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The Range and Straggling of High Energy Electrons

RoBERT R. WILsoN
Cornell University, Ithaca, New York

(Received May 4, 1951)

Simple expressions are derived for the range and straggling of individual electrons. Large energy losses
due to bremsstrahlung make the average range smaller than would be calculated from the average energy
loss. Effects of multiple scattering are included. The results are in good agreement with numerical calcula-
tions by the Monte Carlo method.

HK electron range is a somewhat indefinite con-
cept: at low energies, because of the large mul-

tiple scattering, electrons disuse through matter, and
at high energies the initial electron is soon obscured by
an accompanying shower of electrons. The propagation
of electrons at lov energies, less than 10 Mev, has been
treated by Bothe' and by Fowler. '- The emphasis in
this paper is on high energy; and the problem is con-
sidered because of its bearing on calculations concern-
ing shower production.

Let us first neglect the effects of multiple scattering
which, at high energy, are important only near the end
of the electrons' range and which can be corrected for
later. The simple methods of calculating range and
straggling which are useful for protons are vitiated by
the occurrence of large energy Quctuations correspond-
ing to the emission of high energy photons. Bethe and
Heitler" give the solution to the problem of the
fluctuations of energy of electrons which have traversed
a given thickness of matter. They approximate the
radiation spectrum by

0.(k)dk=
E 1nLE/(E —k)]

where 0 (k) is the probability of an electron of energy E
TALK I. Monte Carlo calculations of electron range. *

radiating a photon of energy k in passing through a
distance dt measured in shower units of length, ' i.e.,
radiation lengths divided by ln2; and they find that
the probability of an electron of initial energy E0 still
having energy greater than E after traversing a dis-
tance l is

1V(y, t)= (t 1, y)!—/(t 1)!— (2)

in terms of the incomplete gamma-function, (/ —1, y)!,
where y= ln(EO/E).

The following approxima. tion for (2) was guessed by
the author:

lV(y, t) =1—
~I e "y*g'x!dx;

0

it is accurate for y and 3 large compared to unity. The
probability, zedt, that an electron's energy falls below
E between t and f+dt is found from (3) by differentia-
tion i.e.,

w(y, t)dt=e "y,dt/t!

For large values of y and t this can be further approxi-
mated by the gaussian form,

w(y, t)dt= (2sy) & expL —(t—y)'/2yfdi.

From this the mean range r will be

/max. (6)
L' (Mev)

10
20
50

100
200
500

1000

466
461
346
292
95

100
100

0.85
1.22
l.75
2.45
2.56
3.04
3.72

s/r

0.38
0.43
0.42
0.36
0.43
0.46
0.40

0.02
0.02
0.04
0.05
0.11
0.14
0.15

if we can define a value of y corresponding to the
loss of all the energy by radiation only, when the
particle has stopped. To do this the loss of energy by
ionization must be included. Expressing (6) in terms of
energy, and differentiating the mean range with re-
spect to the initial energy, gives for the average radia-

~ 2 =initial electron energy, e number of Monte Carlo trials, r =mean
range in radiation lengths, s/r =fractional rms straggling, e=statistical
error of Monte Carlo mean range determination.

'%. Bothe, Handbuch der I'hysik 2212, 1 (1933}.
'Fowler, Lauritsen, and Lauritsen, Revs. Modern Phys. 20,

236 (1948); see also J. Steinberger, Phys. Rev. 75, 1136 (1949).
'H. A. Bethe and %. Heitler, Proc. Roy. Soc. (London} l46,

84 (1934). K. Heitler, The Quantum Theory of acadia&'on (Oxford
University Press, London, 1944}, second edition, p. 224. Heitler
also calculates the range of electrons, p. 223, but with consider-
ably different results because of his neglect of fluctuations which
shorten the range considerably.' L. Eyges, Phys. Rev. 76, 264 (1949). Eyges has extended the
calculation to more refined approximations of the radiation
spectrum.

' Shower units of length and energy are used in all equations in
this paper, but results and numbers mentioned are given in radia-
tion lengths and Mev.

6 Equation (4) may be derived directly from Eq. (2) in the
following way. Using

f r'e dx=tl —e & 2 tl jp!yf',
0 0

which can be derived by successive partial integrations (for in-
tegral t), one obtains equation (4) by taking the difference betwee~
t and (t—1).' If we integrate (1) over k to find the average loss of energy,
we would get the usual expression -dEjdt=E ln2, remembering
that t is in shower units. The difference comes about because
fluctuations have been included in arriving at (7).
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Fzo. 1. The average range of electrons in lead is plotted against
the energy in Mev. The dashed line curve is taken from%. Heitler,
The Qguetlm Theory of Radiation. The full line marked R
=ln(E+1) is given by that expression if the range is measured in
shower units of length, i.e., (r.l./ln2) and the initial energy in
units of critical energy times ln2, i.e., (EM, /P ln2). The circles
indicate the Monte Carlo results: the short bars represent the
statistical accuracy of the mean, and the long dashed vertical
bars represent the mean square deviation of a single electron
track from the mean range. The curve marked R, shows the mean
range as corrected for multiple scattering.

