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It has been previously determined that an electron has no bound states in the Geld of the magnetic
monopole. Seeking to establish the character of the monopole's interaction with the more complex Gelds
of atoms and molecules, this paper investigates charged particles, of arbitrary magnetic moment, moving
simultaneously in the Geld of the monopole and an external electric Geld. It is concluded that the monopole
can be coupled to matter with energies comparable to, but not significantly greater than, the chemical
bond, reservations being made in the case of hydrogen where the lowest energy state depends upon the
mass of the monopole.

Speculation regarding the creation of monopoles by primary cosmic radiation and their consequent
motion in the earth's magnetic Geld instigated an experimental attempt to arrive at an upper limit for the
rate of such creation. The results of this experiment determine that the number of monopoles arriving at
the surface of the earth is less than 10 ' per cm' per sec.

INTRODUCTION
'
gAST work' has shown that in the absence of an

external electric field, an electron cannot be bound
to the magnetic monopole. ' Normal matter, however,
is built upon such external electric fields. Hence, this
work was undertaken to determine whether the presence
of the magnetic monopole could reduce the energy of
the electronic structure of an atom and so lead to
bound states. The problem is dearly quite complex
and is approached by consideration of the extreme
cases. The total electric energy of an atom is therefore
determined with the monopole first at or very near the
nucleus, and second, removed to considerable distance.
Conclusions may then be drawn concerning the magni-
tude of binding energy for intermediate cases.

The program of this investigation is: (I) to determine
the eigenstructure of a charged particle with arbitrary
magnetic moment in the field of a magnetic monopole
and, using these results, to discuss the interaction energy
of the atomic nuclei and the monopole; (II) neglecting,

~ This paper is based on a thesis submitted in partial fulfillment
of the' requirements for the degree of Doctor of Philosophy at
the University of Chicago.' P. Banderet, Helv. Phys. Acta 19, 503 (1946).

~ E. Teller has observed that this conclusion is an immediate
consequence of the Dirac equation for an electrically charged
particle, since in the absence of an external electric Geld, yet
with any magnetic Geld describable by a vector potential, Dirac's
equation can have no energy eigenvalue whose absolute magnitude
is less than mc'.

for the moment, the foregoing interaction energy, to find
the eigenstructure of an electron in the combined field
of a monopole and an atomic nucleus both situated at
the origin; (III) to perform a variation-perturbation
calculation on the many-electron problem built with
the eigenfunctions found in (II) in order to determine
whether the resulting total electronic energies are
greater or less than that of the corresponding normal
atom; (IV) to consider the approximate diamagnetic
and paramagnetic energies of an electronic structure at
some distance from a magnetic monopole, and to sum-

marize these various findings in a conclusion regarding
the monopole's interaction with matter.

In the last section, consideration of the possibility of
monopole creation by cosmic radiation and the conse-
quent motion of these particles in the earth's magnetic
field leads to the description of an experiment which
has set an upper limit on the arrival of monopoles at
the earth's surface.

I. THE DETERMINATION OF THE EIGENSTRUCTURE
OF A SPIN I/2 PARTICLE OF CHARGE Zl e

I
WITH

ARBITRARY MAGNETIC MOMENT IN THE
FIELD OF A MAGNETIC MONOPOLE

1. A vector potential of a monopole of charge M,
situated at r=O, satisfying divA=O, curlA= 8=Mr/r',
is

A e =M/r(i —cose/sin8)
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and The form of the two middle terms suggests trying
Ay=A„=O. (I 1.1) f1=x&i i(1—x)&

—'-"*iN (I 3.6)
2. The separated hamiltonian, to the Pauli approxi- which leads to

mation including an arbitrary radial electric field, but
neglecting the spin orbit interaction and terms of
higher order, is: —LP(P+1)—»,«]I= —pou, (I 3.7)

where
1 ( Zl. ! ) I.la 3f

H= }P—— & }+&(r)—&.: —0., (I 21)
2pE c ) 2mc r

P = ', (!m-! + [
m —2» ! ).

