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Quantnm Electrodynamics with Nonvanishing Photon Mass
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A theory of neutral particles with spin one and arbitrary mass tg in interaction with electrons is developed
in such a form that all observable results go over continuously into the corresponding results of ordinary
quantum electrodynamics as «~0.

I. INTRODUCTION
'

N most present field theories the particle mass enters
~ - as an arbitrary continuous parameter whose numer-
ical value is only empirically determined. The theory
of the quantized maxwell field is the only exception to
this rule. The vanishing of the photon mass is a neces-
sary consequence of the theoretical requirement of
gauge invariance, and the quantized maxwell field

A„(x) cannot be regarded in a straightforward manner
as a limiting case of a quantized Proca field M„(x).The
two fields satisfy, respectively, the commutation rules'

t A „(x),A „(x')]= ig„„D(x-x') -(1)

nary quantum electrodynamics with any desired accu-
racy, provided the photon mass is suKciently small. '
To achieve this the theory must satisfy the following
requirements:

1. The field equations for the expectation values go over

continuously into Maneell's equation.
Z. The theory must account for the fact that no tongi

tudinal or scalar photons are observed.

II. THE FREE PHOTON FIELD

Let A„(x) be a vector field satisfying the Klein-
Gordon equation

( —«')A„(x) =0,
1

L~ (x) ~ (x)] i( g ct g iD(x x&) (2) and the commutation rules

(6)

where D depends' continuously on N. Equation (2)
becomes singular as x—A. This is related to the fact
that ~„(x) satisfies by definition the operator identity

(3)

while no such identity can be imposed on the maxwell
field; but a subsidiary condition on the state functionals
yields

(ct,A")=0. (4)

Furthermore, the hamiltonian density —j&(x)M„(x),
which would be analogous to the interaction of the
maxwell potential with the current, does not satisfy
the integrability condition for the Schwinger-Tomanaga
equation, since'

LA„(x), A.(x')]= ig„,D(x--)x, (7)

where D(x x') is the s—ame function as in (2) satisfying
(6). A„(x) is not restricted by any operator identity. '

It is well known that such a field describes particles
with both spin one and spin zero. Their contr'ibutions
to A„can be separated by defining a scalar field B(x) by

B(x)= (1/~)a„A»,

and a vector field M„(x) by

A„(x)=m„(x)+ (1/~) B„B. (9)

As a consequence of Eqs. (i)—(9), M„(x) satisfies the
commutation rules (2) and the identity (3). In addition,
we have

Lm„(x), B(x')]=0
and

8
Lmp(x), mp(x')]i g

——— b(x x'). —
x' 8x'

LB(x), B(x')]=iD(x x'). —(11)

In view of this situation and the common emphasis
on the requirement of gauge invariance in quantum
electrodynamics, it may be of interest to construct a
theory of neutral particles with spin one and arbitrary
mass which gives the same observable results as ordi-

If ~„(x) is a hermitian operator, its positive and
negative frequency' parts M„&+& and ~„& & contain
annihilation and creation operators of the spin-one
photons, respectively. For hermitian B(x), however, the
roles of 8&+' and B& ' are interchanged because of the
sign on the right-hand side of (11).B(+& contains the

' h=c= i.
~ For the definition of the D-function see, for instance, W.

Pauli, Revs. Modern Phys. 13, 211 (1941).
'This has been pointed out by F. J. Behnfante, Phys. Rev.

76, 66 (1949), who satisfies the integrability condition by adding
a surface dependent term to the interaction. The theory becomes
thereby considerably more involved than quantum electrody-
naQllcs.

