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interest to note that electron difraction" has given a
value of 0.95+0.01'A for the nitrogen hydrogen separa-
tion in NH4cl at room temperature. ) Interpretations
in terms of stationary tetrahedra involving angular
displacement disorder are much less likely.

The disappearance of the piezoelectric eGect and the
absence or weakening of the Raman line, 183 cm ',
above —30'C can now no longer be explained in terms
of disorder or a centro-symmetric structure. However,
angular oscillations of the ammonium tetrahedra may
disturb the charge distribution in the lattice suSciently
to weaken the Raman line and to make the piezoelectric
eGect unobservable. A sudden onset of such oscillations
may also be the cause of the lattice expansion at the

transition temperature-and the discontinuity in speci6c
heat.

Theoretical studies are being undertaken to explain
the observed behavior, and further experiments are
planned to study as a function of temperature the
change from the —180'C form to the room temperature
form. This is of particular interest because of the exis-
tence of a magnetic resonance line width transition at
—140'C."

%e wish to thank Dr. N. K. Pope for his help and
advice regarding the theoretical aspects of the work,
and Mr. W. J. Woytowich for his technical assistance.

' H. S. Gutowsky and G. E. Pake, J. Chem. Phys. 16, 1164
(1948).
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In this paper the calculation of the widths of several absorption lines in the microwave region is attempted.
First, the fourier integral formula for transition probability is deduced with the adiabatic assumption. Then
the width and the shift of the absorption line are calculated, assuming the well type and the inverse power
intermolecular potential. Applying the latter model, the width is calculated for several kinds of self-
broadened microwave absorption line. A theoretical formula which gives the width of the ammonia inversion
line is obtained as a function of X/I J(J+1}j&, where E and J are the rotational quantum number. It agrees
with experiment for large E'/L jiJ+llg&, and its temperature dependence is also good. In the microwave
absorption of oxygen, the quadrupole interaction is shown to be responsible for the width, and our theo-
retical result agrees with experiment if the quadrupole moment of this molecule is 2.5 to 2.0X10 . It is
also shown that the widths of the rotational lines of linear and symmetric top molecules can be explained
by the dipole interaction.

I. INTRODUCTION

'T was about half a century ago that the 6rst theory
~ ~ of pressure broadening was proposed by Lorentz. '
Since then much theoretical and experimental work
has been performed on this subject. In microwave
spectra, the technique of which has been developed in
the past few years, the width can be measured fairly
accurately; and recently many interesting data have
been obtained in this region. Thus, it may still be
interesting and valuable to give further consideration to
this subject.

In his theory Lorentz' assumed that the molecule is
represented by a classical oscillator and that the inter-
molecular collisions are so strong that the oscillation
process is absolutely interrupted by them. His formula
which gives the intensity at circular frequency co is

I(cp) = (c/w)(sas$'X/{(tp —top)s+(was$'E)sI j, (1)

where P is the mean relative velocity of the molecules,
a is the radius of the molecule, E is the number of
molecules in unit volume, and c is the total intensity.

' H. A. Lorents, Proc. Amst. Acad. Sci. 8, 591 (1906).

A t ~tp —
ppp~ =ma'VS the intensity is just half of the

maximum intensity, and thus this quantity gives the
half-width of the spectral line. Van Vleck and%eisskopf'
revised this formula, and Van Vleck and Margenau'
proved that absorption and emission lines have the
same shape in this model. In applying the above for-
mula, the collision radius a was found to be very dif-
ferent from the kinetic collision radius; thus, a was
taken as a mere parameter with whose physical meaning
we are not concerned.

Kuhn, ' Margenau, ' and some others developed a
theory in which molecules are assumed to be randomly
distributed in space and simultaneously interacting
with the radiating molecule. This theory is valid at high
pressure and can explain the asymmetry of line shape
which is observed in this region. But since we are
treating the low pressure region, we cannot use this
theory.

~ J. H. Van Vleck and V. F. Weisskopf, Revs. Modern Phys.
17, 227 (1945).

.H. Van Vleck and H. Margenau, Phys. Rev. 76, 1211 {1949).
. Kuhn, Proc. Roy. Soc. (I ondon) A18, 98/ (1934).

~ H. Margenau, Phys. Rev. 48, 755 (1935); H. Margenau and
W. W. Watson, Revs. Modern Phys. 8, 22 (1936).
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H„=Fp,e'"' (4)

p, is the dipole moment of molecule 0., co is the circular
frequency of the field, and Ii is the amplitude. Since we
do not take into account the simultaneous optical
transition of two molecules, we do not need the hamil-
tonian which gives the interaction of the radiation field
with molecule P. In this paper n is called the radiating
molecule, and P is called the colhding molecule.

