
PH VSICAL REVIE%' VOLUME 83, NUM BER 4 A UGUST 15, 1951

.~etters to tee . Ki.itor

UBLIChTIOS of brief reports of important discoveries ie
~

~

physics may be secured by addressing them to this department.
The closing date for this department is joe meeks prior to the date of
issue. Eo proof mill be sent to the authors. The Board of Editors does
not hold itself responsible for the opinions expressed by the corre-

spondents. Communications should not exceed 600 mords in length.
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ARDEEN' ' and Frohlich' s have recently proposed theories
of superconductivity based on interactions between con-

duction electrons and the zero-point vibrations of the lattice.
In his development, Bardeen views this interaction as giving rise
to Brillouin zone boundaries with small energy gaps { kT,) at the
Fermi surface of the electron distribution. Electrons with energies
near the Fermi surface have small effective mass in consequence of
the high curvature in their energy versus wave number relation at
a zone boundary. Bardeen suggests that these are the super-
conducting electrons and indicates that it is possible to give a
consistent interpretation for properties of superconductors in
terms of the large diamagnetism exhibited by a gas of non-

interacting electrons with small effective mass.
In this note we study the effective mass of conduction electrons

which interact with the zero-point lattice vibrations. Fr5hlich has
calculated, with second-order perturbation theory, the self-energy
of an electron interacting with the lattice normal modes of vibra-
tion (the phonon 6eld}. The energy denominators vanish and this
perturbation procedure becomes invalid for virtual intermediate
states which conserve energy. ' Bardeen has avoided this difhculty
with a variational treatment that leads to band structure in the
energy versus wave number curve for the electrons. However, this
result is obtained only after a questionable approximation for the
mean energy of the virtual intermediate electron plus phonon
states. We have calculated the energy of electrons interacting with
the lattice vibrations by means of a Bloch-Nordsieck-type canoni-
cal transformation. s The B-N treatment is particularly suited to
this type of problem, in which the energies associated with the
crystal normal modes that are excited at low temperatures are
very small compared with the electron energies. In this case
neglect of electron recoil upon scattering with phonons introduces
but a small error. Perturbation theory is avoided and, along
with it, the vanishing energy denominators. We interpret our
result as arguing against the conclusion that electrons have small
effective mass in consequence of their interactions with the lattice
normal Diodes.

The hamiltonian for electrons moving in a periodic lattice
potential and interacting with normal modes of the crystal may
be written as in reference 1. ¹glect of the electrons' recoil upon
scattering with the phonon Geld gives a hamiltonian that is linear
in the electron momentum operators —ik grad;. The Schrodinger
equation with this hamiltonian is exactly soluble by means of a
canonical transformation of the type introduced originally by
Sloch and Nordsiecks in their study of the "infrared catastrophe, "
and used more recently in attempts at nonperturbation solutions
for meson problems. ' The eigensolutions correspond to a product
of Bloch functions for individual electrons moving in a periodic
lattice potential, multiplied by hermite functions for displaced
zero-point oscillations of the phonon Geld, and multiplied by a
factor expressing the interactions between the different electrons
in consequence of their coupling with the lattice vibrations. The
energy eigenvalues differ from those of the band theory for elec-

trons moving in the periodic potential of the static lattice in the
following way. In the periodic potential of a static lattice with
period a, there occur forbidden energy bands for electrons with
momenta in the neighborhood of ew;~ wk(n;/a;), where the n; are
integers. Electrons with these momenta suffer Bragg reflection.
The lattice vibrations have the period I., the crystal dimensions,
and they superimpose, on the above bands, forbidden energy
bands for electrons which satisfy an analogous Bragg condition
with the lattice vibrations,

cog' ——Lv (Ag —k„)j'. (&)

Here cd, the angular frequency of the lattice vibrations with
wave vector Ag ——2~(fI/LI, f2/Lp, f3/LI), is given by coy =sh y, s is
the velocity of sound in the crystal, the f; are integers, and
h„=2~(nI/al, n~/a~, n3/a3) is a reciprocal lattice vector. ' The
width of these forbidden bands is

~(amplitude of the lattice potential)/
{number of unit cells in the crystal)&.

