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Foi~ of Transient Currents in Townsend Discharges with Metastables

J. P. MOLNAR

Bel/ Telephone laboratories, Murray Bill, Nne Jersey

(Received December 8, 1950}

The form of the current is calculated for a Townsend discharge stimulated by a pulsed light beam, with
particular reference to the current component initiated by metastable effects. The calculation is directed
particularly to the development of methods for quantitative interpretation of current patterns observml

experimentally.

A. INTRODUCTION

HE electrtical currents caused by the action of
metastable atoms in a Townsend discharge are

characterized by their relatively slow time of build-up
to a steady-state value. In a typical experiment this
time is of the order of one millisecond and is set essen-
tially by the lifetime of the metastables in the space
between the electrodes. Because of this slow build-up,
a study of the transient character of Townsend currents
initiated by pulsed light-illumination of the cathode
permits separating currents attributable to the action
of metastables from those caused by ions and photons,
which build up much more rapidly. Such experiments are
described in an accompanying paper (hereafter desig-
nated as II). Our purpose here is to develop a theoretical
basis for interpreting the current forms obtained in

these experiments.
This problem has been discussed by Engstrom and

Huxford' and Newton. ' The treatment here follows
closely that of Engstrom and Huxford and represents
an extension of their analysis to include higher order
terms and the volume destruction of metastables, as
well as the diffusion loss they considered.

B, STATEMENT OF PROBLEM

Ke assume we have a gas-filled tube with two plane-
parallel electrodes, an anode and cathode, and that
beginning at time 3 =0, a current of electrons, io, leaves
the cathode as a result of photoeletric action of light
shone on the cathode. ' This electron current we assume
is amplified to a value, i~, in a time of the order of ten
microseconds, which we take to be instantaneous on
our time scale. The value zf is given by the well-known
Townsend equation,

ir=io expka'(X xo)3/1 pr(expLa (X xo)j 1) (1)
where 0.;= the first Townsend coefFicient for ionization,

' R. W. Engstrom and%. S.Huxford, Phys. Rev. 58, 670 (1940).' R. R. Newton, Phys. Rev. ?3, 570 (1948).' Our analysis is for a "step-function" cycle of light stimulation,
and furthermore we consider only the rising part of the transient.
The falling part which starts at the removal of the stimulating
light has a form exactly the inverse of the rising part. The general
method of analysis can, of course, be applied equally well to any
form of the stimulating light. For more complicated forms, say,
that of a sinewave-modulated light beam, the analysis is probably
most easily carried through by first calculating the current form
resulting from a "delta-function" type of stimulation, and then
integrating a series of these currents modulated according to the
assumed form of the light modulation.
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defined specifically as the number of electron-ion pairs
generated per electron per cm of path in a direction
perpendicular to the electrode surfaces; X=the elec-
trode separation; xo= the electrode separation at which
ionization begins, 4 yf = the number of electrons released
at the cathode and entering the discharge stream (i.e. ,
not diffusing back) per ion generated in the gas by the
fast processes, which include both ion and photon
bombardment of cathode (pr is defined and discussed
in greater detail in II).

The action of metastable atoms in the discharge
results in a slowly rising current component, t', (t) (see
Fig. 1); and it is the form and magnitude of this com-
ponent which we wish to calculate.

We assume that the i;component originates either
from (1) the emission of electrons from the cathode
caused by metastables striking the cathode directly, or
(2) the conversion of metastables into radiating atoms
from which the emitted photons can photoelectrically
eject electrons from the cathode. '

We shall see that the form and magnitude of i,(t)
can quite readily be computed for any assumed set of
parameters describing the efFiciencies of metastable
production and of electron emission by the diGerent
processes. The inverse problem of establishing these
parameters from observed current patterns is less
straightforward. For this purpose various approxima-
tions are introduced into the analysis.