In the radiation theory it is convenient to take the
basis which makes H and Hp diagonal. In this case the
Schroedinger equation is

ikBa,~/Bi= +;(H ikB/Bt) 2,a;—*, (5)

where a;* is the probability amplitude of state i. The
term ikB/Bt comes from the relative motion of the
molecules. "' In the following we shall restrict ourselves
to the adiabatic case; that is, we shall neglect the eBect
of the motion of the molecule. The adiabatic assumption
in Kq. (5) means neglecting NB/Bt as compared with H.
In this case we obtain

vka2 (E2+v2)a2 +pi(+as +Br)2iai
' V. F. Weisskopf, Physik. Z. 34, 1 (1933).' E. Lindholm, Arkiv. Mat. Astron. Fysik. 32, 17 (1945).
s H. M. Foley, Phys. Rev. 69, 616 {1946).
9 P. %. Anderson, Phys. Rev. ?6, 647 (1949).' M. Mizushima, Phys. Rev. ?4, 705 (1946).
"M. Mizushima, J. Phys. Soc. Japan 4, 191 {1949).
~ M. Mizushima, Research Chem. Phys. 29, 25 (1950).
~ That the term ik8/Bt must be included in the right side of

this equation was 6rst pointed out by H. Margenau (private
communication).

Another theory, called the fourier integral theory,
was developed by %eisskopf. ' By the %KB method
he obtained the following formula:

p
CO 2

I(ie) ~ ' exp ice—ot i~
—(d p/k)dt+iiei dt, (2)

where hp is the diBerence of the intermolecular forces
in initial and final states of the radiating process.
Lindholm, ~ Foley, ' and Anderson' have recently de-
veloped theories of this type, and the present author" "
has also published some papers in this direction. In this
paper we shall use the fourier integral theory.

II. DISCUSSION ON THE FOURIER
INTEGRAL THEORY

The simultaneous collisions of three or more mole-
cules are neglected throughout this paper because we
are treating the extremely low pressure region.

The hamiltonian of a two-molecular system can be
divided into three parts:

H=H +Hp+H e,

where H and Hp are the hamiltonians of the isolated
molecules ei and P, respectively, and P e is the inter-
molecular potential between these two molecules. If the
radiation field interacts with molecule n, H„must be
added to the above hamiltonian, where

where am is the time derivative of u2~, E2 is the energy
of the isolated molecule in state 2, em is the eigenvalue
of the diagonal part of H p, and H p" is the remaining
part of H p. Turning to Heiseberg's representation

a,*=a;exp —
vl E;i+)~ v;di } k

and neglecting all a; except ai(=1) according to the
initial condition, our equation becomes

ikd2 (H——e"+H„)2g

k . (8)

If we neglect H p", the transition probability from 1 to
2 is obtained by integration to be

QO t

p2i'&' ) exp i (E2 E,)&+—)~ (v2 —v, )Ch

2

+ice/ dt, (9)

which is the fourier integral formula.
This procedure is generalized to include nondiagonal

terms as follows. Taking the same basis as above, our
Schroedinger equation in matrix form is

ikBa~/Bt= (H +He+H. p+H„)a*. (10)

By a unitary transformation T, (H +He+H, e) is
diagonalized.

T(H,+He+8 e)T '=(V,h;,). (11)

Transforming by T, Kq. (10) becomes

ikTBa/Bt*T '=T(H +H-e+H. e+H, )T 'Ta*T '
= (IV; 8) + THT ITa*T-. -(12)

Then, by a transformation analogous to Kq. (7), and
neglecting BT/Bt by the adiabatic assumption, we get

ikTBa/BtT '= expl i ~
V-,if) k lB;; TH,T

(X expl i. l V;—Ck k }B;, TaT-'. (13)

Finally, by the inverse transformation,

ikBa/Bt=T ' expl i ~ V;dt k }8"~TFe' 'pT '(. t"

i "}

X expl —v i~ V;ii& k }b;, Ta. (14)

%'hen integrated this gives the generalized fourier
integral formula.
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In cases where the intermolecular potential is so
small that it can be taken into account by the second-
order perturbation, the matrix T is approximated by
the unit matrix. In this case

III. WELL-TYPE POTENTIAL AND THE
LORENTZ FORMULA

If the intermolecular potent@& is such that

hp=y for E(a, hp=0 for Jt&a, (20)

then the integral a is2ha, =F/6;; exp 2 }(E; E;)t—

hv=ga2PS —42r &h2(m/4kT)t '

62
—'

V;=E;+2/ .

a= 2(a' p'—) ty/(Vh)
t

+ t
( )dt ~ h+ ~ (15) Thus our formulas (18) givee; —e, i a;,

E

By integration, Weisskopf s formula (2) is obtained.
Foley' has proved that Keisskopf's formula can be

reduced to

Xexp( —m/4kT((&2) I (a62/2yh) sin(2ya 22/h)

+icos(2ya(v/h) —17/4y2}ds&, (22a)

)2+(~/ )2}j (16)
hv'=4m' 6h2(m/4kT)t (v ' exp( m/4kT—v&2)

0

g = (1—cosa)3q 9=(slna)6yy a= Jt (t)p/h)dt,

and v0 is the mean time between collisions. His deriva-
tion of Eq. (16) is inadequate in that he replaced the
sum of averages by the average of sums LEqs. (14) and
(15) in reference 8j, although the recalculation with
corrected order does not change the result essentially.
Doing this, and avoiding the use of v0, we can easily
obtain

d v'=0. (23b)

Thus, we can make an interpretation of the so-called
strong collision in the present theory.

