6.24)

to meet the requirements (6.20). Combination of the
two relations in (6.24) gives

UV '=U 'V=1 or U= V. (6.25)

Then the first relation of (6.24) becomes an expression
to the eGect that U commutes with all the four basic
E&. Therefore, due to Theorem (4), Appendix,

U= V=c. (6.26)

(6.23) satisfies the requirements without using the
Bose assumption, while (6.22) satisfies them only by
once inverting the order of f and P according to the
Bose statistics, therefore "except for an additional
c-number. "

The first possibility (6.22) becomes, on account of
(6.26),

R 'lp(t)R= (1/c)E'iver—( t);—(6.27)
R-'P(t) R= c$r( t)Eo. — —

Incompatibility of the two relations of (6.27) is obvious.
Indeed, the hermitian conjugate of one relation of
(6.27) contradicts the other, assuming of course the

8 After having thus determined R, are should restore Jordan-
Wigner's signum operators II(1-2E),vrhich have provisorily been
omitted in the g's and f's. The eGect of R on them is just altering
the ordering of the oscillators for the description of the reversed
state.

Ho= (Ba„/Bt)(aa"/Bt)+(cta„/ctx )(Ba"/Bx') (7.3).

It is evident that the transformation (7.1) automati-
cally, i.e., without any speciGc assumption as to the
statistics, satisfies (7.2). It is also obvious that (7.1) is
self-consistent, in consideration of (4.13).The matrix R
in this case will be symmetric or antisymmetric, for the
transposes of the relations in (7.1) are identical with
themselves, if E~=~R.

The transformation (7.1) leaves invariant the cus-
tomary commutation relation:

a~(x, t)a"(x', t')- a"(x', t')ao(x, t)

igo "D,(x x—', t—t'). —(7.4)

However, it leaves the Fermi type commutation rela-
tions also invariant:

a&(x, t)a"(x', t')+a'(x', t')a&(x, t)
=go "Fo(x x', t t'), (7.5)——

where Iio, in order to be consistent with the left side,
must remain unchanged for the interchange of all the
four x& with x&' and also for the interchange of x with
x" (a=1, 2, 3) and for the interchange of t with t'

separately. Do&'& is such a function.
As is well known, no self-consistent particle picture

can be made on the Fermi assumption for the electro-
magnetic Geld, 9 but this is due to the di6iculties which

9%. Pauli, Revs. Modern Phys. 13, 203 (1941).
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are irrelevant to the reversibility requirements. The
requirement that the photons in the reversed states
shouM be traveling in the opposite momenta may be
replaced by the requirement that the momentum den-
sity (Poynting vector) should be reversed in the re-
versed motion. It goes without saying that the trans-
formation (7.1) fuifills this requirement irrespective of
the statistics adopted.

Thus the reversibility requirement does not deter-
mine the commutation relations of the electromag-
netic GeM.

Finally, the e&ect of E on the quantities in the par-
ticle picture will be given, assuming the Bose statistics.
%ith the help of the expansion

a"(x)=+[1/(2V( k'() &][a"(k) exp(ikx —i[0'[i)
+a"(k) exp( —ikx+i

~

k'~ t)]; (k')'= k', (7.6)

with

&&i'(k) o"(k') &I"(k')o&'(k) —gi'"g (k k') (7 7)

the transformation (7.1) will be transcribed as

R 'a"(k)R= nr„(—k) R-'a&(k)R= ar„(—k). (7.8)

which naturally satisdes

(R 'X-~(k)R)' $=~( k)— . (7.9)

The matrix elements of E can readily be obtained
from (7.8).

In the foregoing sections, we have not considered the
interaction hamiltonian density H. This is because the
requirement regarding II is automatically satis6ed if
the current and the electromagnetic potentials satisfy
the reversibility requirements separately.

It was noticed at the end of Sec. III that emission of
a photon in a state should correspond to absorption of
a corresponding photon in the reversed state. We can
reproduce this fact, in a probabilistic language, using R
as defined above (7.8). Similar considerations apply also
with regard to the emission and absorption of charged
particles using (5.8) and (6.16).

VIII. CHARGE CONJUGATION AND STANDPOINT QI)

Two states %(~~ and C(~) will be called "charge-
conjugate" states of each other if the expectation values
of the electromagnetic quantities have the same abso-
lute values but opposite signs and those of the "me-
chanical" quantities have the same values; this situation
will symbolically be written as

cha

+(u +(2). (8.1)

By electromagnetic quantities are meant: electromag-
netic Geld, current, electromagnetic moment; and by
mechanical quantities are meant: momentum, energy,
spin.