C. INTEGRAL EQUATIONS

Following Engstrom and Huxford, we start by con-
sidering the fIow of metastables produced by one elec-
tron leaving the cathode, crossing the gap, and causing
ionization and excitations. The metastables generated
by this electron and its progeny (resulting from ioniza-
tions) will diffuse to the containing walls (the electrodes
in this case) and be destroyed there unless they are first
"destroyed" by special types of collision with normal

' This definition of x& is rough. In practice xo is adjusted to a
value such that the experimental values of if for X)xo fit closely
Eq. (j.).

~Metastables can probably also produce electrical effects in
pure gases by such processes as a metastable-metastable collision
yielding an ionized and a neutral atom plus an electron, or an
electron-metastable collision yielding an ion and another electron.
These processes come into importance only at high metastable
densities, and they are easily reduced to negligible importance by
using sufBciently small values of current.
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The current of electrons leaving the cathode at time t'

is given by the total current, i~+z, (t), divided by the
gas amplification factor, exp[n;(X —xo)j. Hence, we
have

zf+z. (t')
z (~) =

l
—. 1(~-f.*.) i' P~(~ ~') — d&' (3)

I zo ~ ~p exp[n;(X —xo)g

By making use of Eq. (1) and introducing the notation
Rf=yy(exp[~;(X —xo)]—1), we can rewrite Eq. (3) as

z.(z) v-f-. c' f z, (z') q
Pzr(~ —&')

i
1+ ddt' (.4)

Zf 1—Rf ~0 if )

TlMK, t
FIG. 1. The current form (schematic) in a pulsed Townsend

discharge with metastables. The light pulse is assumed here to
have a duration of about 0.005 second. The fast component of
current, if, is shown here to rise instantaneously. Actually it rises
with a time constant of 1 to 30@sec in a typical experiment. The
dashed line indicates the form the current would have with a
P(t)-function described by a single exponential. The eBect of higher
terms, having a net negative amplitude, is to give the solid curve,
although the difference is exaggerated here for purpose of clarity.

atoms. ' We define a function Pzr(t) as the rate of arrival
at the cathode of the metastables produced by such an
electron leaving the cathode at t=0 Similarly, .Pz(t) is
the rate of arrival at the anode, while Po(z) is the rate
of disappearance of metastables in the volume. Hence,
the total rate of Row of the metastables, created by one
single electron leaving the cathode, out of the gap is
the sum of these three P-functions. We shall calculate
their individual forms in Sec. D.

Let us first restrict ourselves to the case in which z, (t)
arises from the release of electrons at the cathode caused
only by direct bombardment by metastables. The
component z, (t) will then consist of an electron current
at the cathode, initiated by the metastables, enhanced
by the same processes which amplify the primary
photocurrent io to iy. Thus, we have

z, (Z) =i~/zo (rate of release of electrons at the
cathode by metastables). (2)

The term in the parenthesis is given by the product of
the rate of arrival of metastables at the cathode and
their efBciency of electron emission. The latter quantity
is given y f„„where y is the number of electrons
released per metastable striking the surface and f„, is
the fraction of these electrons which actually enter the
discharge stream and do not diffuse back to the
cathode. The rate of arrival is given by

~~ Pzr(Z —t')(current of electrons leaving the cathode
0 at t=t')dt'.
' Assuming there are no impurities present, such "destruction"

is usually assumed to be caused by the conversion of the meta-
stables into atoms excited into nearby radiating states, which for
all the noble gases, except helium, lie within 0.1 electron volt. In
the case of helium this spacing is much larger. Here the destruc-
tive mechanism is less well understood and probably involves the
formation of helium molecules. See R. Meyerott, Phys. Rev. 70,
671 (1946).

This is the fundamental equation describing the problem
we are here discussing.