X {sin(2ya(v/h)/4y2

—(a(/&/2yh) cos(2yaqr/h) }d(v, (22b)

respectively.
If the potential diBerence is so large that we may put

y= ~, then we obtain Lorentz's formulas:

hv= a2V1V/2,

which corresponds to Eq. (16), where

hv= J~ F(s)(1—cosa, )ds/22r,

hv'= F(s) sina, ds/22r.

(18a)

(18b)

V. INVERSE POWER POTENTIAL

There are many cases where hp can be expressed as

hp =hht(/Rn,

where E is the intermolecular distance. If the path of
the molecule is straight, then by Eq. (16),

and F(s)ds is the number of collisions with collision
parameters between s and s+ds in unit time. In Eq.
(17), hv is usually called the width parameter, and hv'

gives the shift of intensity maximum by pressure.
In the case of an absorption fine, to which the present

consideration is limited, F(s)ds can be obtained by the
gas kinetic theory as

F(s)ds = 82r&(m/2kT) t

X exp( mV'/2kT) V'd Vpdt/G/V —(19)

where m is the reduced mass, V is the relative velocity,
p is the impact parameter of collision, 6 is the prob-
ability of the molecule being in a rotational state, and
E is the number of molecules in unit volume. In Eq.
(19), V and /2 are integrated from 0 to a&, and G is
summed over all states.

~00

g/3/(@2+ V2t2) n/2dt

Av'=tanL2r/(e —1))hv(h/6/} 6/6~ ), (26b)

where n must be larger than 2; otherwise they diverge.
For some special values of n, which we shall meet

= (~/6/Vp )2/'P(n 1)2' "I I (n/—2)j ' (25)

Thus, our formulas which give the width and the
shift of a spectral line become

(2r(6—n)/(2n —2)/2) (kT/2m) (3 n)/(2n —2&—

XI'((2n —3)/(e —1))I'((n 3)/(n —1))—
X}I'(n —1)/I I'(n/2) }'$"'""
Xsin I 2r(n —3)/(2n —2) }(}6/6 }

"(" '&)S, (26a)
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h, ter, these equations give

Av= (1r/2)(} Ay~ )X for m=3,

hv=(2/vS)I'(7/4)(kT/M)'i'({dp{»)X for g=5,

Av= (s ""/2)(kT/M)""I'(9/5)l'(3/5)

X {12/I'(3) }"' sin(3w/10) ( I a~ I
"'»V

for m=6,

(27a)

(27b)

(27c)

VI. INVERSION SPECTRUM OF AMMONIA

There has been much theoretical and experimental
work on this famous microwave absorption spectrum.
The measurement of the width by Bleaney and Penrose"
showed an interesting regularity, which we shall con-
sider in this section. The theoretical calculation of the
width was 6rst attempted by the present author. ""In
these papers he succeeded in explaining Good's experi-
mental result. "Margenau" showed by a simple cal-
culation that the width parameter for each J, E line
can be expressed by

hv=34E/[J(J+1))» Mc/mm Hg, (29)

which agrees with the experimental result of Bleaney
and Penrose. Anderson, ' making an elaborate theo-
retical consideration, succeeded in explaining the rela-
tive width of these fine structure lines.

The vibrational ground state of the ammonia molecule
splits into two states which are symmetric and antisym-
metric with respect to the inversion. The wave functions
of them are denoted by f+ and»t, respectively. "

In the two-molecule system there are four states,
whose wave functions are»»+(1)$+(2), f (1)f (2),
»»+(1)»{ (2), and f (1)f+(2). The rotational part may

"B.Bleaney and R. P. Penrose, Proc. Phys. Soc. (London) 59,
424 (1947)."%.Good, Phys. Rev. 70, 213 (1946}.

~ H. Margenau, Phys. Rev. 76 121 (1949)."G. Heraberg, Infra Red arJ Rataaa Spoo»ra of -Polyalomic
3Aleceles (D. Van Nostrand Company, Inc., ¹vrYork, 1945).

respectively. (In these formulas the real mass M=2m
is used. ) The last formula agrees approximately with
that of Lindholm. ' We do not calculate the shift except
for some simple cases.

If the sign of Ap is common to all collisions, Eq. (26)
gives Foley's relation~

~

&v'{/av= tan{,s/(m —1)j. (28)

But in most eases of molecular spectra the above
assumption does not hold, and Eq. (28) cannot be
applied.

In the case of molecules, hp contains some factors
which depend on angular variables. If the orientation
of the molecule in space does not change in a collision,
these factors may also vary with E. We shall neglect
this effect throughout this paper; that is, we assume the
orientation to change suitably in a collision.

be taken into account by simply multiplying them by
O~, x, jr(1)Og. x..~.(2), where 0 is the rotational wave
function of the symmetric top rotator, and J, E, M are
the rotational quantum numbers. Thus, our total
wave function is

The main part of the intermolecular potential is the
dipole-dipole interaction

&-e= {s- se 3(S—- R)(se R)/~}/~' (31)

Thus our matrix H p

—em A 0 0
A em 0 0

ex'=
p p p
0 0 AO.