If I is written as a series in x,

(I 3.8)

A' 8 8 1—r2—+
2yr' Br Br sin'8

8
sin8—sin8—

88 88

}+ i —(»1 —cos8) —+ye, + V(r), (I 2.2)
8y

' '!

where 8, is the number of magnetons carried by the
particle of charge Z!e! and mass m. . 8,=Z for a Dirac
particle. II may be written

I=QC„+„x"+' (I 3.&))

then s= 0, —
! m}, the latter indicial being unacceptable

and

C„+| [n(n 1)—+2(1+P)m+P(P+1) —
Kg p)

. (I 3.10)C„[n(n+1)+(1+!m! )(n+1)$

The condition that this series terminates is

in which $0= 1'(1'+1)—».2, (I 3.11)
y= B,(p/rr«, )» (I 2 3) where

1'=~+P=!»*},! '!+1, !»*!+2 (I 312)
».=Z!~!~/&~ (I 2.4)

where, as first concluded by Dirac, ' 2x, must be an
integer.

3. Solution of the angular operator when y=0.
Consider

cos8 sin8e '&

This eigenvalue has previously been obtained by
Tamm4 and Fierz. '

4. The solution of the angular operator for arbitrary
y. Since

1 8 8
[

8
sin8—sin8—+ ——i», (1—cos8), (I 3.1)

sin'8 88 88 !8@ consider

which commutes with I.,= ih(B/—8&) (but not L').
Hence, if it is assumed that

)
sin8e+'& —cos8

2'+y cos8 y sin8e '&

p sin8e+'& ' —y cos8
(I 4.1)

then
2'f)C' = Poo@, — where g commutes with j,= —h(8/8@)+ i2kn, .

Hence, if it is assumed that g'04= —P84, then

where

Therefore

eim$

m=Q, &1, &2, (I 3.2)

Therefore,

e f(m —I) P

et =0, &1, +2, . (I 4.2)

1 8 8 1—sin8—— Im —», (1—cos8) }' 8
sin8 88 88 sin'8

= —l108. (I 3.3)

Now let

8 8 1—sin8——— !(m —1)—«, (1—cos8) }
"-

sin8 88 88 sin'8

+y cos8 Oi+y sin882= —POI
x= sin'-'8= (1—cos8)/2.

8 8 (m/2)' », (»,—m, )—x(1—x)—— +](2 8
Bx Bx x(1—x) (1—x)

(I 3.4)

1 8 8 1—sin8—— [m —».(1—cos8) }'
sin8 88 88 sin'8

(I 4.3)

= —Pp9. (I 3.5)

'P. Dirac, Proc. Roy. Soc. (London) A133, 60 (1931); Phys.
Rev. 74, S17 (1948).

—~ cos8 e,+p sln8e, = —I3e..

4 J. Tamm, Z. Physik 71, 141 (1931).' M. Fierz, Helv. Phys. Acta 17, 27 (1944).
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As in (I 3.3) to (I 3.7), the form of solution attempted is

leading to

e =xi' -&t(1—x)11 -&-Q Iu

x&~ m~ (1 x) pm —QQ, [v
(I 4.4)

820 Bs
x(1—x) +[(1+l

m —1l)—2(1+P)x]——an.
Bx" ax

+y(1—2x)u+2y(1 —x)' ~x' —~v= —pu
(I 4.5)

8'v
x(1—x)—+[(1+

l ml) —2(1+P)x]—nv
IPx Bx

1 when (m —2«.) ~& 0, Qu&0

0 all other cases

1 when (m —2«.-) &0, Qn&0,
0 all other cases

&uI =

1 when (QQQ
—2«,)&0, m&0

~oo=
0 all other cases

1 when (QQQ
—2«.) &0, Qn&0

0 all other cases.

—y(1 —2x)v+ 2'(l —x)"xsu = —pv,

with a =P(P+1)—K,
"- where P is de6ned in Eq. (I 3.8)

and P and a are similar expressions with (QQQ) replaced
by (QN 1), a—nd

A=I for (QQQ
—2«,)&~0, B=1 form&0

(I 4.6)
c'I =0 for (QQQ

—2«,) &0, B=O for QQQ &0.

