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This paper develops an attempt to account for nuclear saturation and shell structure in terms of many-

body forces that are derived from mesons that obey a nonlinear wave equation. Classical field theory is
used, and in some cases the practical difficulties of obtaining numerical answers are reduced by employing
a variation method. Apart from a cutoff, which appears in this particular form of the theory but could
be eliminated, there are two parameters in the theory; they can be chosen so that nuclear matter has a
stable density equal to the observed value, and a variational binding energy equal to 42 percent of the
observed value, thus approximately accounting for saturation. The two-nucleon interaction has the observed
order of magnitude in empty space, and is greatly reduced within nuclei. This suppression of two-body
interactions in favor of the interaction of each nucleon with the average nucleon density in heavy nuclei

may account for the independent-particle model and hence for shell structure. Although the theory does
not account for magnetic moments, it indicates that a more realistic version (for example, a nonlinear
pseudoscalar theory) may predict a reduction of the anomalous magnetic moments of nucleons within
nuclei. According to a recent suggestion of Bloch, this could account for the deviations of the magnetic
moments of even-odd nuclei from the Schmidt lines. The nonlinearity also has the consequence that mesons
are scattered from nuclei as though by a strong repulsive potential. The relation of this effect to current
observations on interactions between mesons and nuclei is brieRy discussed.

I. INTRODUCTION

1
W)NE of the most fundamental and least understood

properties of atomic nuclei is saturation: the close
proportionality of nuclear volume and binding energy
with mass number. Attempts to account for saturation
in terms of two-body interactions between nucleons
have taken two directions. In his first paper on the
neutron-proton structure of nuclei, Heisenberg' pro-
posed that su%cient exchange forces be introduced to
account for saturation, and this idea has since been
followed up extensively. %ithin the last few years,
however, experiments on the scattering of high energy
neutrons and protons, mainly at Berkeley, ~ have indi-
cated quite definitely that the actual two-body exchange
forces do not supply enough repulsive interaction to
prevent the collapse of heavy nuclei. The second
attempt to account for saturation assumed that the

* Assisted in part by the joint program of the O'XR and AEC.
' W. Heisenberg, Z. Physik 77, 1 (1932}.' See, for example, the nearly symmetric neutron-proton

scattering curve obtained by R. %'allace, Phys. Rev. 81, 493
(1951), and earlier papers cited there, which implies little or no
interaction in odd ) states (Serber force).

two-body interaction consists of a central repulsive
core surrounded by an attractive region. ' Quantitative
investigation showed that a repulsive core of sufBcient
diameter to yield the observed density of heavy nuclei

would lead to disagreement with the experimental data
on two-nucleon scattering. 4 There now appears to be
general acceptance of the idea that an explanation of
saturation will require the introduction of many-body
forces between nucleons, in which case the potential
energy of a given configuration of nuclear matter will

not be determined unambiguously by the known two-

body forces.
A second important property of nuclei that is not

' H. A. Bethe and R. F. Bacher, Revs. Modern Phys. 8, 161
(1936); H. A. Bethe, Elementary Nuclear Theory (John VViley
and Sons, Inc. , New York, 194/), p. 81.

4 G. Parzen and L. I. Schi8, Phys. Rev. 74, 1564 (1948). This
question has recently been re-examined by R. Jastrow, Phys. Rev.
81, 165 (1951).His conclusion that a large enough repulsive core
in the singlet neutron-proton interaction could lead to saturation,
cannot be accepted, since the most stable configuration of a heavy
nucleus would then be a collapsed state with parallel spins (all
triplet interactions); the repulsive core in the triplet interaction
is much smaller if it exists at all.
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now adequately understood is the shell structure. '
While much attention has been devoted to the details
of coupling schemes that lead to particular sets of
magic numbers, no quantitative study has been made
oi the validity of the independent-nucleon model on
which these coupling schemes are based. Indeed, it
appears at 6rst that the strong, short-range two-body
interactions that are known to exist between pairs of
isolated nucleons wouM make the state of any one
nucleon in a nucleus dependent mainly on the motions
of its neighbors of the moment, and thus prevent the
existence of the one-body potential which seems essen-
tial to shell structure. However, Wigner' has pointed
out that for sufficiently short-range two-body interac-
tions, a nucleon may not be able to follow the rapid
variations in potential that are produced by the motions
of its neighbors, and hence would behave as though it
were in a smoothed-out version of the actual potential.
Alternatively, it has been suggested that the disturbing
e6ects of the short-range interactions on the motion of
a nucleon may be suppressed by the exclusion principle,
which makes it difEcult for a nucleon to change its state
when neighboring states are occupied. This idea, formu-
lated most explicitly by Keisskopf, ' leads in the direc-
tion of the independent-nucleon model for the lowest
excited states of nuclei, and perhaps also toward the
liquid-drop model for the highly excited states that
follow nucleon capture. Neither of these proposed
explanations for the independent-nucleon model seems
to have been developed quantitatively thus far.