(32)

where e is the energy difference of »»+ and f states of an
isolated molecule and A is the matrix obtained by
Margenau and Warren, "

= (p'/R') {EE'/[J(J+1)J'(J'+1)j}
X[ 2M;M,' b(—M;, M~) b(M, M, ')

&p{(J M,+1)(J+M—;)(J' M)(J'+M —+1)}'

Xb(M;, M; 1)b(M/, M +—1)

~-,' {(J+M,+1)(J—M,)(J'+M, ')(J' —M, '+ 1)}»

X b(M, , M~+1)b(M;, M —1)j. (33)

If 1is a transformation matrix which diagonalizes A, then
L=l+1+I+I (direct sum) transforms our matrix (32)
to

—eE (e;b;;) 0

LH L-= """
0 0 0
0 0 (e;by)

0
0

( b), (34)

0

which can be factorized easily. Thus it is shown that
the following four-dimensional reduced matrix is suf-
6cient for our calculation;

e
srsHeP =

0
.0

e 0 0
0 0 m=1

0 0 e„(2J+1)(2J'+1). (35)
0 e 0.

"H. Margenau and D. J. Warren, Phys. Rev. 51, 748 (1935).

+J;X, J', 'K'

ajar~ f+(1)OJ x ~(1)f+(2)Oz, x, ~ (2)
M, M'

+ P b.v~P —(1)Og, x, M(1)$ (2)O'g, x, ~ (2)
3f, M'

+ P eras 4'~(1)0'z, x, ~(1)f (2)8—z, x, ~ac (2)
MM'

+ Q d~~f (1)Oz, x, ja(1)P~(2)Og x, ~.(2). (30)
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8

= b
tts~ 0

.0

—b

0
0

0 0
0 0

2-& 2-& .
(36)

The unitary matrix which diagonalizes this matrix is Since e is an eigenvalue of the matrix (33), it is
proportional to R '. Thus, when the intermolecular
distance is smaller than some critical length, e is
larger than e. In this region, neglecting e as compared
with e, c can be approximated by

~= (("+c ')'+~I'/(4~'+ -')'
b= I(e'+e ') —cI /(4e'+4 '),

t

c exp ijl (e —lc (42)

H p„T

(~2+c 2)k

0
0
0

0 0 0'
(e'+ c„')& 0 0

0 —e 0'
0 0 e

(43)c exp(i et/It)
Thus, we use

%hen the intermolecular distance is larger than this
critical length, and accordingly e & e, the approximate

(37) expression for c is

From symmetry considerations, it is clear that

4+4'+dr = 0 p4 dr =-o-

and it was shown" that

c exp ij) (e+e~ le —I)h 'dt

38
as an approximation throughout these regions.

Putting
e =hhp„/R',

(44)

(45)

we obtain from Eq. (27a) the following formula for the
(39) width parameterj 6|g

——(~/2)(lap I

—hp )N. (46)
is the quantity obtained by the dielectric constant
measurement as the dipole moment of this molecule.
Thus our matrix y, is a.,=(~/2)(lap l)N. (47)

0 0 1

~ 0 0 1100.
1 1 0 0

From Kqs. (13), (36), (37), and (40),
following formula

d~I '0 0 c* c*

estd 5

C4 c c 0 0

c= {(e'+e„')&+c—e I

f

Xexp ijI ([e +(e'+e„')&]/k)dt

+ I (e'+e„') & c+e„}-
t

Xexp ij~ ([e —(e'+e„')&]/k)dt

and c* is the complex conjugate of c.

84

(41)

we obtain the

Assuming the gaussian distribution for Ap, , the average
may be calculated by using the root mean square of e
given by Margenau and Warren. "Thus,

»~= (~/3)'(p*'/&)&
I &I/[J(J+ 1)]')

X I &/[J(J+1)]'IN (48)

Numerical calculations were made with T=297'K and
p,*=1.44)(10 ", and the result is

/pe —39I~/[J(J+1)]&l Mc/mm Hg, (49)

which is nearly the same as Margenau's result (29),
although the method of calculation is very diGerent.

Approximation (44) is not good at large distances, the
actual intermolecular potential being much smaller
when e&e . Thus, the next approximation is to cut
the intermolecular potential at E,=(khp /e)&. Using
the same n as in the above calculation, but limiting the
integration over p to 0—E, instead of 0—~, we easily
obtain the following formula

hvm ——Eve —8(2s/3) &(M/4kT)4&e —'
xp*" &lx/[J(J+1)]'I ~)

X IIC/[J(J+1)g&I'~'N, (50)
which, at 297'K, is

hvm ——39IE/[J(J+1)]&l—13
I
E/[J(J+1)]» I

"' Mc/mm Hg. (51)

'8This result was published independently by the present
author (references 10 and 11) and Margonau PH. Margenau,
Phys. Rev. ?6, 1423 (1949)j.

'9 M. Mizushima, J. Phys. Soc. Japan 4, 11 (1949).