It is thus very small. These narrow forbidden bands occur through-
out the electron distribution at momentum values that satisfy
the condition in Eq. (j.). They do not critically change the energy
levels of the conduction electrons and hence do not critically alter
their effective mass. A 6rst-order perturbation treatment of the
neglected electron recoil yields a small correction (~s/v) to
these results.

In summary, our calculations do not indicate a small effective
mass for electrons in consequence of their interactions with lattice
vibrations. The energy shell distribution as proposed by Frohlich
does not appear to be energetically preferred. When other im-

portant factors such as the inierelectron coulomb repulsion are
considered, one may hope to 6nd an adequate theory of super-
conductivity developed along lines of these very attractive
physical proposals of Bardeen and Fr5hlich. A manuscript dis-

cussing the details of this calculation is in preparation. Valuable
discussions with Professor L. I. Schiff are gratefully acknowledged.
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A MECHANISM will be discussed here to account for the
anomalous intensity distribution of the rotation lines in

certain fundamental bands in the infrared spectra of triatomic
molecules, notably in the 3.8-p, band in the H&S spectrum. The
theory assumes that it is necessary to take into account the mixing
of the wave functions for a given rotation state in a vibration level
with the wave functions of rotation states in other vibration levels
in order to calculate the intensities with accuracy. The mixing
must be between wave functions of the Grst excited states of the
three vibration frequencies to give a 6rst-order effect. Such a
mixing may come about through the coupling of the vibrations
through the Coriolis operator p&,/I, the z axis having been
chosen as the axis of spin of the molecule. The mixed wave function
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for the 6rst excited state of the unsymmetrical vibration v3 takes TwamE I. The effective intrinsic moment v' of the odd nucleon, calculated
from the Landb formula for an even-odd nucleus with magnetic moment ps,the form spin I and for both values of the orbital quantum number l I&1/2.

y(0, 0, 1, S, E, m)= IP(0, 0, 1)—'EC Z tg~/(~. —.)j
a 1

XL(»+~.)/(~~.)9P(V.=1, V. =o) Ie(~, &)s' 1,

C being h/8x'I~ and f3, the Coriolis coupling factors which
depend upon the nature of the normal coordinates. Simjtlar wave
functions are obtained for the 6rst excited states of v~ and vs.

Assuming the dipole moment induced by vibration to be

E= Z aq„
e 1

where a, is a constant and q, are the normal coordinates the in-
tensities of the lines in v, {s=i,2 or 3) are proportional to the
squares of tire matrix elements (0, 0, 0, E~I~ V.=1, V. =0, E&1),
which are the following

(0, 0, 0, Et,Ii V, =1, V, =O, E&1)
= Ia.~&'"a"(Ef C/~")I( .+ ")/( ~ ")'jI,

6, being ~,—~, .
It is, of course, well known that in molecules like H30 and H2S

the band vs is intense compared with the band v3, which is intense
compared with v~, i.e., a3&&a3&&at. Taking co~, co2, and au3 to be 2610
cm ' 1290 cm ' and 2684 cm ' for H2S and letting C=h/8m'„c
be approximately S cm ' and 6nally assuming the values of
g3g 4.5)& 10 ' and t »———1.0 calculated by Darling and Dennison'
for water vapor to be valid for HIS as well, it may be shown that
the term in I containing a&E may be neglected. Moreover, the
factor Iwill decrease to zero as the term containing a2E approaches
1.4X10'a3 for transitions of the type E—+E—1. I will, for the
same value of E, have assumed double its original value for
transitions of the type E~E+1. Since a2&&a3, the above may
happen for small values of E (i.e., E=10).The general effect upon
the intensities is to enhance the transitions E—+E+1 at the
expense of the transitions E—+E—1. By choosing the ratio of
am to a3 in the proper manner the transitions E—+E-1 can almost
entirely be suppressed so that, as in the case of H2S, only about
one-half of the band may be observed.