The present series of papers presents an attempt to
account for both saturation and the independent-
nucleon model in terms of a particular type of many-
body force. In this theory the interactions between
nucleons arise from mesons which obey a nonlinear
wave equation. ' Some insight into the consequences of
such a model can be obtained from a preliminary
qualitative discussion based on a classical treatment of
the meson 6eld in which the nucleons act as sources.
In the usual linear theory, the meson field amplitude
is proportional to the nucleon source strength. Meson
6elds are then superposable, and the interaction energy
between a number of nucleons is equal to the sum of the
pair interactions. In the present theory, the nonhnearity
is chosen in such a way that the meson 6eld amplitude
increases less rapidly than linearly with the nucleon
source strength. Then the change in meson amplitude
produced by the addition of a nucleon is less when
many nucleons are already present than when few are
present, and the interaction energy between a number
of nearby nucleons is less than the sum of the pair
interactions. This is just the sort of eBect needed to

~ M. G. Mayer, Phys. Rev. 78, 16 (1950), and earlier papers
cited there.' E. P. %'igner (private communication).

~ U. Neisskopf, Science 11$, 101 (1951);see also H. Kopferman,
Naturwiss. 38, 29 (1951).

~ L. I. Schi8, Phys. Rev. 80, 137 (1950); Phys. Rev. 83, 239
(1951).

'

account for saturation; a stable density for very heavy
nuclei will be obtained if the (attractive) potential
energy per nucleon increases less rapidly than the g
power of the density for high densities. By the same
token, the interaction between a pair of nucleons when
they are embedded in a heavy nucleus (as distinguished
from the interaction of each with the surrounding
nuciear matter) is less than when they are in empty
space. This suppression of two-body interactions within
a nucleus in favor of the interaction of each nucleon
with the average nucleon density, means that the
nonlinearity acts as a smoothing mechanism and hence
leads in the direction of the one-body potential and
shell structure. '

These papers develop two ways in which a non-
linearity can be introduced into the usual meson theory
of nuclear forces: in those terms that involve only the
meson Geld and in those terms that represent the
coupling between mesons and nucleons. A third possi-
bility, placing the nonlinearity in the purely nucleonic
terms, leads to meson-independent interactions between
nucleons, and will not be pursued further here. " In
the 6rst case, results that are interesting from the
present point of view are obtained if the nonlinearity
corresponds to a repulsion between mesons. The appear-
ance of a nonlinear term in the source-free meson
equation means that it is very dificult to work with the
corresponding quantum Geld theory. While quantization
can be carried through in the usual way, it is not clear
that the procedure is self-consistent, and the 6eM
energy cannot be diagonalized easily, if at all, even in
the absence of nucleons. The nonlinearity can of course
be treated as a perturbation, but this is a useful pro-
cedure only in special cases (see Secs. III and XI), and
throws little light on the more general quantization
problem. Therefore, classical 6eld theory will be used
throughout; since the Geld amplitudes in nuclear matter
turn out to be large and the mesons obey Einstein-Bose
statistics, the use of classical field theory may actually
be a fairly good approximation within nuclei. In the
second case, the source-free meson equation is the
usual one, and can be quantized by standard methods.

The present paper deals with the first case, in which
the nonlinearity is in the meson held itself. This non-
linearity can take many forms. Most of this paper is
devoted to the neutral scalar meson theory in which
the nonlinearity corresponds to a point-contact repul-
sion between mesons. ' A positive term proportional to
p4 must be added to the hamiltonian density, or a p'
term to the wave equation, where p is the meson 6eld
amplitude. While this seems a simple and natural form

'This possible relation between nonlinear meson theory and
the saturation and shell structure of nuclei occurred independently
to E. Teller (private communication). Similar nonlinearities have
been introduced into the theory for different purposes by W'.

Heisenberg, Z. Naturforsch. Sa, 251 (1950); and R. Finkel-
stein and M. Ruderman, Phys. Rev. 81, 655 (1951).

"Terms of this last type also arise if the meson 6eld is elimi-
nated from the usual dassical meson-nucleon equations; see S. D.
Drell, Phys. Rev. 79, 220 (1950),



NONLINEAR MESON THEORY OF NUCLEAR FORCES. I

to use, it brings a serious problem into the analysis and
the interpretation of the formalism. Because of this
diKculty, as many results as possible are established
using a general form of nonlinearity, and the special-
ization to the foregoing form postponed as long as can
conveniently be done. The second paper of this series,
immediately following, "deals with the second case, in
which the nonlinearity is put in the meson-nucleon
coupling. "Since the results obtained there on the basis
of classical 6eld theory are unpromising from the point
of view of explaining saturation and shell structure, it
is not now planned to carry that line of approach
further. It is, however, hoped that one or more further
papers in this series will deal with other types of mesons
and other forms of field nonlinearities, and perhaps
also with the problem of quantization. In particular,
a form of nonlinearity proposed by Teller" (see Eq. (7)
and Sec. VI) avoids the difEculty referred to above,
although it seems intuitively less natural.

The theory presented here must be regarded as no
more than a model for what may eventually turn out
to be a reasonably complete meson theory of nuclear
forces and structure. The primary objective now is to
lay the basis for forming an opinion as to whether or
not the general ideas presented here have any relation
to reality. For such an exploratory purpose, it seems
best to make an inherently difFicult analytical develop-
ment as simple as possible„even at the expense of
realism. This relative simplicity is achieved 6rst by
using only classical 6eM theory, and second by choosing
the mesons to be of the neutral scalar type. It is
apparent, then, that results in quantitative agreement
with experiment cannot be expected and that such
phenomena as exchange forces and anomalous nucleon
magnetic moments will not appear at all as conse-
quences of the theory. Nevertheless, a qualitative
inference concerning the latter is presented in Sec. X.