These formulas are plotted in Fig. 1 together with
the experimental data of Sleaney and Penrose. "Ke
see that our formula (51) agrees very well with experi-
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ment at large values of K/[J(J+1)]&. It is quite
natural that the agreement is not so good for small
values of K/LJ(J+1)]&, since in that region the
second-order force, which is not considered in this
paper, may contribute a great deal.

Howard and Smith" measured the width of the 3,3
line at 300'K and I95'K, and found that the width is
larger at the lower temperature. The ratio of the widths
at these two temperatures at constant pressure is
0.66~0.03. Our theory predicts that

»2=59 5IK/LJ(J+1) O'I —22IK/I J(J+1)j'I"'
Mc/mm Hg (52)

at 195'K. The ratio of Kq. (51) to Eq. (52) for the 3,3
line is 0.69, which agrees very well with the above
experimental result. "

From (Ap )=0 we can easily conclude that the shift
of the line is zero.

VII. MAGNETIC ABSORPTION OF OXYGEN

Since the electronic ground state of oxygen is 'Z,
this molecule has a magnetic absorption in the micro-
wave region, corresponding to transitions among the
triplet levels. Beringer22 observed this absorption 6rst,
and Van Vleck" made a theoretical consideration of it,
taking the width as merely a parameter. Later, Strand-
berg et a/. ,'4 and Beringer and Castle" measured this
absorption, but they could not succeed in separating

Fzo. 1.Width parameters of ammonia inversion lines. x, Bleaney
and Penrose's experimental results {reference 13); a, Margenau's
theoretical curve I Eq. (29)j; b, Eq. (49); c, Eq. (51).

the 6ne structure. Recently, Gordy et a/."have 6nally
succeeded in observing the fine structure, and they
have also observed the widths of some lines. "

In this molecule, the total angular momentums is
composed of the electronic spin angular momentum S
(ISI =1), and the ordinary rotational one K. Thus,
there are three states J=K+1, E, K 1correspo—nding
to one E, except for E=O, 1 states. The wave functions
of these three states are obtained" as

Ox~ &~&

HK, M00

OK, 3f+1&—I

(E+M) (K+M+1) & (K M+1)(K+—M+1) & (K M) (K M—+1)—
2(2K+ 1)(K+ 1) (2E+1)(K+ 1) 2(2K+ 1)(K+1)

(K+M) (E M+ 1)— M (K M) (E+M+—1)

2K(K+ 1) 2E(K+ 1)

(K M) (K M+1)— — (K+M+1)(K+M)

2E(2K+1) 2K(2E+1)

, (53)

where O~, ~ is the ordinary rotational wave function of
a l.inear molecule with quantum numbers E, M; 0 is
the spin wave function, and m is its magnetic quantum
number.

The energies of these three states were calculated by
Kramers~ and Schlapp 0 but, according to Gordy et ul. ,~v

their theoretical results may be revised in some respects.
Anyway, it is known that J=E is the highest level, and.
the other two levels are a little lower and near to each
other. The separations of these levels depend on E.

Magnetic absorption is allowed for J=E—1—+E and
~0 R. Howard and %. V. Smith, Phys. Rev. 77, 840 (1950).
"Anderson's theory (reference 9) coukl also explain the same

experiment (reference 21). However, the agreement of the two
theoretical results in this case is rather accidental. The tempera-
ture dependence of other lines may distinguish between these two
theories.

~ R. Beringer, Phys. Rev. 70, 53 (1946).
~ J. H. Van Vleck, Phys. Rev. 71, 413 {1947).
~ Strandberg, Meng, and Ingersoll, Phys. Rev. 75, 1524 (1949).
~ R. Beringer and J. G. Castle, Phys. Rev. 75, 1963 (1949).

J=E+1—+E transitions, and thus there are two kinds
of absorption lines.

There are no dipole forces between oxygen molecules.
The contribution to the width by the London force
seems to be small, since E+1 and E states have nearly
common electronic states and. the London force is nearly
equal for these states. ~ Of course, there is the mag-
netic dipole interaction between oxygen molecules, but
this is found to be so small that it cannot explain the
observed wid, th. We shall try to calculate the width due

~g Burkhalter, Anderson, Smith, and Gordy, Phys. Rev. 77, 152
{1950).

~' Burkhalter, Anderson, Smith, and Gordy, Phys. Rev. 79, 651
(1950).

~ See E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectre (Cambridge University Press, London, 1935), p. 76.

~~ H. A. Earners, Z. Physik S3, 422 (1929).' R. Schlapp, Phys. Rev. 51, 342 (1937).
3O The contribution by this force was estimated by H. Mar-

genau (private communication).
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TAM.z I. %idth of oxygen lines.

Species
~. (Mc/mm Hg)

E—1—+IC
2.1

13

X+1—+E
0.87

21

E-1—+E
0.83

"ex.sr'(1)Ox, sr '(2) 1'rsdr

= (6Qs/Es) [{E(E+1)—3Ms}/(2K+3) (2K—1)j
X[{E'(E'+ 1)—3M"}/(2E'+3)(2E'—1)j, (54)

where Q is the quadrupole moment. Since it is suitably
factored, we can calculate it separately for each
molecule.