The symbol 6ggy is used to distinguish the four cases,
where

where it is to be noted that in no case (Qgs) does an x'
term actually appear in the brackets multiplied by p.
In subtracting the foregoing equations,

8'(u' —v') 8(u' —v')
x(1—x) —2(1+P+Qii)x

8L

—(n+2Qgg(1+P))(u' v'—)+ ( 1—) "&+'&Qy(u' —v')

B(u' —v') lml 1+ {QQQl

+(1+ { QQl l+2Q») +QQQ u —Qly v

Bx x x

BN

+ {2(QQ&+ Qoo) 1}—= —p(u v'), (I 4.10)
8;l'

since

1+P+Qyg= 1+P+QQQ I a+ 2Q»(1+P) =a+ 2QQP(1+P).

Now expressing u' and v' as descending series in x,

u'=x"+Cp" '+; r'=x"+C.x" '+. (I4.11)

then the coefficient of x" in (I 4.9) is

—n(n 1)—2(1+P+—Q») n [a+2Q—~&(1+P)]
—(—1)"'+'"—2y(Cg —C )= —P, (I 4.12)

while the coefficient of x" ' in (I 4.10) is

(C~—CQ) [(n—1)(n —2)+2(1+P+Q») (n —1)

+ {a+2.»(1+P)} ( 1)—"'+—'» ff]—
= [1—2(Qii+ Qso)]n+ l

m
l (Qoo

—Qss) —Qsi (I 4.13)

Eliminating (C~ —CQ) between these last two equations,
and letting l"=n+P+~~I, then

/= l'"—«,'&[1'"+2y{
I
~

I
(Q» Qoo)—

P( 1)ni+Q&Q}+&Q]k

which reduces to

P =P'2 —K '~ [1"Q—K Q+ (KQ
—P)']1 (I 4.14)This notation permits writing all four cases at once.

If the further substitution

u= (—1)"'+""x'"u and v= x'"v'

is made, then

x(1 x)B u'/B—x+[QQQ2(1 —x)+(1+ lvQ —1l)

2(1+P)x]Q7u'/Bx—[a+Qpp {2(1+I)—
—(1+

l
m —1l)/x}]u'+y[(1 —2x)u'

+2(—1)~oi+~oQ(1 —x) QQi+»Qx~u+«Qv'] — Pu'

Q»=-'. (lQu —2«.—1l+1
—

I
~—2«*l)(l ~—1I+1—

I
~ I) (I 415)

To understand the lowest roots of P, it is observed that
both when QQq

——1 and QyQ=1, P=
l

K,
l

and therefore
)'"—~,2=0 for n=O. In these cases C~=C2=0 when
n=0 and Eq. (I 4.13) becomes identically zero so that
Eq. (I4.12) alone determines p. Indeed when Q&Q

——1,
/= K,—y while when QQ&

——1, p= y —K„which are the
two possible roots of the general form (I 4.14) when
l'"—~,2=0. However when @go=1 K &0 while when
~o~= 1, ~,&0, hence this lowest root may be written

(I 4.8)

and

x(1—x) &'v'/&x'+ [Q112(1—x)+(1+ l
QQQ

l )
—2 (1+P)x]Bv'/Bx —[a+Qgg {2(1+P)
—(1+ l

m {)/x}]v'—y[(1—2x)v'

—2(—1)~01+~QQ(1 —x) Qll+~»xQQ1+QQQu ]— Pv 7

P=
I «*I -(K*/I «*l)~ (I 4.16)

in agreement with the results of (I 3.10) as y approaches
(I 4 9) zero.