If we assume instead that metastable atoms give rise
to a current by being converted into radiating atoms
in the gas from which the emitted photons cause photo-
electric emission at the cathode, then by analogous
reasoning we come out with the equation,

zs(&) 'Yrfra fesc z' ( za(& ) )P,(t- )z~ 1+ ~dz', (5)
1—Rf ~p z; )

where y„=the number of electrons emitted per gas
photon striking the cathode; f,q'=the fraction of the
photons emitted by the converted metastables which
reach the cathode. For infinite plane-parallel geometry
and in the absence radiation imprisonment effects,
f,q' 0 5 In a p.ra.ctical situation, the lack of perfect
plane-parallel geometry and imprisonment sects will
tend to make f,q' somewhat smaller. If both processes
are acting, then obviously z, (z)/i~ is given by sum of the
right-hand sides of Eqs. (4) and (5).

D. CALCULATION OF P-FUNCTIONS

To calculate the functions Pzr(t), P~(t), and Pg(Z),
defined earlier, we assume the metastables have a dif-
fusive motion, and so we proceed by solving the dif-
fusion equation. This we write in the form,

8p/Bt =D (8'p/Bx') .Gp, —(6)

where p= the linear density of metastables created by
a single electron leaving the cathode at t= 0, D = the
diffusion coeKcient of metastable atoms in the parent
gas; x=the distance from the cathode, and G= the
probability of a metastable being destroyed in the gas
per second.

We assume that the metastables are destroyed when
striking either electrode, so that our boundary condi-
tions are

p=0 for x=0 and x=X.
It is readily shown that the following solution fulfills

our requirements:

p=P u sin(nzrx/X) expI —[(zr 'nD„ /X) +G tj, I

n = 1, 2, 3, , (8)

where the u„'s are coeKcients determined by having p
as given by Eq. (8) describe the initial distribution of
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metastables. Since at t=o the exponential factors are
all unity, it is evident that the a„s are coei%cients in a
fourier expansion of the initial distribution function.
For this we assume that metastables are initially formed
in the space between electrodes in a density a /a; times
that at which the ions are formed, where O.,„is the 6rst
Townsend coefficient for metastable excitations and is
speci6cally the number of metastable excitations per
electron per centimeter. ' Since the ion distribution is
zero for z(xo and a, exp[a, (X—xo)j for x)X, we can
write the initial metastable distribution as

0&x&xo,

exp[a;(X—xo) j, xo&x(x.
Using the standard formula for fourier coefFicients, we
have

2
0

0
0

1.0

0.8

Q05 0.10
Dt

0.15 0.20 0.25

I
a„=(2/X) t n„exp[a;(X xo)—j sin(n~x/X)dx. (10)

XP

The integration is readily carried out. We shall not
take space here to do so, but simply note that a„ is
positive for all odd values of n, and negative for all
even values.

When p, the metastable density, is calculated by the
method outlined above, the E-functions are obtained
from the following relations,

Px(t) = (diffusion current to the cathode)

=D (Bp/Bx). o.,

P~(t) —= (diffusion current to the anode)

D(Bp/Bx). x, —(11)
Po(t)= (rate of d—estruction in the gas)

~x
=G pdh.

With p in the form given by Eq. (8), the formulas in
Eq. (11)yield

(N~ y (s'n'D„
P(tx)= DPI Iu exp —

I
+G (t,~xi & x' )

e=1, 2, 3, , (12)

(em )P «)=D-&I —Ia-( —»"+'
I x)

(~'I'D
Xexp —

I
+G I3,x'-) .

I=1, 2, 3, , (13)

(2X ~ (~'n'D„
PG(t)=GQI Ia. exp —

I
+G (t,&~) E x )

n=1, 3, 5, (only odd). (14)
' This assumption is obviously approximate. On the other hand,

for the experiments we are here trying to explain, only the gross
exponential form of the initial distribution is important.

o.e X=
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FIG. 2. Typical plots of Pz(t) os t for various values of the elec-
trode spacing, X, computed for an initial distribution of meta-
stables given by

p=o, 0&~&0.~,

p=e &-'I) 0.1&x&X,
and with G=O. The lower set of curves gives PEt',t) for the same
conditions, but plotted here in a manner such as to permit direct
comparison with the first term of each series. The scales of ordi-
nates and abscissas are adjusted in each case so that the first term
falls on the dashed curve. Note that for large X the curves have
roughly the same shape when plotted in this form.