II. FORMULATION OF THE THEORY

Ke choose units such that c, fi, and the meson mass
p, are equal to unity. Then all lengths are measured in
units of the meson Compton wavelength k/pc (= 1.40
X10 " cm for heavy or s-mesons), and all energies
are measured in units of the meson rest energy pc'
(=140 Mev). The lagrangian density is assumed to
have the form,

L= '(dd!~~)' k(&4)' -G(4)+f(—, ~)F(4), (1)

where f(r, t) is the nucleon source density, F(p) the
nonlinear coupling function, and G(@) the nonlinear
6eld function. In the usual linear theory,

F(4)=4, G(4)=54' (2)

We shall assume that F and G approach the forms (2)

L. I. SchiG, Phys. Rev. S4, 10 (1951), referred to here as Il.
~This form of the theory eras suggested to the writer by

F. Bloch."E. Teller (private communication).

G'(~) =fF'(~), (5)

where f is proportional to the nucleon density. If now

p is to increase less rapidly than linearly with f (see
Sec. I), the ratio G'/F' must increase more rapidly than
linearly with @. In the remainder of this paper we
assume the form (2) for F, and therefore assume also
that 6 increases more rapidly than ~p'. Similarly, in
II we assume the form (2) for G, and also that F
increases less rapidly than 4t.

With F(p) =4, Eq. (5) becomes G'(@)=f. It seems
plausible to require that there be a unique relation
between f and p that has no preference as to sign. We
therefore assume that 6 is a positive even function of
p that increases monotonically more rapidly than @@'.
Equation (3) gives for the energy density in this case
G fp, so th—at the energy per nucleon is proportional to
(G/f) p Sup—pos.e now that for high nucleon density,
when f and @ are large, G is proportional to d", where
n&2. Then the energy per nucleon is negative and
proportional to f'~t" ".Since this energy is the average
potential energy of a nucleon, and its kinetic energy
increases with nucleon density as f&, the heavy nuclear
system fails to collapse in this approximation if and
only if 1/(n 1)(a3,—or n) 5/2

Wherever detailed calculations are made in this
paper, it is assumed that

G(d) =5~'+
where 0. is a constant to be determined later by com-
parison with experiment; this corresponds to n=4.
Physically, the 6rst term on the right side of Eq. (6) is
the rest mass term in the usual linear theory; the
second term is equivalent to a point-contact repulsion
between mesons, since its space integral can be written

p'dr=
~ p'(r)b(r r')4P(r')drdr'—

As an alternative to Eq. (6), Teller~ has suggested the
form,

G(&)- (1/n+)01+ &W)""—13,

when P is small, so that for weak 6elds the nonlinear
theory becomes the usual one. The momentum canoni-
cally conjugate to 4 is s ~8&/Bt, the hamiltonian or
energy density is

H=)s'yg(&4)2+G(d) f—(r, f)F(y), (3)

and the wave equation is

~ y/»=~~ G-'(~)+f(, t)F'(4), (4)

where a prime denotes a derivative with respect to P.
Some indication as to useful assumptions concerning

the forms of F and C can be obtained by considering
the case in which f(r, /) is constant in space and time.
This may be thought of as an approximation to the
situation in the interior of a heavy nucleus. Then @ is
also constant, and the wave equation (4) becomes
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which has less intuitive appeal but greater Qexibility
than (6). We shall return briefly to Eq. (7) in Sec. VI.

III. FREE-MESON SOLUTIONS

In the absence of sources (f=0), Eq. (4) has solutions
in the form of traveling plane waves that approach the
usual harmonic plane waves in the weak field limit.
To see this, we call the direction of propagation the x
axis, and the wave speed w (measured in units of the
speed of light). Then

y(r, t) =h(x —vt),

and h satisfies the equation,

(v'-1)h" = —G'(h),

where a prime denotes differentiation with respect to
the argument. Since G'(k) has the same sign as h (see
Sec. II), Eq. (8) has oscillatory solutions if and only if
v) 1. A first integral of Eq. (8) is easily obtained after
both sides are multiplied by h':

2 (e'—1)h"= —G(h)+ constant. (9)

It is apparent from Eq. (9) that the constant of inte-
gration must be sufficiently positive if there is to be a
real solution; further examination shows that for given

e, the wavelength and period decrease as the wave
amplitude increases, and that the form is more sharply
peaked than a sinusoidal wave. When G has the form

(6), h is an elliptic integral of the first kind.
For infinitesimal amplitudes, these plane wave solu-

tions can be superposed to form wave packets that
travel with the group speed 1/v, as in the usual linear

theory. When the amplitude is small but finite, the
nonlinear term is relatively small. Then quantization
can be carried through in the usual way, and the
nonlinearity taken into account as a perturbation if
need be. This is actually a physically interesting situa-
tion when we think of the free meson beams that are
attainable in the laboratory, as we now show.