Then the "charge-invariance" requires

cha

where +&»(t) and 4'&»(l) should obey the same Schroed-
inger equation. The requirement of charge-invariance
can be replaced by the requirement of existence of a
time-independent unitary operator C such that

%&»(t) =c@&»(t). (8.3)

Then the argument runs parallel to our argument re-
garding the reversion operator, culminating in certain
conditions about the commutation relations of charged
6eld quantities. This conclusion is exactly the same as
the one which we have drawn from our reversibility
requirement in standpoint (I). Determination of com-
mutation relations by the charge-invariance was previ-
ously discussed by Pauli and Belinfante. "

This situation raises a suspicion that the determina-
tion of statistics by the reversibility requirement was
rather illusory and that the reversibility requirement
may fail to determine the statistics if we take standpoint
(II) of the reversed motion. That, in fact, this is the
case will be shown in this section.

Before passing to the discussion of standpoint (II),
a few words may be spent regarding the reservation we
have always made in the preceding sections to the
eBect: "proven except for an additional c-number. "This
clause can be dropped if, after having determined E,
modify the definitions of physical qua, ntities P(&) by
the prescription:

&(t)-l(&(t)+RQ'(-t)R-') (8.4)

Or in the particle picture (for the upper sign of (8.5))
R-'I (k)R=Nr (—k). R—'I (k)R=Nr (—k)

(8 6)
(R-'N~(k) R)r =X~(—k).

This transformation stands all the tests which are im-

posed upon the reversion operator. In particular, it is
free from the self-contradiction involved in the trans-
formation (5.13).

Now it is essential to notice that the transformation
(8.5) satisfies the reversibility requirements without
any change of order of u and 8 based on a speci6c
statistics. Therefore, (8.5) is valid also in the case of

where Q is associated to P in the sense of (4.7). This
modiication is nothing but a generalization of the well-
known Heisenberg prescription which can be derived
from a consideration of charge symmetry. '

Let us 6rst consider the scalar 6eld. In standpoint
(II), the first two relations of (5.2) change their signs
while the third relation of (5.2) remains unchanged.
Before discussing our main problem, we want to show
that the Bose statistics is compatible also with stand-
point (II).

We see that all the requirements in standpoint (II)
can be satisied by

R-'N(x, t)R= W&&r(x, i);—
(8.5)R-'a(x, t)R- WN, '(x, t). —

@&»(t) @&»(t), (8 2) ' W. Pauli and F. J. Belinfante, Physica 7, 177 (1940).
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R 'g~'(k)R= gr~'( —k)
W)

R 'g~'(k)R= —gr~'( —k).

R 'g~'(k)R=gr~'( —k)

which guarantee

(R 'kg'(k)R) r =Ai'g'( —k)

(R 'Xg'(k)R) r =Eg'( —k),

as is required in standpoint (II).
Assuming

t'0 I ~
t'0 oi

&0 oi &I 0)'

(8.11)

(8.12)

(8.13)

we can write the matrix elements of R as

(X'~'(k), iV'~'( —k)
~
R

~
1P'+'(k), 1P'„'(—k))

= i(1—2S'~'(k)) 8($'+'(k), iV"+'(—k))
Xb(1''(—k), 1P'+'(k)), (8.14)

for the part of R which affects 1lI+'(k) and Ar+'( —k).

Fermi statistics for the N-6eld. Ke can also con6rm
that (8.5) leaves the Fermi type commutation relation
unchanged:

N(x, t)N(x', t')+N(x', t')N(x, t) =F,(x x',—t—t'), (8.7)

where F, has a similar property to the Fo of (7.5).
Because of the well-known difhculties, ' which are

irrelevant to the reversibility consideration, we cannot
construct a consistent particle picture in the Fermi case.
However, (8.5) gi~es the correct transformation to the
momentum density, irrespective of the statistics.

%'e thus conclude that the reversibility requirement
is indkctive in determining the statistics of the charged
scalar (pseudoscalar) field in standpoint (II).

Let us now examine the spinor field in standpoint
(II), assuming first the Fermi statistics. The require-
ments in standpoint (II) are

sr ( t) = R—'s'(t)—R ;
—tir'( t) = ——R-'ti'(t)R .