Using the wave functions (53), we can calculate the
diagonal element of the quadrupole interaction between
two oxygen molecules. The factor which comes from
one molecule is

E{(E+1)(E+2)—3M'}/{(2K+1)(E+1)(2E+3)}
for I=K+1, (55a)

{E(K+1)—3}{E(E+1)—3M'}/
{E(E+1)(2K+3)(2E—1)} for I=K, (55b)

(E+1){E(K—1)—3Ms}/{K(2K+1)(2E—1)}
for I=K 1. (55c)—

This interaction being proportional to E ', we use
Eq. (27b) to calculate the width parameter, and thus
the average of the square root of the potential difFerence
is required. In calculating the mean value for the col-
liding molecules, all of Eqs. (55) may be replaced by
a single expression

(E' 3M')/4E', — (56)

since the mean E is very large at room temperature.
The mean root of Eq. (56) is

X/&8

(1/2K)' )t (Zs —3Ms)&dM

+ ~l (3M' Ks)&dM =0.2—54, (57)
~ Xi&3

which does not depend on X. Thus,

dLv= (0.254)2&F(7/4)(kT/M)&Ql &(~ A {)$,

A = (55a)—(55b) for E+1-+E,
A = (SSc)—(SSb) for E—2~K.

+ H. Marsenau, Revs. Modern Phys. 11, 1 (1939).

to the electric quadrupole moment in the following
paragraphs.

The diagonal element of the quadrupole interaction
between two linear molecules is known to be"

For simplicity, we shall limit our consideration here to
the case of M=M'.

Gordy's experimental results" are shown in Table I.
%e see in this table that the width decreases as E
increases and that the E+1~X line is a little broader
than the E—1~K line.

For E=3, the calculation may be performed nu-
merically, the results being

dv=8. 6X1(P'Q Mc/mm Hg for K+1~K, (59a)

hv=8. 4X10"Q Mc/mm Hg for K 1~E—, (59b)

at room temperature.
In order to explain the experimental result of Gordy,

Q must be 2.5X10 ~. Although there is no direct
measurement of Q, we know that the experimental
curve of Lassettre and Dean" for molecules with single
bonds predicts for a 6ctitious molecule with a single
bond of the same internuclear distance as oxygen,
Q=3.4X10 ~; and for the pressure absorption of this
molecule, a somewhat lower value is required. "Thus
our value of Q may be said to be of a plausible order.

For large E, expanding A in powers of 1/E, we obtain

6v= (1.84X10 Q/Ei)[1 —(3/8E)+ ~ ~ ~ j
for K+1~K, (60a)

hv= (1 84X1(PQ/Ei)[1+ (3/8E)+ ' ' j
for E 1-+K. (6—0b)

Thus we can see that the width parameter decrease as
E increases, in agreement with the experimental result.
In these formulas the coeKcients of the second terms
in parentheses are not certain, but they make the
K+1~K line narrower than the E 1 +E line. The-—
calculated width parameters for the other two lines in
the table are 1.24 and 1.00 Mc/mm Hg for the 13+1
—+13 and 21—1~21 lines, respectively, if Q= 2.5
X10 ".They are near to the experimental values, but
too large. *

Recently, Beringer and Castle'4 have observed the
magnetic resonance spectrum of oxygen, and measured
the widths of some lines. Since in their case the transi-
tion is difFerent from the kind discussed above, our
theory cannot be applied directly. '4' However, if their
width is due to the electric quadrupole moment as is
assumed in this paper, its temperature dependence may
be predicted by Eq. (2'7b), that is,

Av~ T & at constant pressure.

It is interesting that Beringer and Castles experi-
~ E. N. Lassettre and L. B. Dean, Jr., J. Chem. Phys. 17, 317

(1949).
33 M. Mizushima, Phys. Rev. 76, 1268 (1949); 77, 149 (1950).*Note added its proof: Recently, R. S. Anderson, %'. V. Smith,

and W. Gordy have measured the width of fourteen lines from
E= 1 to 23 of oxygen. Their results for lines of X larger than 11
agree very well with our E& formula (60). Their new data
yield Q 3.6)&1~ (Anderson, Smith, and Gordy, private com-
munication. )"R. Beringer and J. G. Castle, Jr., Phys. Rev. 81, 82 (1951).

34' H. Margenau has made some theogetjcg caIcgIations on thiq
case (private communication),
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where
2B(M—)B(M')8~ ~8

(JISM+2)(JISM+1) &

A(+M) = ~j, J+I
(2I+3)(2J+1)

(JISM+1)(JTM) ~

(2J+1)(2J—1)

(J+M+1)(J—M+1) &

B(M)= &~, Z+l
(2J+3)(2J'+1)

(J+M)(J M) &-
8,, g i. (61)

(2J+1)(2J—1)

London calculated the intermolecular potential by
the second-order perturbation method. " If it were

mental data at 300'K and 85 K lie midway between
the T ' and T & dependences.