We tentatively assume that the linear theory provides
a useful approximation in this case, so we can put

Q(r, t)=A cos(k r—s&t),

for a meson beam of momentum k and energy
~= (k'+1)&. Setting f 0 and G=x&' in Eq. (3) shows

that the average energy density is ~~A'w', so that the
number of mesons per unit volume is ~A'co. A very
intense meson beam (probably unattainable in the
laboratory) would consist of a burst of 10"mesons in a
microsecond pulse, confined. to a beam of one square
millimeter cross section and traveling with a third the
speed of light, This corresponds to a density of about
3)&10 "meson per Compton wavelength cubed, or an

value of about 8X10 '6. If now the nonlinearity is
to be significant for nuclear structure, where the linear
dimensions and energies involved are of order one when

expressed in our units, the nonlinear term should only
become important when @ is of order one, This expec-

tation is confirmed by the quantitative results of Sec.
VII. Thus for attainable free meson densities, the
present theory is equivalent to the usual linear theory.

IV. STABILITY OF STATIC SOLUTIONS

Because of the impossibility of separating out the
time, static solutions of the wave Eq. (4) that arise
from stationary source distributions f(r) are of unusual
importance and form the subject matter of the next
six sections, where they are used to calculate the
energies of various configurations of nucleons. It is of
interest, therefore, to see whether or not such solutions
are stable in time with respect to small deviations. "

Let @0(r) be that solution of the wave equation,

(10)

which obeys suitable boundary conditions.
Then if @0(r) is changed into &0(r)+p&(r, t), where

p~((&0, we ask whether p~ is oscillatory in time (stable)
or increases (unstable). From Eq. (4) with F'=1, we
see that p& approximately satisfies the linear equation,

where use has been made of Eq. (10) and higher powers
of pi have been neglected. Now the assumptions con-
cerning the form of G(p) made in Sec. II are consistent
with G"(P) being everywhere positive, and we suppose
that this is always the case, as it is for both of the forms

(6) and (7). Moreover, G"(&0) is expected to be of
order one in the neighborhood of a source, where po is
appreciable (see the end of Sec. III). Thus unless P~ is
very irregular, so that V'p&/p~ is comparable with
G"($0), Eq. (11) shows that 8'p&/BP has the opposite
sign from Pi, and the solution po is stable. In any
event, further study of the time dependence of J'p&dr
over various regions of space shows that any instability
due to the largeness of PP~/4» is likely to be limited

both in space and in time.

V. VARIATION PRINCIPLE FOR STATIC SOLUTIONS

Because of the great difFiculty in solving nonlinear
differential equations in all but the simplest cases, it is
important to have a variation principle available for
the estimation of the energies associated with various
source distributions. We now show that in the static
case, the negative of the lagrangian, computed with the
correct source function and an arbitrary trial wave

function, gives an upper limit on the energy, and has a
stationary value equal to the correct energy when the
trial function is in the infinitesimal neighborhood of the
correct wave function.

For the source function f(r), the correct wave function

@0(r) is a regular solution of the wave Eq. (10); the
correct total energy is the integral of Eq. (3) and can

"The desirability of investigating this point was suggested to
the writer by S. D. Drell.
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be written in one of the equivalent forms:

a,= [k(~y,) +G(@,) f(r—)@,]d, (12)

&o= [—o(v4o)'+G(4o) —4oG'(4o)]d~, (13)
J

&o=
J

[G(4o) gy—oG'(4o) of—(r)4o]d~ (14)

Equations (13) and (14) are obtained from Eq. (12) by
use of the wave equation and partial integration,
assuming that pp obeys boundary conditions that make
the resulting surface integral vanish. With the trial
function @~"'(r), the variation expression is minus the
integral of Eq. (1):

[l(&4")'+G(4'"')—f(r)4'"']d (13)

VI. SOLUTION FOR AN ISOLATED NUCLEON AT REST

It is interesting to inquire first whether there can be
a regular, localized solution of Eq. (10) in the absence
of sources (f=0). If we assume the solution to be
spherically symmetric, it is convenient to put 4o(r)
= x(r)/r, when x(r) satisfies the equation,

d' x//dr'= rG'(x//r). - (17)

Now G'(x/r) has the same sign as x, so that d' /der'

also has the same sign as x. This means that if y
vanishes at inlnite distance and starts to increase as «
decreases from infinity, it is always concave upward

We now put d'"'(r)=go(r)+Pi(r), where @i is not
necessarily small. Substitution into Eq. (15) yields,
with the help of Eqs. (10) and (12) and partial inte-
gration,

&'"' =&o+
J
"[o(V@i)'+G(4o+4 i)

G(iso—) PiG'—(Po)]dr (16).

Now we have assumed that G(@) is a positive, even,
monotonic increasing function of @ that is everywhere
concave upward (G"(@) everywhere positive). Then
G(go)+ fjG'(@o) regarded as a function of @i is a
straight line that is tangent to the curve G(4o+@i) at
the point P&=0 and lies below it everywhere else. It
follows that the integral on the right side of Eq. (16)
is positive or zero, so that H&') provides an upper limit
on Hp. Moreover, H&') = Hp if and only if P~ is every-
where zero so that p('=pp, H(') divers from Hp by
terms of second order in @~ when @~ is small, so that
H&"' is stationary when p'") is in the in6nitesimal
neighborhood of pp. It is interesting to note that the
assumed properties of the nonlinear function G(g) are
decisive in making H&"' an upper limit on Hp, although
they do not affect the stationary character of H'"'.

and continues to increase into the origin. Then 7t(r)
cannot be zero at r =0, and d o is irregular at the origin.
%'e therefore conclude that mesons cannot be perma-
nently localized in the absence of sources. This result
is a consequence of the assumed properties of G(d),
which correspond to a repulsion between mesons (this
repulsion was pointed out explicitly in the discussion
of Eq. (6), and follows whenever G increases more
rapidly than d'). If G had been chosen to correspond
to an attraction between mesons, regular localized
solutions could exist, but the theory would not account
for saturation.