Since Q&& is implicitly contained in p, it is here repre-
(I 4.7) sented in terms of Qu and K„
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TA.BLK I. The energy levels and degeneracies of normal hydrogen
compared with those of Eq. (II 1.8).

the case of the proton where 8, ~
——2.79,

Pi=
I x,-il [I—E, i(p/n4-i)]

Degeneracy

1

3
1

6
5
1

6
10

7
1

6
10
14
9
1

1

g2
2

~/6

2+ g2

+12

3+ +2

+20

Hydrogen
degeneracy

50

from (I 4.16), (I 2.2), and it is seen that this may be
negative for sufficiently large values of the reduced
mass.

It has been shown' that Eq. (I 5.1) has only solutions
of positive energy for p&~ ——', but when p& —

~ the
interaction is such that arbitrarily low energy eigen-
values may be found. Hence, relativistic effects must
be considered around this critical value of P. The
monopole, then, can be bound to the proton if its
mass is comparable to the proton mass, but the exact
character of this situation is not clear. '

On the other hand, these considerations indicate
that in the interaction of the magnetic monopole with
all other atomic nuclei, no bound state exists.

When the monopole is very massive compared to the
charged particle, then the reduced mass p,—m„and if
this is true for the electron, where Z= —1, 8,= —1
and if x, has its smallest value x, ~

———s'(M/~M~),
y= ——',(M/IM~) then p can be reduced to

P= l(t+1)~[l(l+ I)]», (I 4.17)

where l=o, 1, 2, . This last result has also been
obtained by Banderet' as the eigenvalue of the angular
operator in the relativistic treatment for an electron
in the field of an infinitely massive monopole.

5. The lowest states of the atomic nuclei in the field
of the monopole.

The radial equation is, in this case

(I/r ')(8/Br) r'(8/Br)R -(k'+ P/r')R =0 —(I 5.1)

II. THE ENERGY LEVELS AND EIGENFUNCTIONS OF
AN ELECTRON IN THE FIELD OF A MONOPOLE

AND A PARTICLE OF CHARGE Zle~ BOTH
SITUATED AT THE ORIGIN

1. The radial equation obtained from separation of
the more general hamiltonian of Sec. A is:

(1/r')(8/Br)r (8/Br)R (k +U(r)+—P/r2)R=0 (II 1.1)

where k'= —2p/A, 'E and U(r) = —(2p/A, ')(Ze'/r). For
the electron then, where P=l(l+1)&[l(l+I)]& when

~

«,
~

=-', , and for positive Z, we consider negative E.
Let p=2kr and let n'= (p/k')(Ze'/k), exactly as for

the normal Laguerre polynomials, then

(1/P )(~/~p)P (~/~p)R

+( 4+n'/—p P/p')R—=O (II 1.2)

asymptotically E=e»Ii,
where k'= 2'/k2 and p is t—he reduced mass of the
monopole-nucleus system.

. For the spin zero nuclei, the lowest value of P is
P~= ~x,

~

from (I3.11), while for nuclei where
~

K ~))p
(i.e., )I&~B, ~), P~—~x,

~

from (I4.16). However, in
let F=p'L(p),

f2

Ep

n' —1 P——F=0 (II 1.3)
P P-

TABLE II. The total electronic energies of normal atoms and
atoms with a monopole in their nucleus, assuming no electronic
interaction. Energy in units of Z'( —e'/2a).

—1+(1+4p) &

= ~-', ~[I(I+I)]&~——,
' (111.4)

2

1
2
3

5
6

10
16
28
40
60
80

Atom

H
He
Ll
Be
B
C
Ne
S
Ni
Zl
Nd

Hg

Normal

1
2

2.250
2.500
2.750
3

4.666
6
6.750
8
8.800

Monopole

1
1.500
2

2.500
2.750
2.922
3.508
4.613
5.575
6.662
7.638
8.690

R=e»P*L(p) (II 1.7)
6N. F. Mott and H. S. W. Massey, The Theory of Atomic

Collisions (Oxford University Press, London, 1933), p. 40.
7 A paper is being prepared which considers a monopole with

spin in its interaction with the proton. The results indicate that
the monopole mass which gives rise to the critical value, P= —

&,
is equal to the proton mass.

the other root leading to unacceptable origin divergence.
Therefore

pL"+[2(s+1)—p]L'+(n' s 1)L=—O,—(II 1.5)

where L, is a polynomial of order n" if

n'=n"+s+1=n"+ ', + ~-', &[l(l+1)-]~~. (II 1.6)

Hence,
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TABLE III. The unnormalized eigenfunctions of an electron in the field of a charged particle and a monopole,
from Eqs. (I 4.4) and (II 1.7).