tion loss on traveling a distance dt

dE/dt =—E (7)

I et the energy be measured in units equal to ln2
times the ionization loss in radiation lengths, i.e.,
E=EM, /P ln2. Then ionization loss can be added
to (7), i.e.,

dE/dk =E+1,—
and integrating this over the energy gives for the mean
range corresponding to the stopping of electrons,

r = log(Ep+1). (9)

If s is defined as the root-mean-square deviation of a
track length from the mean range, it is evident from (5)
that for high energies where ionization can be neglected,

s'=y = r. (1o)

Thus, surprisingly, enough the percentage straggling
decreases with increasing energy. At lower energies
ionization loss becomes important. Now the average
energy loss by ionization for the electrons traveling a
distance r is just r in the above energy units; hence a
fraction of the range r/Eo can be ascribed to ionization
loss and the straggling of this part will be negligible
compared to the straggling due to the part of the range
corresponding to radiation loss. The simplest procedure
for correcting the straggling as calculated from (5),
then, will be to reduce the straggling by the fraction,
r/Eo, i.e.,

s/r= (1 r/Eo)r I— (11)

The above expressions for the range and straggling
were checked for Pb in the energy interval from 10 to
I000 Mev using the Monte Carlo device already de-
scribed. ' Exactly the same procedure was used as for
showers except that only the initial electron v as
followed. The results are summarized in Table I which

s R. R. Wilson, Phys. Rev. 79, 204 (1950).
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FIG. 2. Monte Carlo results for the probability z of an electron
stopping between t and I,+Ch. The curves drawn through the
points are theoretical and are given by expression (5) of the text.
The arrow indicates the mean range.

using (de')A„——(K'/E')dh, ' where the constant K' has
the value 21'/P' In2 for shower units (P is the ionization
energy lost by an electron in passing through a radia-
tion length, i.e., the critical energy), and (8) to give"

K'dE 1 1 E,(E+1)
(e')A. = ~

=E' ————ln (12)"z E'(E+1) E Eo E(Eo+1)
' E. J. Williams, Proc. Roy. Soc. (London) 169, 531 (1939);

B. Rossi and K. Greisen, Revs. Modern Phys. 13, 263 (1941).
' For the case of large Eo, (12) reduces to

(Q Av=2V ——ln
1 8+1
8 E p' ln2

which can be compared to the careful numerical computations of
J. Roberg and L. %. Nordheim, Phys. Rev. 75, 444 (1949), for
the mean square angle of electrons in showers. The agreement is
surprisingly good, especially at low energies.

shows the number of electrons followed in each case,
the mean range, the rms straggling, and the standard
error of the mean. In Figs. 1 and 4 these values are
compared with the theoretical expressions (9) and (11).
It can be seen that the agreement is well within the
accuracy of the Monte Carlo method, about five per-
cent. In Fig. 2 the empirical range distributions found
for a few low energies are compared to the gaussian ex-
pression (5): the agreement is satisfactory.

That the rough theory outlined above compares so
well with the Monte Carlo calculations is probably
fortuitous: it is better to regard the expressions derived
as semi-empirical formulas summarizing the Monte
Carlo calculations.

Multiple scattering can now be included. Inasmuch
as the scattering is appreciable only near the end of the
track, we will make the approximation that the elec-
trons proceed in the original direction until they reach
an energy at which the calculated rms angle of multiple
scattering has attained such a large value that the
electrons thereafter di6use in a random manner. The
average straight distance will. then be the mean range,
and the random motion will contribute only to the
straggling.

The mean square angle of multiple scattering (8')A,
of an electron of initial energy Eo is readily calculated
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FIG. 3. Mean range in radiation lengths is plotted as a function
of energy in units of the critical energy. The upper curve neglects
multiple scattering and is given by Eq. (9) of the text (note the
units). Multiple scattering has been included in the curves marked
Al, Cu, and Pb.

e want to set this characteristic angle equal to (8,')A, ,
a value which if reached corresponds to random motion,
and then to solve for E„, the energy at which the
motion of the electron becomes random. In the Ap-
pendix it is shown that (8„)A„is 2. Hence E„ is given by,

E, '=2P'21 'ln2

+Eo '+ln[EO(E„+1)/E„(ED+1)]. (14)

Values of E, were found from this expression" and the
range r, corresponding to E, given by (9) is subtracted
from the total range corresponding to Eo to give the
mean range, E, including multiple scattering. This is
plotted in Fig. 3 for various elements.

The Monte Carlo method was used to check this
result empirically. Electrons of 50-Mev initial energy
were followed in lead as before but the angle of scatter-
ing was also determined at each interval by a chance
method similar to that used for 6nding the radiation.
A three-dimensional protractor was constructed" to
keep track of the angle of the electron direction with
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where s„' is the straggling of the electrons of initial
energy E„as given by (12), i.e., without considering
the multiple scattering. The quantities s„"- and s' can
be calculated from (11), and then 5,-"can be obtained
from (13).