We now consider the possibility that Eq. (10) has
regular, localized solutions when f(r) is a spherically
symmetric source of arbitrarily small spatial extension
(that is, approaching a point source). We suppose that
f(r)=0 for r) u, so that Eq. (17) is valid in this region.
Then x(r) increases as r decreases, and reaches the
value p(a) at r= a For .r(a, Eq. (17) is replaced by

d'x/dr'= rG'(x/r) rf(r). — (18)

If now x(u) has the opposite sign from f, which is
assumed for simplicity to have the same sign throughout
the interior of the sphere r= a (so that it approaches a
simple or b function point source), Eq. (18) shows that
y continues to increase into the origin, so that Qp is
irregular there. We therefore consider only the case in
which x(a), and hence x(r) for r) a, has the same sign
as f By a repe. tition of the same argument, do is
irregular at the origin if g changes sign between «= e
and «= 0. Thus the only way in which a regular solution
po can exist is for y(r) to have the same sign everywhere
and vanish at «=0.

We suppose without loss of generality that f and x
are everywhere positive. We then multiply Eq. (18)
through by 4x«, integrate over «, and obtain an expres-
sion for the total source strength:

g = 4or r'j'(r)dr = 4or r G'(x/r)dr
o 0

—4or
J

r(d'x/dr')dr.

The last integral is easily evaluated, and vanishes if Pp
is regular. We are interested in the point-source limit
of vanishingly small a. Then since x(r) becomes arbi-
trarily large as r becomes arbitrarily small (but greater
than a), we choose a small enough so that there exists
a fixed radius b greater than a for which G'(p) has
attained its asymptotic form C@" ' (see Sec. II). We
can then obtain a lower limit for g:

foo
QO 5

g= 4or r'G'(x/r)dr~4or
J

r'G'(x/r) dr

=4orG " (y" '/r" o)dr~4orG~" —'(b) t dr/r"~.J.



to determine the corresponding source f&(r). Our choice

4i(r)= (e " e &")—,
---

r
(20a)

aPA'
f~(r)= —(y' —1)e ~~+ (e ~ e~~)' (20b—)

r ra

The last integral converges in the hoist r :0—ifand
only if e-3&1,Or m&4. Thus for a simple or 8-function
point source, the source strength g is in~»te if e 4.
%'e interpret this to mean that there is no admissible
solution for a point source in this case.

It follows that for the G(p) given by Eq. (6), a
nucleon must be represented by a source of finite extent,
so that the size and shape of the nucleon source appear
in the theory as independently variable parameters,
along with 0, and g. The number of the independent
parameters that appear in the theory can be reduced
by adopting the form (7) for G(P), with 5/2&n&4;
with this range of e, the theory is expected to lead to
saturation (see Sec. II) and nucleons can be represented
by point sources. Kith such point interactions, there is
also the hope of eventually developing a relativistically
covariant quantum theory.

Since the use of Eq. (6) demands a nucleon of 6nite
size, and there is no u priori preference as to shape, we
choose an isolated nucleon source function for which
the wave equation is easily solved, and which is as
small in spatial extent as can conveniently be found.
Such a source function can be constructed by choosing
a suitable wave function @~(r), and using the wave
equation,

for all smaller radii by its value at r 0.150. This gives

g~4s'A+4s'&A'L-Ei(-0. 450)+ye o'saj

=4s.A (1+0.837a A').
(22)

Since the actual divergence in g is only logarithmic, the
precise nature of the cuto6' is relatively unimportant.
This is the only place in the theory at which a cutofF
need be introduced, since while all energies diverge like
y for large y, the divergent parts can be subtracted
without ambiguity. The self-energy of the nucleon
represented by Eqs. (20) can be found from Eqs. (12),
(13), or (14); in the limit of large y it becomes

Hq= —4s A'I ~y —s+3n'A'[y 1n(32/27)
—ln(3y/32) —1jI. (23)

VII. MODEL FOR NUCLEAR MATTER

In order to investigate the predictions of the present
theory with regard to the saturation of nuclei, it is
desirable to choose as simple a model as possible. %e
consider a representative sample of the interior of a
heavy nucleus, and regard this as typical of a large
amount of nuclear matter, thus avoiding boundary
efFects. The binding energy per nucleon of this material
is known experimentally to be about 14 Mev, ' or 0.10
in our units. This value is the volume term in the mass
defect; the neutron excess, coulomb, and surface terms
are ignored here because we deal with an equal mixture
of neutrons and uncharged protons, with no boundaries
present. If we accept the experimental evidence for the
independent-nucleon model, the kinetic energy per
nucleon can be calculated on the basis of the Fermi
gas model, ' and is equal in our units to

where y is a parameter that is later allowed to approach
infinity; in this limit: rp2

3 0.150 0.1046—(9s)&
40 rp2

(24)

@g(r)~(A/r)e ",

aPA'
fg(r)~s Ab(r)+ -e~", -

r3

(21a)

(21b)

so that f~ consists of a point source surrounded by a
quite small region in which the source strength is
finite. "

This choice is convenient so far as the subsequent
analysis and the smallness of the source are concerned.
However, it is inconvenient as regards the fact that g
becomes infinite as y—&, so that a cutofF is needed to
keep the source strength 6nite. Since the analysis is
simplified by taking the limit y—+~, we evaluate g by
choosing a radius equal to the Compton wavelength of
the proton (=0.150 in our units), and arbitrarily re-
placing the second term on the right side of Eq. (21b)

"A larger and less singular source function has also been
investigated by S.D. DreH {private communication), with results
similar to those quoted in Sec. VII.

