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ARDEEN' ' and Frohlich' s have recently proposed theories
of superconductivity based on interactions between con-

duction electrons and the zero-point vibrations of the lattice.
In his development, Bardeen views this interaction as giving rise
to Brillouin zone boundaries with small energy gaps { kT,) at the
Fermi surface of the electron distribution. Electrons with energies
near the Fermi surface have small effective mass in consequence of
the high curvature in their energy versus wave number relation at
a zone boundary. Bardeen suggests that these are the super-
conducting electrons and indicates that it is possible to give a
consistent interpretation for properties of superconductors in
terms of the large diamagnetism exhibited by a gas of non-

interacting electrons with small effective mass.
In this note we study the effective mass of conduction electrons

which interact with the zero-point lattice vibrations. Fr5hlich has
calculated, with second-order perturbation theory, the self-energy
of an electron interacting with the lattice normal modes of vibra-
tion (the phonon 6eld}. The energy denominators vanish and this
perturbation procedure becomes invalid for virtual intermediate
states which conserve energy. ' Bardeen has avoided this difhculty
with a variational treatment that leads to band structure in the
energy versus wave number curve for the electrons. However, this
result is obtained only after a questionable approximation for the
mean energy of the virtual intermediate electron plus phonon
states. We have calculated the energy of electrons interacting with
the lattice vibrations by means of a Bloch-Nordsieck-type canoni-
cal transformation. s The B-N treatment is particularly suited to
this type of problem, in which the energies associated with the
crystal normal modes that are excited at low temperatures are
very small compared with the electron energies. In this case
neglect of electron recoil upon scattering with phonons introduces
but a small error. Perturbation theory is avoided and, along
with it, the vanishing energy denominators. We interpret our
result as arguing against the conclusion that electrons have small
effective mass in consequence of their interactions with the lattice
normal Diodes.

The hamiltonian for electrons moving in a periodic lattice
potential and interacting with normal modes of the crystal may
be written as in reference 1. ¹glect of the electrons' recoil upon
scattering with the phonon Geld gives a hamiltonian that is linear
in the electron momentum operators —ik grad;. The Schrodinger
equation with this hamiltonian is exactly soluble by means of a
canonical transformation of the type introduced originally by
Sloch and Nordsiecks in their study of the "infrared catastrophe, "
and used more recently in attempts at nonperturbation solutions
for meson problems. ' The eigensolutions correspond to a product
of Bloch functions for individual electrons moving in a periodic
lattice potential, multiplied by hermite functions for displaced
zero-point oscillations of the phonon Geld, and multiplied by a
factor expressing the interactions between the different electrons
in consequence of their coupling with the lattice vibrations. The
energy eigenvalues differ from those of the band theory for elec-

trons moving in the periodic potential of the static lattice in the
following way. In the periodic potential of a static lattice with
period a, there occur forbidden energy bands for electrons with
momenta in the neighborhood of ew;~ wk(n;/a;), where the n; are
integers. Electrons with these momenta suffer Bragg reflection.
The lattice vibrations have the period I., the crystal dimensions,
and they superimpose, on the above bands, forbidden energy
bands for electrons which satisfy an analogous Bragg condition
with the lattice vibrations,

cog' ——Lv (Ag —k„)j'. (&)

Here cd, the angular frequency of the lattice vibrations with
wave vector Ag ——2~(fI/LI, f2/Lp, f3/LI), is given by coy =sh y, s is
the velocity of sound in the crystal, the f; are integers, and
h„=2~(nI/al, n~/a~, n3/a3) is a reciprocal lattice vector. ' The
width of these forbidden bands is

~(amplitude of the lattice potential)/
{number of unit cells in the crystal)&.

It is thus very small. These narrow forbidden bands occur through-
out the electron distribution at momentum values that satisfy
the condition in Eq. (j.). They do not critically change the energy
levels of the conduction electrons and hence do not critically alter
their effective mass. A 6rst-order perturbation treatment of the
neglected electron recoil yields a small correction (~s/v) to
these results.

In summary, our calculations do not indicate a small effective
mass for electrons in consequence of their interactions with lattice
vibrations. The energy shell distribution as proposed by Frohlich
does not appear to be energetically preferred. When other im-

portant factors such as the inierelectron coulomb repulsion are
considered, one may hope to 6nd an adequate theory of super-
conductivity developed along lines of these very attractive
physical proposals of Bardeen and Fr5hlich. A manuscript dis-

cussing the details of this calculation is in preparation. Valuable
discussions with Professor L. I. Schiff are gratefully acknowledged.
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A MECHANISM will be discussed here to account for the
anomalous intensity distribution of the rotation lines in

certain fundamental bands in the infrared spectra of triatomic
molecules, notably in the 3.8-p, band in the H&S spectrum. The
theory assumes that it is necessary to take into account the mixing
of the wave functions for a given rotation state in a vibration level
with the wave functions of rotation states in other vibration levels
in order to calculate the intensities with accuracy. The mixing
must be between wave functions of the Grst excited states of the
three vibration frequencies to give a 6rst-order effect. Such a
mixing may come about through the coupling of the vibrations
through the Coriolis operator p&,/I, the z axis having been
chosen as the axis of spin of the molecule. The mixed wave function