VII. THE ROTATIONAL ABSORPTION LINES OF
LINEAR MOLECULES

There are many data on this kind of absorption line. "
In this case, the London force need not be considered,
since its contribution may be smaller than that of the
dipole interaction. The matrix element of the dipole
interaction (31) for a linear molecule is"

(JMJ'M'I V [ jesj'm')

=(w /2~ ) I&( M—)&(M')&~:us&m' —' w+.s

+&(M)~ ( M'—)&m, w+x&m', u'

valid, we could easily calculate the width; but unfor-
tunately this is not the case. At room temperature, the
molecules with J values satisfying O'J(J+1)/2I=kT
~3X10 " erg are most common; that is, J ~30
for I=10 ", while the intermolecular potential y'/R'
is about 10—'4 at SA. Thus, the latter potential is
usually larger than the energy di6erence of successive
rotational states PJ/I. For this reason, we cannot use
the second-order perturbation theory; and, on the
contrary, an approximation neglecting the diagonal
elements may be better.

In the latter approximation, the eigenvalue is propor-
tional to R '; thus, by Eq. (27a) the mean potential
di8erence is required in calculating the width. By
anticipating this, we take the root mean square of the
matrix element over M and M' at the beginning, for
simplicity. Then our matrix is

X I(J+1)&8&,z+i+ J&b&, ~—iJ

X I (J'+1)~by. z +i+J'&,', z iI. (62)

Since the rotational quantum number of the co}liding
molecule is usually very large, Eq. (62) may be approxi-
mated by

X I (J+1)'», ~+~+J'~~; ~-~I Ib~', ~+~+hi', ~ -~I. (63)

It is convenient to take the basis of our matrix in the
following order:

~ / —1 / t'+1 ~ ~ l 1 / 3+1 ~—~ / —i, l, 3+1, ~ ~

Then, it can easily be shown that a matrix

8=s+s+s+ ' ' '~

the energy matrix of periodic potential problem, can
transform our matrix (63) into the following form

V= vi+vq+ ' ' '+v»
where s is a transformation matrix which diagonalizes where

' 0 2(1/3)& 0 0

0 2(2/9) & 0

2'
vi =—cos

E.' e

symmetric 0 2 ( (1+1)/(6J+3)I
&

0

(66)

In Eqs. (64) and (65), + means the direct sum.

~%. Gordy, Revs. Modern Phys. 26, 668 (1948).
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ThsLE II. Width parameter of rotational lines (linear molecules).

~ (Debye)

2.9
0.8

50
21.5
20
24

2

0.65

2.88
2.5
2.94
3.71
0.72

a R. T. Weidner, Phys. Rev. 72, 1268 (1947}.
b Townes, Merritt, and Wright, Phys. Rev. 73, 1334 (1948).
o Smith, Gordy, Simmons, and Smith, Phys. Rev. 75, 260 (1949).
d Townes, Holden, and Merritt, Phys. Rev. 74. 1113 (1948).

t'3q & r2 5q & p1 3 5 3 7 11 ~ ~
q

&

&2P (33i &246 .159
t

duq/dt = p~ q &F exp i~t t'~{ —(0.2p'/(AR'J))

In this approximation, the difference of the (J—1)th
and Jth values is nearly 0.09/Js. In Eq. (70), the values
are certainly too low except for the first, ~ so the first

3.2' difference is too small. Moreover, we treated Eq. (66)
as an infinite matrix, while actually it is of order about

C1CN J* if the rotational energy is of the same order of mag-
BrCN 2id nitude as the intermolecular perturbation at the rota-

OCS
tional quantum number J*.In the infinite matrix, the
eigenvalue converges to 4a/6&, while in the 6nite matrix
it tends to zero. From these two reasons, we may sup-
pose that the difference of the (J—1)th and Jth eigen-
values is expressed by 0.2/J.

The difference of the eigenvalues is small compared
The eigenvalues of Eq. (66) may be approximated as with the eigenvalue itself. If we can assume that all the

follows. The eigenvector which corresponds to the eigenvalues are equal. , the transformation by T in Eq.
lowest eigenvalue is (13) can be omitted. In this case, our equation which

determines the transition probability is

p2. 4 6 . -5 9-13
x{ ~ ~ (67)

(3 5 7 . 3 7 11

Thus the lowest eigenvalue is

4
I

3 10 1 3 . .3 7

I
1+1+—+—+. . .+

2 9 24 15

) —1

+ "t
3 5 "3 7".
24 59 21Ã

v—cos, (68)
E3 e

where v is the order of the matrix (66). Since

1 3 3.7 ~ (n 1/2)(—n 1/4)—
=rr

n(n —3/4)
lim
v-+ss 2, 4. . . 1 .5. . .

r(1)r(7/4) =1 144. . . ,
r(3/2) r (5/4)

24- 59
llm
t-+re 3 .5. . .3 .7. . .

Eq. (68) is

n(n+1/4)

(n+1/2) (n —1/4)

r(1/2)r(5/4) = 1.311.. . ,
I'(1)r(3/4)

—1.88(n'/R') cos(2ls/n) (69)

at the limit v—+~.
The next eigenvalue can be approximately obtained

if we neglect the 6rst row and column of Eq. (66) and
follow the same procedure as above. Successively taking
the same procedure, we obtain the following series as an
approximation to the eigenvalues

—1.88a, —1.79u, —1.77', —1.76u,
a= (p'/R') c s(2ol / s) n(70).