4N+ 4 n'~ fNN (25)

"L. Rosenfeld, Nuclear Forces (Interscience Publishers, Inc. ,
New York, 1948), p. 24.

'7 L. Rosenfeld, see reference 16, p. 193.

where 0.150 is the Compton wavelength of the proton
and 4sro'/3 is the volume per nucleon. The problem
then is to calculate the potential energy per nucleon,
and show that as ro is varied, the sum of it and (24)
has a minimum value equal to —0.10 when t'p has its
experimental value 1.0. Thus the two experimental
parameters of nuclear density and binding energy per
nucleon serve to determine the two parameters o. and g,
or n and A, of the theory, once the cut-oB is introduced
as in Sec. VI.

Two specific calculations of the potential energy are
made in this section. The first is modeled after the
discussion of Sec. II, according to which f and P are
assumed to have the constant values fN and 4&N, related
by the wave equation,



NONLINEAR M ESON THEORY OF NUCLEAR FORCES. I

We assume that all nucleons hs,ve the same sign of g,
and that their sources superpose, so that

taken into account by requiring that g(0) A. We
have then to solve the equation,

3g 3A
f~= ~—(1+0.837n'A').

4mrp' rp3
(26)

d'g
x

dr'

a'P oPA'
:~'+rf~

r2 r2
(28)

The potential energy per nucleon is then given by
Eqs. (12), (13), or (14) when the integral is carried
over the volume of one nucleon:

4mt0( '3cP

) le '+
4

(27)

Elimination of f~ between Eqs. (25) and (26) gives a
relation between P~ and g or A; the sum of Eqs. (24)
and (27) gives a relation between binding energy, ra,
and P~, and minimization of the binding energy with
respect to rp gives a relation between rp, p~, and g.
All three of these relations involve 0., so that when the
experimental values of binding energy and rp are
inserted into them, they can in principle be solved for
the three unknowns a, p~, and g. Alternatively, if a
and g are determined in some other way, the three
relations can be solved for binding energy, rp, and P~.

The second calculation of the potential energy per
nucleon is somewhat more realistic. A nucleon with
source distribution fq is embedded in nuclear matter
represented by the constant source distribution fN
The combined source distribution is assumed to be
fq+f~, and the two terms are supposed to have the
same sign (so that all nucleons are equivalent sources).
The diGerence in energy between the combined source
and the separated sources is then found. This calculation
takes the independent-nucleon model quite literally,
since it is assumed that there is no correlational change
of fN in the neighborhood of fq, it is diKcult to estimate
the sign of this effect, although it does not seem to be
large. The wave equation for the combined source
cannot be solved analytically, and the variation princi-
ple of Sec. V is employed. . This overestimates the
potential energy, so that the calculated magnitude of
the binding energy per nucleon is expected to be less
than the experimental value.

The question immediately arises as to whether or not
the terms proportional to y and lny in the nucleon self
energy expression (23) will cancel with the analogous
terms in the energy of the combined source. This
question can be answered by considering the exact
solution of the wave equation,

~'4» 4» +4 xN—'+fi+—fr=0,
in the neighborhood of the origin. With the substitution
4»= x(r)/r, the equation becomes

d'x ~'x'
+rfg+rf~=0

dr2 r2

In the limit y~~, the 5-function in Eq. (21b) can be

in the neighborhood of the origin; this can be done by
using the power series:

x(r) =AL1+oir+omr'+ +r'(ho+&i~+&2r'+ )],
s&0.

Substitution into Eq (28. ) shows that a~= —1, and
that s satisfies the equation,

s(s—1)=3a'A'

this has just one positive root, and it is greater than
unity. The quantity bo is arbitrary, and is to be chosen
in such a way as to satisfy the boundary condition at
infinity: x(r)~p&. Thus the 1/r and constant terms
in the series expansion of p»~ are the same as for &».

The cancellation of the infinite self-energy terms is
now most easily seen by using Eq. (14), according to
which

Kx = —"[g~'4»'+k(fi+fnr)4»]« (29)

A
Q»&'= (e e' e '")—+Q~, ——

r

where P is the variation parameter. It is apparent that
unless /=1+(P~/A), the constant term in the series
expansion of p»~ is not the same as that for p» in the
limit y~~. It might be thought at Grst that this
would make the calculated potential energy diverge
like lnp; actually, because of the form of the variation
integral (15), this is not the case, as is readily verified.
On the other hand, if we were to replace A by A' and
y by y' in Eq. (30), divergences would appear; indeed,
it can be shown that the leading terms in the variational
energy for large p and p' are minimized by setting
A'=A and y'=y, and that in this case the divergent
terms cancel with those in H». We therefore use the

In the limit y~~, the infinite terms are of two types,
proportional to y and to lny. The first type arises from
integrals of the forms, fdr/r' and f8(r)dr/r; the second
type arises from integrals of the form, J'dr/r It is.
easily seen from Eqs. (21b) and (29) that all of these
divergent integrals are exactly the same in the expres-
sions for H» and for P&, since they depend only on f&
and on the 1/r and constant terms in p~N and p~. Thus
the potential energy per nucleon is finite, and can be
calculated by subtracting H& and H& from H», wben
the integrals for the latter two quantities are extended
over equal large volume& of nuclear matter.