(—sinlSe 'e t +cosseS ) )e *"'

IPQM+g = (—cosl'SLsinssS+ (3—P)j t +sin&S coss&Se+'e i )e *"~v'e'res

1
$/210= sin)8 cos +8——e "~ +cosy~8 sin $8—— e '"~4 r&

pq2e I
——(cossS sin'qSe ' e t —sinqsLcos'-, 'S+(3—p) je 'e f )e "~4'~r4' '

4"oo=(—sinqae 'e t +cos-', s l )e &*'~ (t —e'er/a) where P =2 —v2.

E„.= —(e'/2a) (Z'/rs"), (II 1.8)

where a= fs'/pe'.
The multiplicity of each eigenvalue in Eq. (II 1.8)

follows from the (21+1)-fold degeneracy of each l value
and from the fact that, for a given /~& 1, each n' value
resulting from (II 1.6) with the upper sign is obtained
once more by using the lower sign and replacing n" by
m"+1.

2. Table I implicitly compares the energy levels of
Eq. (II 1.8) and the degeneracy of each level with those
of normal hydrogen. The table actually lists the values
of this parameter n'of .(II 1.6) which is inversely
proportional to the square root of the energy.

Table II compares the total electronic energies of
various normal atoms with those containing a monopole
on the assumption that there is no electronic interaction.
The values tabulated after Z=6 are alternately those
corresponding to maxima and minima of the energy
difference between the normal and monopole atoms.
It is to be noted that, in this approximation, the mono-
pole increases the total electronic energy in all cases
except hydrogen, beryllium, and boron. A perturbation
calculation should indicate whether the monopole-
electron interaction can cause binding of the monopole
in beryllium and boron, while the total energy in
hydrogen depends upon the monopole-proton inter-
action discussed in (I 5).

Table III lists the unnormalized eigenfunctions,
obtained from (I 4.4), (I 4. /), (I 4.11), s,nd (II 1.7),
which are necessary in the calculation mentioned above.
The vectors t' and J, indicate the orthogonal eigen-
functions of cr, . The total eigenfunction is identified by
the three indices e', n, and m, where n' is the energy
parameter of (II 1.6), while es and ere are the parameters
defining the angular part of the wave function as in
(I 4.4) and (I 4.11).

3. The perturbation variation computation of the
total electronic energies of the beryllium-like and boron-
like atoms proceeds in a conventional and somewhat
tedious fashion. The technique and results were checked
by performing the identical manipulations to approxi-
mate the energies of the normal atoms as well. These
computed energies are listed in Table IV and com-
pared with the observational values for the normal
atoms. These results demonstrate that a monopole at

Perturbation computation Observed

Z
2

4
5

Atom
He
Be

+

Normal
5.70

28.4
47.2

Monopole
4.63

25.2
43.5

Normal
5.81

29.35
48.76

or near an atomic nucleus markedly increases the total
electronic energy. However one might have expected
that normally paramagnetic atoms would attract the
monopole. While such attraction is overcompensated
by diamagnetic efI'ects when the monopole is at «=0,
the behavior of the monopole at other distances must
still be investigated.

III. APPROXIMATE CONSIDERATIONS % ITH THE
MONOPOLE AT SOME DISTANCE FROM

THE NUCLEUS

1. The previous sections have determined the ener-
getic consequences of a magnetic monopole near the
nucleus of the atom. The problem of the monopole at
an arbitrary distance from the nucleus is far more
complex and is dealt with here in a most approximate
way.