(8.8)
~"( I) = —R'~ (—t)R,

sr'( —t) =R—'s'(t)R. F~( t) =R—-'a~(t)R&

H', ( t) =R 'H, (—t)R, - (8.9)

which take the place of (6.1) and (6.2). All these re-
quirements can be satis6ed by

R 'y(t)R=E-, Kg'( t);-
R-'g(t)R= —R'-'E'y'( —t)

(8.10)

That these two relations do not contradict each other
can be shown with the help of (4.13) and (A.17). We
can also verify that the transformation (8.10) leaves
the commutation relations (6.6) unchanged.

Passing to the particle picture by the instrumentality
of the expansion (6.9), we obtain here, instead of (6.16),

R—'g~'(k) R= —grp'( —k);

The matrix as given in (8.14) is unitary, but neither
symmetric nor antisymmetric. Nevertheless, this R
warrants the' complete symmetry with respect to t and

-—t. The matrix R~R ' which was in question in relation
to (4.25) becomes here

(S'+'(k), 1P+'(—k)
~

RrR—'
~

1P'+'(k), 1P'~'( —k))
= (1—21P~'(—k)) (1—21''(k))
Xb(1P+'(k), iV"+'(k))

X~@"'(-k), 1P','(-k)). (8.»)
This R~R ', without being a c-number, commutes with
all the physical quantities bilinear in f and f.

Now it is of importance to note that the transforma-
tion (8.10) satisfies (8.8) and (8.9) without changing
the order of P and f using a statistical assumption.
Therefore it applies also to the Bose statistics. It can
readily be seen that (8.10) leaves the Bose type com-
mutation relation unchanged:

P,(x, t)$, (x', t') rj, (x', t')—P„(x,t)
=i[E~(B/Bx~)+imE' j„,F (x x', t —t') —(8.16. )

Of course, the difhculties' that are irrelevant to the
reversibility consideration prevent us to formulate a
consistent particle theory on the Bose assumption.
However, in place of the requirement about particle
momentum, the transformation (8.10) satisfies the re-
quirement about the momentum density.

Thus we come to the conclusion that the reversibility
requirement as such does not determine the statistics
of the charged spinor 6eld.

It is evident that, although the modi6cation of
definition (8.4) is not necessary in standpoint (II), it
can equally well be used.

IX. RETARDED AND ADVANCED POTENTIALS

The notion of retarded potential is apparently an
"irreversible" one. %'e shall show how this irreversible
action can be derived from the completely reversible
theoretical scheme. This was one of the main problems
which motivated an earlier paper of the author. '

As far as we do not perform an observation, i.e., the
development of the state function by the Schroedinger
equation is concerned, the distinction between the re-
tarded and advanced actions is merely verbal. For
exchange of a photon between two electrons can be
interpreted either as a retarded or as an advanced ac-
tion, according as on which electron our attention is
placed. This fact, self-evident in quantum theory, can
be translated in classical language only as a specific
hypothesis such as Tetrode's. ' Moreover, in the reversed
motion, emission and absorption, therefore retarded and
advanced actions, exchange their roles. This complete
symmetry takes an explicit form if we calculate the
interaction potential between two electrons by the
second-order perturbation theory.

From the interaction picture in which we have the
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Schroedinger equation

with

V(t) =exp( —iW(t));
V-'(t) = V(t) =exp(+iW(t)),

(92)

d%(t)/dt- —~H(t)%(t); H(t) = ~(dx)sZ(h, t);
(9.1)

H=ea"$E„f.

we pass, following Schwinger, " to the second-order
perturbation picture by the unitary transformation:

We now express B (9.8) in terms of the absorption
and emission operators of positrons, negatrons and
photons. Then, by Tati-Tomonaga's prescription, "we
bring all the emission operators to the left of the corre-
sponding absorption operators, using appropriate com-
mutation relations. The application of the Tati-
Tomonaga prescription effaces all the differences
betweenPanditsmodi6eddefinition(8. 4). Fromamong
the terms thus obtained, we retain only those terms
which contains two f's and two g"s and no photon
operators, and then we drop those terms which in-
volve pair-creation and pair-annihilation. %e are then
left with

W(t) = ~' -e(t—t')H(t')dt',
2" (93) B=iDo(x x', t —t')[P+—if'+„f+f'+,E„~E&„,

e(t)=1 for t)0; a(t)= —1 for t(0. (9.4)