Xcos(2fs./n)dt ag i. (71)

Since the perturbation is proportional to R ',

Av= (s/2)({0.2p'/(AJ) } c s(o2t /ns))1V

= {0.2p'/(hJ) }S (72)

by Eq. (27a). This formula is compared with experi-
ment ih Table II. Although general agreement is seen,
a serious discrepancy occurs in the 3—+4 line of ICI, the
reason for which is not clear. It is possible that our
theory, which neglects the energy difference between
rotational states in comparison with the intermolecular
interaction, may not be suitable to treat such molecules
as HCN which have very small moments of inertia.

VIII. ROTATIONAL ABSORPTION LINE OF
SYMMETRIC TOP NOLECULES

The matrix of the dipole interaction for this case is
the one already given by Eq. (33). Since the eigenvalue
of this matrix is very diflicult to obtain, we shall
approximate it by the diagonal element.

From the selection rule b,M=O, &1, we see that the
orientation of the molecule scarcely changes in the
optical transition. Thus, the diGerence of the inter-
molecular potential, which is required in the calculation
of the width of absorption line J—1, K~J, E, is

Ap=2(y'/R') {KK'M3f'/[J'(J'+1) j}
x {LJ(J—1)j- —

{J(J+1)]-}—=a~t /R (73)

in our approximation. Since it is proportional to E.
the formula which gives the width is again Eq. (27a).

's R. Courant and D. Hilbert, Methoden der mathematischee
I'hysik I (Verlag. Julius Springer, Berlin, 1931), p. 28.
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TABLE III. Width parameter of rotational lines (symmetric top
molecules).

TABLE IV. Width parameter of rotational lines (symmetric top
molecules).

Mole-
cule Is (Debye)

+&obaJ (Mc/mm Hg) / Kt ~&calo Molecule Io/Ie
»ebs PealeJ (Mc/mm Hg) (Debye)

CHF3

CH3F

1.59

1.83 45
18e

20.

a Gilliam, Edward, and Gordy, Phys. Rev. 75, 1015 (1949).

23
9

23

PF$

CFBC1

CHBr3

0.56

1.7
0.15

1~2
2~3
2~3
3~4
0—+1

16'

50b

08'

1.6

3.0
0.34

1.5

0.5
0.7

The rotational energy of a symmetric top molecule is

E=aJ(J+1)+bE'
a=A'/(2l ) b=k' l(2I,) '—(2I,) '},

(74)

Thus the width parameter is

»= (~/2)(~'/&)
I
E/(J' —I) I

x l i./I I. I.l } I (1./1.)'——~
I
&

for J—I, E-+J, E. (76)

Another method is to use the root mean square of
the eigenvalues. The corresponding eigenvalues of
lower and upper states may not be so different for the
usual collisions where J' is very large. In this case, the
mean of the energy difference can be replaced by the dif-
ference of the mean. Using the root mean square and
assuming the gaussian distribution, we have

(I ~~ I )= (g/3~)'(~'/~) I EI

xlLJ(J—&)j '—I:J(J+&)j '}

x l~./II. —I.l }l(1./1.)'—&I

for J—1, E~J, E. (77)

where I, and I, are the principal moments of inertia of
this molecule (I,= Iq). In almost all molecules at room
temperature, e and b are much smaller than kT. For
this reason we can calculate the average of

I Apl clas-
sically as

(I ~~ I )= (~'/&)
I
E/(J' —&) I Iulb I I (~+b/u)' —&

I

= (~'/&)
I
E/(J' —~) I

' Gilliam, Edward, and Gordy, Phys. Rev. 75, 1015 (1949).
b D. K. Coles and R. H. Hughes, Phys. Rev. 76, 858 (1949).' Kojima, Tsukada. and Hagiwara, private communication.

Although this result is formally di6'erent from Eq. (75),
we can see that their numerical values are near.

Since the matrix A vanishes identically for E=O, we
cannot use the above formula in this case. However we
can use the preceding formula (72) because a sym-
metric top molecule with E=O behaves like a linear
molecule.

There are only a few experimental results with which
we can compare our formula (76). In Table III, the
line 1=1~2 of CHF3 is composed of three lines cor-
responding to E=1, 0, —1, whose widths are separately
shown in the table. If the splitting of these lines is much
smaller than hv, the width of the total line is about 15
Mc/mm Hg, which agrees with the experimental result.

There are some other results where the data are not
so complete. In Table IV, the dipole moment is not
known for all molecules, and J is not clearly cited in the
original papers for two molecules. In the fifth column p,

is estimated from the width by our formulas, and in
the last column the same quantity is estimated from
the other methods such as bond dipole moment or
electronegativity scale. The very large value of 8 v for
CF3Cl may be due to the unresolved splitting of the
components. Since Coles and Hughes observed the
width at O.i mm Hg, the E splitting of about 2 Mc may
be able to account for this large Av.
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