We note from the foregoing relations that all the
E-functions are described by a series of exponentials
with the same time constants but diferent constant
multipliers. Since, as indicated, a„alternates in sign,
the constant multipliers alternate in sign for Px(t),
while for P&(t) they have the same magnitude,
but are all positive. In Po(t) only the odd terms are
present; and, furthermore, because of the appearance
of n in the denominator, the constant multipliers get
small rapidly with e.

P-functions calculated by the equations are shown
in Figs. 2 and 3 for various assumed values of the
various parameters. On examination of these curves, it
can be seen that Pg(t) is closely represented by a single
exponential. The first term of the expansion for Po(t)
given by Eq. (14) contains 95 percent of the area under
the PG(t) curve for a variety of typical cases we cal-
culated. For Px(t) a single exponential approximation
is somewhat worse, Except for the very small values of
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Fzo. 3. Plots of Pg(t) and P~(t) for various values of the gas destruction parameter. Here O'—=GX2/m~D, and the initial dis-
tribution was taken to be

p=o 0&~&0.&,

p=e ( o », 0.& &x&1.0.
The curves for pg(t) are seen to be closely approximated by the first term of their series expansions, whereas for P~(t) that approxi-
mation is less good and for Pg(f) very poor.

P(t)=P e
—slrs+P~ —iirs+. . . —p P.g siri (15)

1

Although P(t) in the strict sense requires an infinite
number of terms, we have seen that both Px(t) and
Pg(t) can be closely approximated by a limited number
of terms; and, in fact, Pg(t) can be described very well

by a single term, while for Px(t) two terms provide a
satisfactory approximation.

With such a series representation of P(t), it is readily
shown that i, (t) can be described by a similar series of
exponentials,

i, (t) =i (, isge sir.s —i.gg
"rg— —

.v
'te0 ~ Se]8

—
f)

—f/Tf

I
(16)

having the same number of exponential terms as the

X, the area under the Px(t) curve was 75 to 90 percent
of the area under the first term of the expansion as
given by Eq. (12), for a variety of typical cases which
we computed. Here a two-term approximation, how-

ever, is quite satisfactory, as illustrated in Fig. 4.

E. SOLUTION OF INTEGRAL EQUATION

Having outlined the methods of calculating the
P-functions, we are now in a position to discuss the
solution of the integral Eqs. (4) and (5).

For simplicity let us use for the P-functions the
notation

P(t) series. If this i,(t) series is substituted into Eq. (4),
then we 6nd the following relations between the time
constants and coe%cients:

. (~-f- )"
41—R&) ~ (1—RIi

(~-f-.~
v

for each value of I, (18)
E 1—Rg), =~ (1/r;) —1/Ti

0=
ZeI tf+teo

for each value of j. (19)
i g (1/r;) —1/Ti 1/r,

In addition we have
v

1sg =Zsl+Zsg+Zsg+ ' ' ' = P I l

simply from the physics of the situation. '
A similar set of equations apply in the case of Eq.

(5) with p„replaced by p„f,z'.

The accuracy with which i, (t) can be calculated ob-
viously depends on the number of terms used to express
P(t), and the labor involved in solving Eq. (18) and
(20) correspondingly depends on the number of terms
involved. If, for example, four terms are used, then
Eq. (18) is a quartic algebraic equation, from which

Tg, T2, T3, and T4 can be obtained. The coefBcients ie&,

In his paper R. R. Newton (see reference 2, p. 580) derives
these relations by another method and discusses them briefly.
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is~, isa, amd is4 are obtained by solving four linear
equations given by Eq. (19).