+~ P' .P-'f' -.E-—
4+i4' —A+ ' -.E,i E"--

(9.13)

The transformed wave function:

e'(t) = V-i(t)e(t)

obeys, in the e'-approximation,

de'(t)/dt= —iH'(t)~'(t),
where

H'(t) =-',i(W(t)H(t) —H(t)W(t))

(9.5)

(96)

"''+ ~' ~-4''+ E-
where the/'s with primes refer to (x', t'). The 6rst two
terms in (9.13) represent repulsion between like elec-
trons, while the last two represent attraction between
unlike electrons. Taking the 6rst one term as a repre-
sentative, we rewrite it as follows:

B=(iD0/2) t
—s+„(x,t)s+&(x', t')

',ie' —~(-dh)' (dh')'
J (9.7)

-s+„(x',t')s'&(x, t)

+f~„[Ei(8/Bxi)+imEg]E"f'~+
(9.14)

X t dt'. (t t'}B(x, t, x', t'—),

we obtain

therefore

R-'H(t)R=8'( —t),

R 'W(t)R= —Wr( —t),

(9.10)

B=(1/e')[H(x„t)B(x',t') H(x', t')B(x, t)—]. (9.8)

The reversion operator is transformed by (9.2) into

R~R'=V(t)RV'-'( —t). (9.9)

However„on account of the supposed property of E
that

X[s+„(x,t)s+'(x', t-r)
+s+„(x',t r)s+"(x, t)]. —

(9.16)

+g'~„[Ei(8/&xi) imEg]E&f~— }..
The last two terms of this expression obviously has the
eBect of subtracting the corresponding self-energy.
Taking the first two terms, we execute the integration
over t' by Nambu's method. "The result it

o&(t) ()(~ &(t)+'(t)) (915)
with

U„,= —(e'/16m. ) ~(dx)' (dx')'(1/r)
J

Ke can ascertain that the second-order energy retains
its sign by reversion:

R-'8'(t)R=H"( —t). (9.12)

X's „(x,t)s+ (x', t+r)

's+„(x',t~r)s+~(x, t)].'

(9.17)

It goes without saying that the reversibility we have
discussed in the preceding sections is a "rigorous" re-
versibility, independent of approximation by perturba-
tion. (9.12) isonlyoneaspectof thegeneralreversibility.

"J.Schminger, Phys. Rev. 74, 1439 {1948);75, 651 {1949);76,
790 {1949).

U„~ and U,d„, respectively, represent obviously the
retarded and the advanced potentials. %e can check

R-'8'...(t)R=8"'...(—t). (9.18)

"T.Tati and S. Tomonaga, Prog. Theor. Phys. 3, 391 {1948),
» Y. Nambu, Prog. Theor. Phys, 5, 614 {1950),
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The expression (9.17) is apparently contradictory to
the customary classical "dictum" which precludes the
use of advanced potential.

To understand the deep-lying difference between the
classical theory and the quantum theory, we must recall
the meaning of "future" in both theories. In classical
physics, the future state as calculated by mathematical
continuation is to become "reality" at the future in-
stant in question. In quantum physics, the actual state
at a future instant may be different from the mathe-
matical prolongation of the present, because an ob-
servation made between the present and the future
instant in question may abruptly change the state.

Any physical law becomes significant for empirical
cognition when it is so formulated as to give a prediction
(deterministic or statistic) based on the past observa-
tion. In fact, we can bring the formula (9.15) to a form
which conforms to this criterion, because the physical
quantities referring to the future in (9.17) are deter-
mined by de6nite di8erential equations and are to be
considered as operative on the mathematically pro-
longed future state. This reduction to the past is par-
ticularly easy when we can assume "absence of any real
6rst order process between the remote past and the
remote future (again mathematical future). " See also
Nambu. "For it is an established fact that Schwinger's
second-order picture, under this assumption, becomes
mathematically identical with Tomonaga's second-order
picture, "which is obtained by replacing W (9.3) by

W(t) = ~ dt'H(t') (9.19)

Now a similar calculation in Tomanaga's picture gives
a full retarded potential. Therefore, (9.15) is, under
such assumption, mathematically identical to the full
retarded potential.

Of course, we can also bring (9.15) to the expression
of full advanced potential. This is mathematically
equally correct, but physically useless because it refers
to the mathematical future.