The effect of the perturbation on the band v2 is small and would
probably not be observable. The effect of the perturbation on v~ is
less readily estimated, but would probably not be observable as
long as a3»at.

*This work was assisted by the ONR.
~ B. T. Darling and D. M. Dennison, Phys. Rev. 57, 128 (1940).
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separated in energy and which have different parity in the odd
nucleon; modi6cation B fails to give deviations from the Schmidt
values for nuclei with I= ~3 while they occur here actually with
comparable magnitude as for other nuclei. Unless they are con-
sidered as small corrections, insufhcient to explain the observed
deviations, both proposals require besides a major departure
from essential features of the shell model.

%'e propose an alternative interpretation of the empirical results
which is compatible with a strict adherence to the shell model.

C.—The intrinsic magnetic moment of the odd nucleon is
affected by the binding to the core; depending upon the nucleus,
it can differ by an appreciable amount from the magnetic moment
of the free nucleon.

Accepting this interpretation, one can use the Landh formula to
determine the effective intrinsic moments pp' or p~' of the odd
proton or neutron, respectively, from the observed magnetic
moment p and spin I of an even-odd nucleus. They are given in
Table I for either alternative l=I~~~ in units of the nuclear
magneton.

Using available data for both odd-proton and odd-neutron
nuclei, we have plotted in Fig. 1 the corresponding deviations
App=tIp —pp' and Ap~= —(p~ —p~') of the intrinsic moment
from its magnitude Ijfp=2.79 and —@~=1.91 in the free nucleon
against the number n of odd nucleons up to m=83. For each
nucleus the assignment of l in Table I was made according to the
shell model, i.e., according to the Schmidt value which is closer
to p, it leads in our presentation equivalently to the smaller
deviation b,y.

%ithin minor Buctuations and particularly up to n=40, the
odd neutron points not only follow remarkably well those for the
odd protons' but the plot reveals also a certain regularity for
both: a very coarse general trend, indicated by C&, exhibits an
initial rise to the approximately constant value A,p,=i for e&20.
A pronounced alternating variation is superimposed on this
general trend and is indicated by C3., its periods are evidently
related to the shells, dosed at e=2, 8, 20, 50, 82, insofar as the
maxima occur approximately in the middle and the minima
towards the end of each shell. Possible secondary variations in
the second half of the fourth and 6fth shell are indicated by

Magnetic Moments of Even-Odd Nuclei
F. BLocH
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'HE success of the she/1 modeP indicates that it is a good
approximation to consider even-odd nuclei as single-particle

systems with the odd nucleon moving in a spherically symmetrical
potential provided by the even-even core. The model leads thus
to the basic dassi6cation of nuclear states by the orbital angular
momentum /k of the odd nucleon as well as by the spin I and to
the expectation that the magnetic moment p should have one of
the two Schmidt values, s determined by /=I&/.

Two modi6cations have been proposed to explain the observed
deviations from these values:

A.—l is not a good quantum number, and nuclear states repre-
sent actually a mixture of statess with l =I+) and 1~I—$.

B.—A tidal wave which contributes to p, can be formed in the
core by the interaction with the odd nucleon. '

It has been pointed out before' that either modi6cation has its
peculiar serious difhculties: modi6cation A requires a considerable
mixing of states which, according to the shell mendel, are widely
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FIG. 1.The defect Ape of the effective intrinsic moment of the odd nucleon
eerstfs the number n of odd nucleons in even-odd nuclei. Odd-proton nuclei
are indicated by dots, odd-neutron nuclei by crosses. The encircled numbers
on top represent the closing of shells; the subshells closed before the
filling of the gel~ and h1&ls states, @re indi~ted by broken numbers and
circles,