We carried out such a solution for the case corre-
sponding to an initial metastable distribution given by

p=0, 0&@&01,
&=a&-- ), o.j.&~&&.0,

and 6 assumed to be zero. Then we approximated
Pz(!) by four-, three-, and two-term series (see Fig. 4).
In each case the coefficients of the exponentials were
made the same as those corresponding to an in6nite
series representation, except for the term with the
smallest value of v. For this the coefBcient was adjusted
so that the value of I'7- for this term was equal to the
sum of the I'v's for this and all higher terms in the
infinite series representation. Thus, the quantity
Q, , ~ P,r, was the same for all three cases, and hence
zz as calculated from Eq. (17) was not dependent on
the number of terms used in P(t).

Values of z. I and TI as calculated from Eq. (18) and
(19) for the four-term series are plotted in Figs. 5 and
6 as a function of the quantity,

R /1 Rg= (T f—„,/1—Rr)p P,—r, .
Over the range of this plot isi diGered less than 0.2
percent for the three series representations, while T~
diGered by less than 0.6 percent. ' Similarly, the sum
of the amplitudes of the higher terms, is2, is3, and is4
was maintained within 10 percent.

Note that for small values of R„/(1—Rf) the relative
amplitudes of the various terms remain fixed, while the
values of T~ are close to those of corresponding v s in
the P(t) series As R„/(1—. R~) is made larger, the first
terms shows a marked increase in both amplitude and
time constant, while the higher terms deviate little
from the earlier trends. Note also that the total ampli-
tude of the higher terms, is&+is3+is4, is always negative.

These observations suggest that a fairly satisfactory
description of z, (t) is obtained with a two-term descrip-
tion of Px(Z), yielding a two-term description of z, (Z) in
which the fundamental or 6rst term becomes the
increasingly dominant fraction as R /(1 —R~) is made
larger. Such a description 6ts well the experimental
situation, in which case it turns out to be feasible to
describe any observed z, (t) curve by only two terms. "

For the case in which metastables are converted into
radiating atoms which emit hght and thereby give rise
to photoelectric emission at the cathode $Eq. (5)), the
calculation is even simpler. Here Pg(t) is closely repre-
sented by a single exponential. If a second term is added,

"These differences were too small to show up on the scale used
ln Fig. 5.

' Even in a theoretical description, the higher terms depend
closely on the assumed spatial distribution of metastables when
formed, which we know only approximately. Furthermore, the
diffusion equation itself breaks down as a description of the meta-
stable motion for short distances, which in effect correspond to the
higher terms of P~(t). Thus, we lose very little in our knowledge of
the actual i,(t) by approximately P~(t} is indicated.

ES$ ZS2 Zj+'ESP
0= +

(1/rI) —1/TI (1/rI) —1/Tz 1/rz
(21)

If now we recall that iso=is~+is~, and further that T2
does not deviate much from v 2, so that we can set

p rz/rz = rI/Tz,

where P is a constant, then by rearranging Eq. (21) we
have

if+ (p/p 1)i»—
71 ~1 (23)

.Zf+Z8I+ (P/P —1)Zsz.

The value of P will depend on whether the function
Pz(t) or Po(t) is involved, and what the relative values
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FIG. 4. Various approximations to P~(t) used in the calculation
of i,(t). P~(t) here corresponds to an initial metastable distribution
same as that in Fig. 3 with G=O.

however, it will have an amplitude with the same sign
as the first, and so the higher term in z, (/) will add to the
first term. If both electron emission processes are simul-
taneously active, then Eqs. (4) and (5) can be combined
in an obvious way, and a solution carried out in a manner
as outlined for Eq. (4).