A more general reduction of Schwinger's reversible
picture to Tomanaga's formally irreversible picture
may be done in the following manner. We notice that
Schwinger's second order energy is not "standardized, "
in the sense that it does not become identically zero at
any instant between —~ and +~, unless the aforesaid
assumption is made. If we standardize it with reference
to the remote past, i.e., if we make the difference be-
tween its expectation value at t and its expectation
value at t= —00, we obtain, to the e'-approximation,
exactly the same expression as the Tomonaga picture,
thus leading to the full retarded potential. Naturally,
if we standardize it with reference to the remote future,
we obtain the pure advanced potential. This again can
be of little signi6cance to physical experience, for it
refers to the mathematically concocted future.

We thus see not only that we can deduce the retarded

potential from the quantum electrodynamics without
interfering with its basic reversibility, but also that the
expression of potential energy in terms of retarded
action is the only legitimate expression conformable to
the nature of human cognition.

The author is indebted to the members of the theo-
retical seminar of the University of Michigan for their
critical discussions of the problem of reversibility and,
in particular, to Dr. K. M. Case for the enlightening
exposition of his own interpretation of Schwinger s con-
tention about reversibility. The author is also happy to
express appreciation for the constant interest and sug-
gestions that Dr. K. Husimi has given to the author' s
investigation of reversibility since the time he took up
the problem some seventeen years ago.

x"'=a"„x" (y, , v= 1, 2& 3, 0),

which do not change the value of

(A.1)

D2= (x&)2+ (y)2+ (x3)2 (xo)&=x„xP
=g„„x~x"=g~ "x„x, (A.2).

%'e shall consistently adhere to the real time coordinate
x'= —xo ——t, (c=1).

We define three signum functions 0, 0~, and cr, by

0 = 8(x", xm', x", x")/8(x', x', x', x'), (A.3)

Bx Bx

Bx Bx
(A.4)

8(x",x", x")

8(x', x', x')

8(x", x", x")

,
8(x', x', x')

(A.5)

Any congruent transformation can be decomposed
into a series of reQections with respect to planes passing
through the origin. According as the normal n& to a

"E.Cartan, La Thdorie des Spieeurs (Hermann et Cie, Paris,
1938).

~ S. %atanabe, Sci. Pap. Inst. Phys. Chem. Research (Tokyo)
39, 157 (1941)."S.Watanabe, Classical Mechanics of Fidds (Kawade-Shobo,
Tokyo, 1948). (In Japanese. )

APPENDIX

(a) Four &inds of Tensors

It is customary to de6ne spinors by their transforma-
tion properties for in6nitesimal rotations and then to
assign to them, in a more or less ad hoc fashion, proper-
ties for reQections in such a way that they do not con-
tradict the original definition. It will then be simpler
and more consistent to de6ne the spinors from the outset
by their properties for reQections and then to deduce
from them the properties for rotations using the fact
that any rotation can be decomposed into a series of
reftections. '~"

We consider the entire group of congruent linear
transformations:
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Thar.z I. Classi6cation of congruent transformations. For the
deanitions of cr, ag and cr„see(A.3), (A.4},and (A.5).

Proper rotations
Improper rotations
Proper inversions
Improper inversions

plane of reQection is time-like or space-like, i.e.,

n„n"=—1 or +1, (A.6)

we speak of a temporal or spatial reQection.
The total number v of reQections of both kinds, the

number vg of temporal reQections and the number v, of
spatial reQections in the decomposition of a transforma-
tion are connected with the values of the signum func-
tions by

u= (—1)" cr,= (—1)"&; o,= (—1)" (A.7)

from which follows

(v= vg+v, ):
(A.8)

The values of 0., O.
g and ~. have invariant geometrical

meanings independent of the coordinates used and of
the way of decomposition.

The entire congruent group (A.1) can be divided into
four classes: 5,8, $, and X), whose definitions are given
in Table I.

It can be easily seen that 5, 5+8, 5+5 and g+P
are invariant partial groups of the whole group. r, a~

and 0, are faithful representations of the factor groups
engendered, respectively, by the invariant partial groups
5+8, 5+(K and 5+2.

The transformation rule of a "regular" tensor which
is transformed according to

Ets —gtt &E (A.13)

For convenience in later use, we define E5——E' by

Eg= —iEgE2E3Ep. (A.14)

Then (A.12) can be generalized to five dimensions with
gf~=+1 and g~„=0(p=1, 2, 3, 0).