When the monopole is at considerable distance from
an electronic structure, the change in its energy, hE,
is the sum of the normal paramagnetic and diamagnetic
terms,

AE =E +Ee= —(eit/2Iec)XQ;(m, '+ 2s, ')

+ (e'/pc')K'P;(xi'+yP) (III 1.1)

where the magnetic field is X=M/R' and R is the
distance of the monopole of charge M from the struc-
ture, where i is summed over the various electrons and
ns, ', s, ', x;2, and y;2 are the eigenvalues of the usual
operators of the s component of angular momentum,
spin, and coordinate position, respectively.

In an attempt to judge the minimum energy a
normally paramagnetic substance may have in the field
of the monopole, the minimum of hE will be found for
the case of the hydrogen atom where m, =0, s,= ~, and
x =y' = (fP/pe ) = ae . Then

c)DE/r)R =0= 2eM fs/2iecR' 4e-'M' 2ae'/—8pc'Rs
(III 1.2)

TABLE IV. The computed total electronic energies of helium,
beryllium, and singly ionized boron for normal and monopole
atoms. Energy in units of (—e'/2a).
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FIG. 1. Schematic diagram of an instrument to detect magnetic
monopoles arriving at the earth's surface.

tion leads to a maximum value for hE;„—7 ev at
R~0.56ao, quite similar to the approximation (III 1.4).
For the many-electron configuration, one sees from
Eq. (III 1.1) that while each electron still contributes
a diamagnetic term, on1y the few electrons in unfilled
shells or excited states may be paramagnetic. Hence,
one would anticipate that the monopole could be
coupled to matter with energies comparable to the
chemical bond but not significantly greater.

Of course, no estimate of nuclear forces is possible
and these may be attractive, repulsive, or neutral.
However, a sizable barrier confronts the monopole
before it can be inQuenced by the nucleus.

but eM/he= ), so (5 /2'')(1 —a0'/2R') =0. Hence,

R ao/v2 (III 1.3)

and the minimum energy

AE~;n= —k'/2yao'+ 0'/4pao'= —6.76 ev. (III 1.4)

2. This last result is drawn in a region of E outside
the valid range of the approximation (III 1.1). How-
ever the use of a trial wave function and the complete
hamiltonian corresponding to (III 1.1) permits the
establishment of both an upper and lower limit for the
binding energy. This has been done for a trial function
similar to P&00 in Table III and, after lengthy computa-

IV. SOME CONSEQUENCES OF THE CREATION OF
MAGNETIC MONOPOLES BY PRIMARY COSMIC

RADIATION AND EXPERIMENTAL CON-
SIDERATONS %MICH SET AN UPPER

LIMIT FOR SUCH CREATION

1. The energy needed for the production of a mono-
pole pair is available in the primary cosmic radiation
even if the monopole is considerably heavier than the
proton. ' Once created' in the atmosphere the initially
energetic monopole would reach a low terminal velocity
in the earth's magnetic field in a few meters because
of its large and velocity independent ionization loss
(about 5 Mev/cm N.T.P.). No conventional cosmic-
ray techniques would have detected these monopoles
moving along the field lines at terminal velocity while
the relatively few energetic monopoles created near a
nuclear emulsion or a cloud chamber would probably
stop in the protective covering of these instruments.
For example, one-fourth of a millimeter of brasswould
stop a monopole with 1 Bev of energy.

If the monopole were strongly bound to matter by
unknown nuclear forces or, if more massive than the
proton, bound to it by the forces discussed in Sec. I-S,
then it would be possible for monopoles to depolarize
the earth. Indeed, if this is so, a monopole arrival rate
at the surface of the earth of one per cm' per sec would
cancel the earth's magnetic field in a month. Hence
one could tentatively conclude that if monopoles have
been accumulating in the earth's crust for the last
billion years, then their arrival rate must be less than
10 "per cm' per sec, for there is no measurable mag-
netic charge associated with surface matter.