F. CALCULATION OF FUNDAMENTAL TIME
CONSTANT, g1, FROM EXPEMMENTAL

DATA

In the preceding section a method is outlined for
calculating z, (t) for given values of T f„,/(1 Rr) o—r
T„f,~f„,/(1 Rf) —and Pzr(t) or PG(t) In t.he experi
mental situation we are faced with the inverse problem,
namely, that of calculating these various quantities
from data describing z,(t). The quantity most easily
obtained in this way is 7&, the fundamental time con-
stant of decay of the metastables, and we discuss this
problem 6rst.

The experimental arrangements described in the
accompanying paper permit fairly accurate determina-
tion of i~, isi, Tj, and is2. No accurate time constant
corresponding to is2 can be measured. We proceed by
applying Eq. (19), which for this case reduces to
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In Eq. (24) the quantities on the right side are all
easily measurable, and only relative values of the current
magnitudes need be known. Such quantities as yj, 0.;,
or io, which in general are harder to obtain, are not
involved. Thus, in a given experimental situation r~ is
quite readily evaluated.

G. CALCULATION OF e y f„, FROM EXPERIMENTAL
DATA

Here we make no use of time constant data and use
only the value of the total slow component of current,
izo. We rearrange Eq. (17) to give

ls
0, 1

i,q I/

/

O.OOI

(1—Ry)zap
v-f-. 2 P~r~=

2y+ 18p
(25)

N A

Q P, r& Ie——xp—r a;(X xp)5—1}f„—z, (26)

'I 0

The quantity PLN P,r, is just JzP PIr(I)dt, in other
words, the total number of metastables created by a
single electron leaving the cathode which return to the
cathode. For our purposes here, we may represent this
number by f z times the total number of metastables
created by this electron (and its progeny from ioniza-
tion), where f ~ is the fraction of the metastables which
disuse to the cathode. Now the total number of meta-
stables is found by integrating Eq. (9), which describes
the initial distribution, giving

0.0004 '

O.OI OI

fA 8SC ~p ~
I -Ry

1.0

Pro. 5. The amplitudes of the exponential terms in the i,(t)
series vs the quantity shown as the abscissas calculated for the
case described in the text. In this (y f...)(ZP; ~;) gives the number
of electrons released at the cathode by the metastables generated
by a single electron (and its progeny) leaving the cathode and
crossing the gap. The factor 1/(1 —Ry) gives the multiplication of
such electrons by the fast secondary processes. Thus, the abscissa
scale gives the total replacement factor by all secondary processes.
%hen it becomes equal to unity, i,& becomes indefinitely large.
For small values of the replacement factor, the variousi, f's increase
linearly, as indicated by the 45' slope of the curves.

I 0"

of G and D„are. For many situations tI is closely equal
to 4. Then Eq. (23) becomes

T~ = Tz(zr+ 1 3z8z)/(z~+ zap+. 1 3zsz).(24)

This is the formula we used to reduce T~ and 7 ~ in the
experimental studies described in II.

Note that if P becomes large, then the constant
factor multiplying i.z in Eq. (23) approaches unity, and
is~ can be considered part of iy for the purposes here. In
the other limit of P approaching unity, Eq. (22) is no
longer valid, so Eq. (23) does not hold. This ca,se illus-

trates the problem of evaluating rz when P(t) is made
of exponentials with time constants that differ little
from term to term.

T4

0.04
O, OI O. I

esc &Z ~

IO

Fro. 6. Time constants, Tf, , computed for the same case for
which the amplitudes are given in Fig. 5. The time constants start
with values in the ratio of 1:$:$:+,as in the corresponding
P~(t)-function. Note that only in the case of T1 is there a large
deviation as the replacement factor approaches unity, while T2,
T&, and T4, vary only by a smaller amount. These variations are
discussed by Newton t see reference 2, particularly Fig. 2j.
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Hence, we have 6nally

n, (1—Rg)iso
n-&-f- f-~= . (27)

(it+i 8Q) I exp[n, (X z—p)j 1—I

On the right-hand side, every term can be either directly
measured or evaluated by 6tting the Townsend equa-
tion to iI/io t&s X data. Newton' showed that f &, is
given for the case of G=O, by