For our analysis, the following theorems are essen-
tial:"

(1) For any set of E„there exists a matrix J such that

J 'EJ= EJ=——J. (i=1, 2, 3, 0, 5), (A.15)

where the bar on a matrix means its hermitian con-
jugate.

(2) For any set of E„there exists a matrix K such
that

K 'E„K= Er„; K '—Ed=Erg, Kr= —K, (A.16)

and
X=J~E 'J (A.17)

where the symbol T on a matrix means its transpose.
(3) There exist such sets of E„that

E.—E& (A.18)

Such sets of E„willbe called hermitian systems for E~,
E2 E3 (iED) a,nd E~ are hermitian. In a hermitian
system

pseudotensors with the 6rst kind. The pseudotensors in
the ordinary terminology correspond to the latter.

(b) Spinors Defined by Refiections

Four basic matrices Ej, E2, Es, Ep are dined by

-,'(E„E„+E„E„)=g„„. (A.12)

The basic matrices with superscripts are related to those
with subscripts by

3
~""'—at' u" t'"'" (A.9)

J=E' E=E '= —E* (A.19)

t'= 0At, (1st kind)

t'=(rgAt, (2nd kind)
t'= o.,At, (3rd kind)

(A.11)

were introduced by the present author under the names,
respectively, of a erst kind, a second kind and a third
kind pseudotensors. '~

If the improper rotations and improper inversions
are disregarded, the second kind pseudotensors become
identical with the regular tensors and the third kind

will be written for brevity

t'=At (regula.r). (A.10)

It is clear from the foregoing remark that, if A is a
faithful representation of the entire group (A.1), then
each of o A, C.gA and 0,A is also a faithful representation
of the same order. Three kinds of tensors which are
transformed according to

where the star is used in the sense of complex conjugate.
(4) Any matrix that commutes with all the four basic

matrices (of any set) is the unity matrix multiplied by
a number.

We now define a matrix X corresponding to the re-
Qection with respect to a normal e& by

1V= N„E~ (1P=n„n~). (A.20)

And corresponding to a transformation which can be
decomposed into a series of reQections Xj, X2, . X„,
we introduce a matrix S:

S=X,X g Xp, S = 0 glVglV2 X., (A.21)

where each X is defined by (A.20).
It can be shown that S is a two-valued faithful repre-

sentation of the entire group (A.1).The two valuedness
comes from the fact that a plane does not determine the
sign of its normal.

"%.Pauli, Ann. Inst. Henri Poincarb 6, 137 (1936).
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The spinor $ is defmed as the representation vec-
tor of S:

TAmz II. Transformation properties of tensors built with
spinors of the same "kind. "

$'=Sf.

Then its spinor conjugate:

transforms according to

P=b.S '

Definition (A.21) leads to the relation:

(A.22)

(A.23)

(A.24)

PÃA

6tv~8

8'v~8

8'VoVA

k'v. v~v k

k'Vox. k

3rd kind pseudoscalar

2nd kind pseudoscalar

2nd kind pseudovector

3rd kind pseudovector

3rd kind pseudotensor

2nd kind pseudotensor

(A.33)E5= v'5,'

E„u~„=USE„S-'. In place of (A.26), an alternative correspondence
between the E-system and the p-system can be es-

Comparison of our de6nition of S with the ordinary tab]ished by
transformation rule for spinors establishes the corre-
spondence between the E-system and the p-system: + 8)

where
E„=impy„; Eg= yg,

+0 P &+4 (A.27)

~„a~.=Sq~', (A.29)

which coincides with the ordinarily assumed rule, but
here we have no ambiguity as to the sign in case of
rejections.

The transformation properties of tensorial quantities
built with the spinors are tabulated in Table II.

One of the convenient features of the present method
consists in that, in case of reversal of a axis, the spinor
is simply multiplied by the E„corresponding to that
axis. See (A.20). For instance, for the time-inversion,
we have

~+Eo) j ~~)Eo, (A 30)

where the same sign should be adopted in both relations.
It is of importance to note the effect of E (A.16) on

the transformation matrix (A.21):

ES~E '=o-5 ' (A.31)

which is true as far as 4-dimensional congruent trans-
formations are concerned. If two spinors Pi and fo are
connected by

4'i= &ifo= poE'; iIi= —&'go= foE. ', (A—32)

this connection, in virtue of (A.31), is kept invariant
for any transformation provided that fi and Iio obey
the same transformation rule (A.22). Conversely, there
is no other matrix than E that enjoys this property.
The compatibility of the two relations (A.32) is proved
by (A.17).