We now calculate H»~ by the variation method. A
convenient trial function to use is
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trial function (30), and find that the variation energy
given by Eq. (15) yields for the potential energy per
nucleon (in the limit y-+~):
~~~&» —Igg —II~=4s Ig[A'(p —1)'/p j Ay—N

+n'A'(P»(4P) (3—+P)»(3+P)+6»2j
+ (3nmA'@N'/4P) —3n~A'P~lnPI. (31)

As P is varied, the minimum value of Eq. (31) always
occurs for P) 1.

The minimum value of Eq. (31) is now used as the
potential energy per nucleon to calculate the values of
the theoretical parameters as outlined just below Eq.
(27). If we assume ra=1.00, we find that we cannot
make the total (potential plus kinetic) energy per
nucleon as low as —0.10. The lowest value obtained is
—0.042, for which the theoretical parameters have the
following values: g=1.49, A=0.0854, 0.=7.96,
=0.149, fN 0.356, P——=2.50. It is of incidental interest
to make use of these values for g and a, in connection
with Eqs. (24), (25), (26), and (27), to calculate the
potential and total energy by the somewhat cruder
erst method. It turns out that the total energy per
nucleon is a minimum when ro= 1.03, and then has the
value —0.020; the other parameters are: @~——0.143,
fN=0.324. Note that either of these methods could be
used to calculate the compressibility of nuclear matter.

When account is taken of the simplicity of the model
(neutral scalar mesons, all nucleons equivalent), and of
the use of the variation method, the foregoing results
may be regarded as showing sufhcient promise to
warrant further development of the underlying theo-
retical ideas, as well as the further application of the
present model that are presented in the next four
sections.

VIII. TVfO-NUCLEON INTERACTION IN EMPTY SPACE

The theoretical parameters obtained in the preceding
section should be consistent with the known two-nucleon

interactions. For this system, the source function is

f.(r) -fi(r —ri)+fi(r —r~),

where fq is given by Eq. (20b), and r~ and r2 are the
coordinates of the two nucleons. This again assumes

that the sources are superposable and that all nucleons
have the same sign of source. The variation method is

used, and the trial function taken to be

@,&"&(r)=@,(r—r,)+ y, (r—r,), (32)

where Qq is given by Eq. (20a). A variational parameter
could be introduced into Eq. (32) by replacing exp( —r)
by exp( —er) in Eq. (20a); however, the minimization

with respect to e requires more numerical work than
seems worth while at this stage. It is expected that
Eq. (32) will give best results for the energy when the
separation distance E of the nucleons is large and the
overlap of the two parts of p2 is small, and poor results

when the nucleons are close together. This turns out to
be the case, as is shown below.

The argument presented in Sec. VII for the cancella-
tion of the inlnite self-energy is easily extended to
include the present situation, since near r=ri, the
source centered at r=r2 has the same kind of effect
that the uniform source f~ had in the discussion of the
preceding section. The potential energy of interaction
between the two nucleons is then the variational. energy
calculated from Kq. (32), less twice the nucleon self-
energy given by Eq. (23). The result is, in the limit
P~ 00

e ~ 6am'A' r" (x+1' dx—4xA' + e 's* lnl I
—. (33)

&x-1i *
The first term of Eq. (33) is just the usual attractive
Yukawa interaction that is obtained from linear neutral
scalar mesons, by either classical or quantum theory.
The second term is repulsive, and falls off very rapidly
for large R, like L(inR) exp( —2E)7/R'.

With the theoretical parameters obtained at the end
of Sec. VII, the potential energy (33) is strongly
repulsive near E=O. This result shows the poorness of
the trial function (32) in this region, since a better
trial function gives an attraction there. ' With E=O,
we have f2(r) = 2f&(r), and we choose a new trial function
to be CP&(r). Variation of the parameter C shows that
the interaction potential energy is negatively infinite.
A comparison between the form of the divergence in
this case and in the linear theory case as y—+~ shows
that the sign and magnitude of the interaction near
8=0 are similar to those of the first (Yukawa) term of
Kq. (33). We thus conclude that the true potential
energy is not likely to be greatly different from this
Yukawa term for all E. With 2 =0.0854, this has the
order of magnitude of the observed two-nucleon
interactions.

IX. TWO-NUCLEON INTERACTION IN
NUCLEAR MATTER

As discussed in Sec. I, nuclear shell structure can be
understood if the interaction between two nucleons
embedded in nuclear matter is substantially less than
their interaction in empty space. The variational calcu-
lation is based on a two-center trial function similar to
Eq. (30), and the result is even more complicated than
in the preceding section; only the leading term of the
interaction potential energy for large E is quoted:

2~A'(P' —1) 6n.n'A'@~'
+ g

—PR

p

Since P=2.50, this falls off much more rapidly than
(33) for large E. Numerical comparison shows that the
ratio of interaction energy within the nucleus to that in

"The writer is indebted to G, Breit and R, P. Feynman for
discussion of this point.
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empty space is about 0.07 at 8=2, 0.15 at 8=1.5,
and 0.30 at 8=1.This indicates a substantial suppres-
sion of the two-nucleon interaction within nuclear
matter, at least in the domain of E where the two
calculations are valid.