The straggling, S„, due to random motion over a
total path length r„will be given by the usual expression
for random walk:

rr

5„'-'= —
I

X f,.dt,
3 0

(14)

if we can define an equivalent mean free path, X&„, that
would characterize the diffusion of electrons by multiple
scattering —evidently the equivalent of a transport
mean free path. In the appendix, it is shown that

Xg, = 2E'/E'.

Then from (13) we get

(15)

2
S„'-=

~

~ E'dt
3E'~0

2p' ln2
k~dE/(E'+ 1),

3x2&'~ 0

respect to its initial direction. At each interval the for-
ward component of the distance moved by the electron
was added to give 6nally the total forward range of
each electron followed. One thousand electrons" were
followed and the mean range was observed to be re-
duced by 0.65 radiation length in exact agreement with
that predicted by the above calculation. A similar
calculation at 1000 Mev gave similar agreement.

The straggling can also be considered in two parts:
firstly, the variation in range produced by photon
emission as the electron is slowed down to E„,and then
secondly the random motion due to scattering which
takes place until the electron comes to rest.

The straggling produced while the path is straight,
SP, can be calculated from our previous result by con-
sidering the straggling of the total path length as being
compounded also of two parts, i.e.,
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FIG. 4. The percentage root mean square straggling from the
mean range. The lower curve is given by the indicated formula
and neglects multiple scattering. The circles indicate Monte
Carlo calculations which also neglect multiple scattering. Multiple
scattering has been included in the curves marked Al, Cu, and Pb.

"E„ is given approximately by the formula: E,=E,'$1
—exp{—Eo/E, ')j, where E,'=(10/p)&, if the critical energy P
is in Mev.

~ Miss Leonilda Altman, who operated the Monte Carlo ma-
chine, also constructed an electronic device which was equivalent
to the protractor but more accurate and convenient. The details
will be published elsewhere by her,

and integrating,

S2= 1.0X 10 'P'[log(E„+1) Ev +E„'/2]. (16—)

The total straggling including multiple scattering
eHects is S'=S,2+S„',and the fractional total straggling
5/R calculated from (13) and (15) is plotted as a func-
tion of E in Fig. 4 for various elements.

"The graphs of electron energy against distance already ob-
tained in preparing Fig. 1 were used again for this calculation.
Each electron was followed and the angle at each interval was
determined from a family of curves drawn on the chance cylinder
used previously. Each electron graph was used successively five
times to give 6ve different angle histories for each energy history,
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The straggling produced while the electron has en-
ergy below E, is small, i.e., both 5„2 and s„' are small
compared to 5,', hence to about ten percent 5'=s', so
Kq. (11) can he used to obtain the total straggling
directly.

A useful concept in calculating shower phenomena is
the "pair range, " i.e., the average distance traveled by
the electrons resulting from pair production. Because
all energies up to the photon energy are possible in pair
production, the number-distance curve looks more like
a simple exponential than the integrated gaussians
which characterize monoenergetic electrons. This is
true only at not too high energies.

If we assume an exponential distribution, then the
number of electrons (apart from secondaries) at a dis-
tance f from the place of pair production is

n= 2 exp( —t/R, ) (17)

which defines E, the pair range. Now if we consider
the energy lost by ionization, we can write

~t ddt = 2 t P(E)R(E)PdE,

where P(E) is the probability of one member of the
pair receiving an energy between E and E+dE. This
was assumed to be a constant, and using expression
(9) to determine R(E) and (17) for n, we get upon in-
tegrating both sides of (18)

R,= (1+1/W)ln(W+ 1)—1, (19)

where W is the initiating photon energy. This relation
neglects multiple scattering, which can be best in-
cluded by subtracting the random part of the range
corresponding to E„given by (14)."At high energy, E,
is independent of the initial electron energy and the
problem is simple. At low energies, an appropriate

=2) a(8)(1—cos8)dQdt

= 2dt/hi, „,

by definition of the transport mean free path. "We can
equate the (d8')A„so obtained to the usual expression, '
i.e. , (d8")A,=K'dt-/E'. Solving for X&, we get

l~ i,——2E'/K'. (15)

For the moment let us assume that the energy remains
constant, then the characteristic random angle is
given by

and using (15) for )ii,

(8,')A.= 2.

'4 I am indebted to Dr. R. P. Feynman for a discussion on this
point.

average must be taken. The normalizing factor in (17)
must now be increased so that the total energy loss will
still come out right. How this should be done depends
exactly on the problem being considered, so no details
will be given here. At high energy, E& 100, an integrated
gaussian form must be used, but (19) is still correct
for the average.

APPENDIX

Let us calculate the mean square multiple scattering
angle of an electron after going through dt in terms of a
fictitious cross section &r(8), i.e.,

(d8'),„=)I 8'o(8)dQdt