A hermitian system of E„(A.18) corresponds to a her-
mitian p-system. The ordinary conjugate spinor $t = Pp4
is connected to our conjugate spinor ( in the hermitian
system by

(A.28)

The transformation rule (A.25) is rewritten in the
y-system in the form:

which leads to

y'„u&,=os,S '. (A.34)

The use of this p'-system instead of the p-system only
interchanges the second kind and the third kind of the
resulting tensors. Other than this modi6cation, this
choice of correspondence produces nothing essentially
new; we shall adhere to the previous choice (A.26) in
this work.

(A.36)

which form groups, respectively, isomorphic to the
groups formed by o, o& and o, To avoid repetition, we
shall discuss only Zg in this Append~.

(c) Pseudospinors, Bi-Spinors, Bi-Tensors

In view of the fact that regular tensors and 6rst kind
pseudotensors cannot be built by the foregoing method,
one may be tempted to introduce "pseudospinors" by

rl'= oSg; |'=o iSi; oi'= o,Soi. (A.35)

But obviously, the tensors built with these pseudo-
spinors have the same transformation properties as
those indicated in Table II. Different kinds of tensors,
of course, can be obtained if one of $-spinor and
iI-spinor and one of f'-spinor and oi-spinor are combined
to build tensors. Table III gives the case of mixed
products of a g-spinor and a f-spinor.

The method of pseudospinors is mathematically not
elegant because S has by definition an indefinite sign.
Combined use of two kinds of spinors is equivalent to
employing eight components. If, from the outset, eight
components are to be used, we can devise a more com-
pact formalism, which also will prove to be useful for
our problem.

%e introduce signum matrices Z, Z& and Z, by
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TABLE III. Transformation properties of tensors built with
a Pspinor and a f-spinor.

Now an eight-component spinor or bi-spinor X can
be de6ned as the representation vector of ZfS:

p~~~$

f'v~h

l'vA
f'v~vA
f'v~v pv.k

f'v~v. k

1st kind pseudoscalar

regular scalar

regular vector

1st kind pseudovector

1st kind pseudotensor

regular tensor

X'=Z, SX.

The spinor conjugate to X will be given by

Oq

EO yi

(A.43)

(A.44)

%e now regard each row and each column of the
matrix (A.36) as corresponding to four spinorial com-

ponents. Correspondingly, the basic matrices E„willbe
replaced by eight-eight matrices E„defined by

(A.37)

which satisfy the definition (A.12).
%e next introduce a matrix II which is de6ned by

(A.38)

Then X is obviously transformed according to

X'=X 0S
—'Zg, (A.45)

Tensors formed with a II between X and X have the
transformation properties different from those of the
tensors without II by the factor 0& due to (A.40).
Table IV shows that all the four kinds of tensors can be
formed with the help of a bi-spinor.

Xt and I'; in Table IV are natural extensions of (t
and y; to the eight-component case and will hardly
require any explanation.

Corresponding to the two columns and two rows of
the matrices, we shall write the eight components of X
in two parts:

S= N„N i. Ni,

where each N is defined by N=n&E„.
Corresponding to 0+ we introduce

(A.41)

(A.42)

That Z~S is a representation of the group is guaranteed

by the commutability of Z& with E„,and therefore

with $.
TAax, E IV. Transformation properties of tensors

built with bi-spinors.

This matrix II as well as Z~ commutes with E„:
II 'E„II=E„; Z,—'E„Z,= E„; (Z,—'= Z ). (A.39)

The commutation rule between Z~ and II has an im-

portant property
Z] 'IIZg ——a]II. (A.40)

The transformation matrix S will be replaced by

(A.46)

where each of P and q has four components. For the
present, we do not assume any relation between f and y.