However, if the conclusions of Sec. III are correct and
the monopole is bound only weakly to paramagnetic
material, then monopoles could diffuse through the
earth and would have little effect on the magnetic field.
In this case as many positive monopoles would be
moving one way as negative monopoles the other, and
once beyond the earth's atmosphere, the monopoles
would be hurled free of the earth's dipole due to their
inertia. The only effect then is to dissipate part of the
energy stored in the earth's magnetic field which could
be restored by the interna1. regenerative processes
hypothesized in recent literature.

2. A simple experiment has been performed to detect
those monopoles arriving at the surface that can diffuse
through the earth at any rate greater than one kilometer
in a billion years. Figure 1 is a schematic diagram of

' Although postulated as a particle completely analogous to the
electron, the magnetic monopole has a "6ne" structure constant
JPfhc= 137f4, and consequently such processes as monopole pair
production cannot be dealt with by the conventional weak
coupling approximation. However, a computation based on the
assumption of weak coupling would conceivably be correct within
several orders of magnitude. Such a computation, for monopole
masses comparable to the proton mass, implies that the arrival
of monopoles at the surface of the earth would be roughly one
per cm' per sec.' The monopole, to conserve its charge, will continue to exist
indefinitely since the probability of an annihilation collision will
be vanishingly small.
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the instrument constructed. A long solenoid draws
monopoles moving at terminal velocity along the earth' s
field lines through a thin window into its evacuated
core. The monopoles are then accelerated to several
hundred Mev and pass through a second window to
strike a photographic emulsion. The experimental
requirements and the conclusions drawn from operating
the instrument are described in the following para-
graphs.

The monopole, of charge M=(137/2)e emu, gains
(137/2)300H ev/cm in free fall in a field of H gauss.
Hence in a field of 250 gauss, one meter long, the
monopole gains 500 Mev. As indicated in the figure,
monopoles moving along the earth's field lines would be
drawn to the upper surface of the evacuated" brass
tube which forms the core of the solenoid. Here they
diffuse through a 10 mg/cm' mica window and attain
500 Mev in the one-meter fall. On passing through a
second mica window at the lower end of the solenoid
the monopole will lose less than 50 Mev, while its loss
in the photographic emulsion which it then strikes
will be roughly 1 Mev per micron.

The effective cross-sectional area, AE, of the earth' s
field lines drawn into the solenoid can be found by
observing that all the Aux drawn into the upper end of
a solenoid comes from the earth's field in any solenoid
for which

(IV 2.1)

where H is the external field due to the solenoid alone
near its midpoint; H, is the internal field of the solenoid;
A, is the cross-sectional area of the solenoid and u its
half-length; Hg is the earth's field. In the solenoid
constructed this inequality (IV 2.1) holds, hence

A EH I,;——A,H, . (IV 2.2)

It should be noted that no ferromagnetic material
which might distort the magnetic field was placed near
the solenoid and that it was directed along the local
field lines in an exposed place.

"The pressure was kept ~veil beloiv one micron.

Careful scanning of the emulsions exposed during the
two week period of operation showed no heavy tracks
other than the few short and randomly oriented tracks
of alpha-particles. (The monopole tracks should be
heavier than those of alpha-particles, several hundred
microns long, and oriented in only one direction. )

The upper limit" of the monopole arrival rate set as
a consequence of this negative result is 1/AgT, where
As H, A——,/HE from (IV 2.2) and T the time of obser-
vation, which was 1.2&(10' sec. In this equipment
H, =250 gauss; A, =20 cm', while Hg=0. 6 gauss.
Therefore A g—8300 cm' and

1/AET& 10 "monopoles per cm' per sec. (IV 2.3)

The corresponding cross section for monopole pro-
duction by primary cosmic radiation is

(IV 2.4)

where C is the number of primary cosmic particles
crossing a cm' per sec at altitude x and LV is the number
of atmospheric nuclei per cm' at altitude x. The value"
of J'CNdx is approximately 3.8X 1024 per cm' per sec
for primary protons alone; hence,

0 ax&3X10 "cm'. (IV 2.5)
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"The statistical significance of the phrase "upper limit" is that
an arrival rate n times as great as that established has a probability
ofe "."B. Rossi, Revs. Modern Phys. 20, 566 (1948).