1.0

Os4

0.3

Os2

0.1

I

I

I

1 1 —xp/X
mk

n;X exp[n, (X—xo) $—1
(28)

1.0

For the more general case in which G40, we have
computed values of f &, by numerically evaluating

P&r(h)dh

(29)

0,5

0,4

0.3

G =05W20

(M QO 00

Pz(h)+ Pg(t)+ ~ Pg(t)dh
0 0 J,

I ~- Z Pxs'&+V.f.' Z Pgsrs
& 1 Rt)—

X N

~
~ PPx;;+~,)„,'P&Pg,',

, (30)

where the subscripts E and G after P should be inter-
preted. to indicate that the coeKcients refer to the
Px(t) and Pg(t) series, respectively.

Now to reduce Eq. (30) to a manageable form, we
make the approximation that Px(h) and Pg(t) are each

Some typical results are given in Fig. 7. Here we also
plot f „and f„,which give the fraction of the meta-
stables which are destroyed in the gas and at the anode,
respectively. "We note that f„&„has a maximum value
of about 0.4, and if G is not zero, it is less and decreasing
at large values of X.

For rough evaluations and under conditions in which
G is known to be small, Eq. (27) is probably useful with

f &, taken as 0.4. When G is not zero, then the second
process of electron emission (i.e. , by photoelectric eBect
of photons from "destroyed" metastables) may also be
contributing to iso. For this situation we outline a
method of analysis in the following section.

H. APPROXIMATE ANALYSIS FOR COMBINED
PROCESSES

tA'hen both emission processes are active, then it is
readily shown that Eq. (17) becomes

0.2
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FIG.' 7. The fraction of metastables lost at the cathode, fq, in
the gas, fo, and at the anode, fg, plotted as function of the elec-
trode spacing for two values of G and an assumed initial distribu-
tion of metastables given by

p=o, x&o.i,
p=t, & 0», ~&O.r.

Note that in the text the notation f I„f „f, is used for these
quantities.

If the integration indicated by Eq. (10) is carried out
for a&, and if we recall the de6nition of R~ and apply Eq.
(1), then Eq. (31) becomes

( GX' ) ipis& ( GX" )--)...
i ~-+', (=-.. . . I

1+
x2D ) iI(i)+isa) ( a2D

where

represented by the 6rst term of their in6nite series ex-
pansion. Then f,k,

'=0 5, since the. first term has a sine-
wave distribution in x, and so exactly one-half of the
photons go to each electrode. For Pz& and Pgj we apply
Eqs. (12) and (14), and with these substitutions, Eq.
(30) becomes

( GX' ) (1 Rg)iso —(~D /X)+GX/7rD
f...i v.+v. ,~'D„) is,+iI Cy

{31)

"For the limiting case in which the P-functions are represented
by a single exponential, it is readily shown that

f f,=0.57' D /(7h D +GX~).
The curves in Fig. 7 can be closely approximately at large X by
this expression multiplied by 0.76. Note also that if'D is inversely
proportional to the gas pressure, and G is proportional to the
pressure, then f~g, is a function of pX alone.

1 2n;X

Z (n;X)'+m'

n+ ( nX)
1—e& '~ 'x& sin~ s.

I n,x.)

—cos( s
i

(33).X) I
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Experimentally, we can evaluate 0.;so and 0,;X from
studies of ir/i0 as a function of X. Thus, we know P
Similarly, we can evaluate D and 6 from a study of
the variation of v ~ with X. Hence, all quantities on the
right side of Eq. (32) can be measured experimentally,
and so a plot of the right side against the quantity
GX'/+D should give a straight line with a slope of
a y„f„, and a y intercept of n y f„, Th. is is the
method used to interpret some of the experimental data
presented in II.