A tensor or pseudotensor constructed without the
help of II is just the sum of the corresponding two terms
constructed respectively with f and y. A tensor or
pseudotensor constructed with the help of II is on the
contrary the difference between the corresponding term
in P and the corresponding term in y. For instance:

(A.47)
XE„X=PE„f+pE„y,

XE„IIX=fE„P (pE„y. —

The transformation rule given in (A.43) means that,
for the transformations of the classes 5 and 5, P and q
are separately transformed as P-spinors, and that, for
the transformations of the classes 8 and Z, P and y
are interchanged besides their transformations as
$-spinors. In particular, for the time reversal, P, q, P
and p are transformed as

XX
~OX
XENIX
X'Ef,IIX

X'E„X
XE„aX

XEgE„HX

XE„E„X
XE„E„AX
XEI;E„Es,X
g'EgE„E„HX

X~r~
Xtr,nx
X~X
X HX

Xtr~
Xtr„rrX
X~ Flirt
XtFSF~IIX

x~r,r„r„x
X~r,r„r„rrx
Xtr~rt, X

rex

3rd kind pseudoscalar
1st kind pseudoscalar
2nd kind pseudoscalar
regular scalar

2nd kind pseudovector
regular vector
3rd kind pseudovector
1st kind pseudovector

3rd kind pseudotensor
1st kind pseudotensor
2nd kind pseudotensor
regular tensor

W~ @&0,

~&V' 0 ~4&0,
(A.48)

(A.49)

where either the upper or the lower sign should be
adopted throughout.

The method which has been used to define the bi-
spinor can also be applied to tensors with some ad-
vantage in our discussion. If 8 represents any one of A,
o.A, OtA and O,A, the matrix:
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as well as Z,S, is a faithful representation of the group.
The bi-tensor (and pseudo-bi-tensor) is defined by

T'=ZgST, (A.SO)

with

(A.51)

Taking two such bi-tensors T~ and T».

which satisfies (A.SO) with B~=BqB~. The tensor prod-
ucts considered in (A.53) and (A.55) can be derived
from this bi-tensorial product (A.60) by the processes
given in (A.58) and (A.59), respectively.

A good example of a bi-tensor is given by the term in

f and the term in y in the tensors constructed out of
bi-spinors. For instance, the 6rst and the second terms
of (A.47) form a 2nd kind pseudo-bi-tensor:

(4) (4)
(I~i Eg,i

(A.52) (A.61)

which can be of di6erent ranks and diBerent "kinds, "
we construct a product tensor:

Tg Tg =Igism+ Iyg2& (A.53)

then

(I)
(Ni (Ii

T)T2 &+I; (TgT—2—)'= B(T,T2),

(A.57)

(A.58)

T,IIT,= t I) (T)IIT2)'=—o gB(TgllTg), (A.59)

writing B for B~.
V(hen two bi-tensors (A.52) are given, we can con-

struct a third bi-tensor by

which is the result of a contraction with regard to the
index specifying the two parts of bi-tensors. Then T~T»
will transform by

(T1T2) B1BR(T1T2)p (A.54)

where B~ operates on t~ and u~, while B» operates on t»

and u».
If we construct

TLIIT»= /at» —uju», (A.SS)

then the transformation rule of this quantity di8ers
from that of (A.54) by the factor 0 g.

(TgIIT2)'= agBgB2(TgIIT2). (A.56)

In particular, if we take as T» a constant regular
bi-scalar (Bm= 1):

for this T„(A.61) obeys the transformation rule (A.SO)

with
B=rgA. A.62( )

XE„Xand XE„IIXcorrespond then, respectively, to
(A.58) and (A.59).

It goes without saying that, by using Z, Z&, and Z,
instead of only Z&, we can obtain any kind of tensor by
(A.53) and (A.SS).

(d) Remark for 5-Dimensional Space

All the formulas and statements in this Appendix,
except those indicated below, are applicable without
modi6cation to the 5-dimensional space whose metric
is given by

D = (x') +(x ) +(x )'—(x ) +(x~)~. (A.63)

The only exceptions are (A.29), (A.31) and (A.32). The
tensors built with spinors containing E~ will be in-

corporated in tensors of rank higher by one."The third
rank antisymmetric tensor is naturally complementary
to a second rank antisymmetric tensor, and its trans-
formation rule diBers from that of this latter by the
factor 0. In order to obtain all the four kinds of tensors

by mixed products of spinors, we need here all the four
kinds of spinors. Correspondingly, we have to use all the
three Z's to obtain all the four kinds of tensors by the
method of bi-spinors.

(44 q

E uyu»)
(A.60)

"One can for instance easily see that Mgller's 5-dimensional
theory of mesons has a wrong transformation property whether
one adopts (A.26) or (A.33). See S. Watanabe, Proc. Phys. Math.
Soc. (Japan) 25, 561 (1943).