X. MAGNETIC MOMENT SUPPRESSION
WITHIN NUCLEI

Bloch" has recently suggested that the deviations of
the magnetic moments of even-odd nuclei from the
Schmidt lines be explained in terms of a reduction of
the anomalous magnetic moment of the odd neutron
or proton as compared with its empty-space value. He
6nds that the reduction averages about a factor of two
for the heavier elements, with fluctuations that correlate
to some extent with the known magic numbers.

The type of theory developed here predicts an effect
of this kind, since the self mesonic 6eld of a nucleon is
expected to be much less when the nucleon is embedded
in nuclear matter than when it is in empty space. While
the detailed theoretical model of the present paper is
too simple to account for magnetic moments, it is
nevertheless tempting to speculate that the factor
P (=2.5) which appears in the exponent of Eq. (30) but
not in Eq. (20a) corresponds to an anomalous magnetic
moment reduction by a factor of order P. A definitive
statement on this point will however have to await the
development of, for example, a nonlinear pseudoscalar
theory.

XI. INTERACTION OF MESONS WITH NUCLEI

An interesting consequence of a nonlinear meson
theory is that a free meson in the neighborhood of a
nucleus will be strongly affected by the relatively large
static meson amplitude present within the nucleus. To
study this effect, we consider the time-dependent wave
equation for a static source f&, to which corresponds a
static wave function p~, f~ and p~ are approximately
constant and equal to the values quoted in Sec. VII
within the nucleus, and vanish outside. The time-
dependent wave equation has a solution of the form
@~(r)+pi (r, t); if pg is a small-amplitude wave, it
satis6es to good approximation the linear wave equation,

8 Qv/OP=V Qp Qp 3a @v'Q—F) — (34)

which can be derived in precisely the same way as
Eq. (11).

Equation (34) can be interpreted as showing that
nuclear matter acts as a strongly repulsive potential for
small-amplitude meson waves in the vicinity. The
strength of this equivalent repulsion is conveniently
specified in terms of the distance in which the amplitude
of an incident meson wave of unit energy is decreased
by a factor e. This distance is (3n'pv')~=0. 487 in our
units, or 0.68X10 "cm.

'9 F. Bloch, Phys. Rev. 83, 1062 (1951).lVoIe added in Proof:—
H. Miyazawa„Prog. Theor. Phys, 6, 263 (1951), has made the
same suggestion independently, and proposed also that the mag-
netic moment suppression may be related to the exclusion prin-
ciple.

This result implies that incident mesons will be
scattered by a heavy nucleus as though it were a nearly
impenetrable sphere. Note, however, that for an isolated
nucleon, @&' is replaced by A' exp( —2r)/r' from Eq.
(21a), which gives quite a sma. ll scattering volume. The
related processes of inelastic scattering, absorption, and
production (by photons or energetic nucleons) are not
so easily discussed, since they must be based on quan-
tum theory. Fortunately, it is in just this case of
small-amplitude waves that a quantum 6eld theory
can be made (see Sec. III), so that one might hope to
go further by quantizing @p but not the static meson
field @g. So far as meson production in heavy nuclei is
concerned, it follows from the foregoing discussion that
the outgoing meson wave is much more strongly coupled
to the surface than to the interior of the nucleus, so
that most mesons will be produced in a surface layer
about 10 "cm thick. An e6'ect like this seems to have
been observed, "although it is doubtful if the layer is
actually as thin as predicted here.

XII. CONCLUSIONS

The nonlinear meson theory presented in this paper,
which describes neutral scalar mesons with point-
contact repulsion, is certainly an oversimplification of
the actual situation, and possesses the inherent difFiculty
of requiring finite nucleon sources. Nevertheless, it
gives results that can be related in a sensible way with
experimental observation. After the cut-off is fixed at
the proton Compton wavelength, there are two free
parameters in the theory: the nonlinear parameter 0,,
and the nucleon source strength g. These can be chosen
so that nuclear matter has a stable density equal to the
observed value, and a binding energy (calculated by
the variation method) equal to 42 percent of the
observed value. The two-nucleon interaction then comes
out to have the observed order of magnitude in empty
space. Within nuclei, the two-nucleon interaction is
strongly reduced, and provides a qualitative explanation
for nuclear shell structure. The self-mesonic field of a
nucleon within a nucleus is much smaller in spatial
extent than it is in empty space; this may account for
the observed deviations of magnetic moments of even-
odd nuclei from the Schmidt lines by making the
anomalous nucleon magnetic moments smaller when

they are within nuclei than when they are in empty
space. " For attainable free meson beams, the density
is so small that the nonlinearity is not significant. When
mesons interact with a nucleus, however, the large
meson amplitude in and near the nucleus acts through
the nonlinearity to produce an effective repulsive
potential. This effect may be significant in connection
with current observations on the scattering, absorption
and production of mesons in the vicinity of nuclei.

~ R. F. Mozley, Phys. Rev. 80, 493 (1950);R. M. Littauer and
D. Walker, Phys. Rev. 82, 746 (1951); Panofsky, Steinberger,
and Steller, Phys. Rev. , to be published.