I. DISCUSSION AND SUMMARY

The form of the slow component of current, i,(t), in

a pulsed Townsend discharge is closely described by a
single exponential plus second term of higher time
constant much smaller in amplitude. This term is
negative in amplitude when the metastables initiate a

current by releasing electrons in the process of bom-
barding the cathode. The amplitude is positive (i.e.,
adds to the Grst term) when the electrons are released
through photoelectric action of photons from meta-
stables converted in the gas.

From a study of experimental current patterns one
can get with little trouble the fundamental time con-
stant of decay, ~&, of the metastables in the gap. This is
valuable, because by studying the variation of 7.1 with
electrode spacing and gas pressure, the diffusion con-
stant and volume destruction probability of metastables
are readily obtained. In addition the quantities a &,
and o. y, can be obtained. Applications of these
methods of analysis are described in II.

The author wishes to express his appreciation to Miss
C. L. Froelich and her co-workers for assistance in
carrying out computations.
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Studies of v-Processes of Electron Emission Employing Pulsed Townsend Discharges
on a Millisecond Ti~e Scale

J P. MOI NAR

Bell Telephone Laboratories, Murray Hill, Nnv Jersey
(Received December 8, 1950}

The relafive amounts of electron emission from the cathode in a Townsend discharge caused by ions,
phptons, and metasfables have been studied experimentally for several cathodes in argon, using pulsed-light
stimulation of the discharge. The current initiated by metastables exhibits a slow build-up and decay, thus
permitting easy separation from the faster rising eGects of gas ionization and electron emission by photons
and ions. Time constant studies of the slow component yielded a diffusion constant for metastable argon
atoms pf 45 cm~ sec ' at one millimeter pressure. The efficiencies of electron emission by metastables and
ions was found fp be closely the same, while the quantum yield for photon emission was found to be generally
smaller.

I. INTRODUCTION
' ~LECTRON emission from the cathode in Townsend

~ or glow discharges is generally believed to arise

from the bombardment of the cathode by ions, meta-

stable atoms, and photons. "These processes are com-

monly called. the p-processes, or sometimes the y-mech-

anism, after the coe@cient y used in the Townsend

equation to describe the part of the amplification of an

electron current between electrodes in a gas attribu-
table to these processes. The experiments in this paper
were directed towards an evaluation of the relative
amount of electron emission produced by the ions, the
metastables, and the photons in the case of argon gas
with several cathode materials. An incidental by-product
of these studies was a determination of the lifetime of
metastable argon atoms.

The method employed was similar to that described

by Kngstrom and Huxford. ' A Townsend discharge was

& I.g. I,peb, Fundamental Processes of Electrical Discharge in
Gases (John Wiley and Sons, Inc. , New York, 1939}.

~ M. J. Druyvesteyn and F. M. Penning, Revs. Modern Phys.
12, 87 (1940}.

~ R. W. Engstrom and %'. S. Huxford, Phys. Rev. 58, 67 (1940).

stimulated by photoelectrons generated by a shuttered
light beam shone on the cathode of a gas-filled tube,
and the transient character of the resultant current
between the electrodes was observed by an oscilloscopic
technique. The current is found to be composed of a
component closely in step with the stimulating light
pulse and a component which lags by an amount of the
order of a millisecond. The second component is initiated
by the action of metastables, which have lifetimes in
the discharge space of this amount of time. The fast
component includes the primary electron current am-
plified by gas ionization and electron emission from the
cathode caused by ion and photon e6'ects, all of which
reach a steady-state value in a time of the order of ten
microseconds. 4 From an analysis of these patterns the
fractions of the electron emission produced by meta-
stables and by ions and photons were obtained. '

4 A parallel study of pulsed Townsend discharges on a micro-
second time scale, in which these effects can be resolved, has been
carried out by J. A. Hornbeck of these laboratories.' A theoretical analysis of transient form of the current in the
Townsend discharge under these conditions is described in a com-
panion paper (hereafter referred to as I}, and reference will be
made to the relations derived in that paper.