' See F. J. Belinfante, Phys. Rev. 75, 1321(A) (1949), 76, 66
(1949).

s Our formalism is somewhat similar to the vector meson theory
proposed by E. C. G. Stueckelberg, Helv. Phys. Acta 11, 225
(1938).However, our subsidiary condition (24) or (35) is diferent
and does not require the introduction of an additional scalar field.

s For the definition of the positive and negative frequency
parts of any field operator see J. Schwinger, Phys. Rev. 75, 651
(1949), Eqs. (1,19) and {1.16).
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or
B&—&(x)4=0

B&+&(x)%=0,

(14a)

(14b)

creation operators, 8& } the annihilation operators. In
the S-matrix formalism, ~here one expands into a sum
of "ordered" terms in which all positive frequency
parts stand to the right of all negative frequency parts,
it may be desirable to have A„'+' contain annihilation
operators only. Since the expectation values of A„(x)
must be real, this cannot be achieved if they are defined
in the usual way. There is, however, a possibility of
defining the expectation value of any operator F with
the help of an indefinite metric q in Hilbert space

(F)=(+, »F%), (12)

where p is an hermitian operator satisfying p'=1. If p
commutes with M„and anticommutes with 8, all expec-
tation values are real if ~„ is hermitian and 8 is
antihermitian. For antihermitian 8, 8&+} contains the
annihilation operators. The existence of such an g can
be proven by pointing out an explicit matrix represen-
tation:

(X'(~
~
X)=(X'i1(X)(—1)", (13)

where E, is the total number of scalar photons present
and E and E' stand for the complete set of all photon
numbers. As far as the scope of the present paper is
concerned, we shall see that the definitions of the
expectation values with or without indefinite metric in
Hilbert space are equally satisfactory. In order to make
the energy positive definite we must require the absence
of scalar photons, which is expressed by the subsidiary
condition

go over into Maxwell's equations as ~—4 if we require
in addition

8(A „)/8x&=0. (19)

Since $H, A„7=0 if x lies on the surface a(r), we have

8(A ~)/8x~ = (8~A „). (20)

From (17), (18), and (20) follows

( —a') (8&A „}=0.

Therefore, the identity,

(8~A„}=0,

is equivalent to the initial condition

(8~A„).=„=0,

(8
)

—(8 A„) f
=(88 A„—"j„)=0,

&8.
" ),=„

(21)

(22)

(23)

(24)

Q(x, ro}= 8"A„—
~

do'n"j, (x')D(x—x'). (26)
~ ~(~p}

The proof of this equivalence is the same as that for
the equivalence of (9) and (16) in A. That (25) can
always be satisfied is easily seen with the help of a
canonical transformation

which in turn is equivalent to

(Q(x, 10)) 0=0 for all x, (25)

where the expectation value in (25) is taken with 4'(ro)
and Q(x, ro) is defined by

in the two alternative cases.

III. THE FIELD EQUATIONS FOR THE
EXPECTATION VALUES

where
c(r)=e '*('@(r), (27)

Consequently, the expectation values satisfy the equa-
tions

—")(A.)= —(j.),
8(j )/8x~=(8„j~)=0,

(17)

If the field is interacting with a current j"(x), the
state functional %(r) in the interaction representation'
satisfies the Schrodinger equation

i8% (r)/8r =H(r)+(r), (15)
with

(16)

or for all x
(4(ro), B(x)4(ro))=0,

(C (rp), »B(x)4(rp)) =0,
can always be satisfied by requiring

B&—
&(x)C(r») =0,

In the new representation 0 becomes

Q'= expL —iZ(TO) jQ(x, ro) expLi (ro)]
= Q(x, rp) —iLZ(rp), Q(x, ro) j= 8"A „.

The condition

(29)

(30a)

(30b)

(31a)
the equation for the field strengths

F„„=(8(A „)/8x") 8(A „)/8x"—

'This procedure is analogous to the-one introduced into
ordinary quantum electrodynamics by S. ¹ Gupta, Proc. Phys.
Soc. (London) 63, 681 (1950), and K. Bleuler, Helv. Phys. Acta
23, 567 (2950), in order to secure a normalizable vacuum state.

For de6nition of the notation see F. Coester and J. M. Jauch,
Phys. Rev. 78, 149 (2950), quoted in the following as A.

ol
B&+&(x)C(ro)=0, (31b)

i8C/8r=G(r)C, (32)

which means absence of scalar photons. The corre-
sponding 4 satisfying (25) is obtained by the transfor-
mation (27). 4(r) satisfies the Schrodinger equation
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In order to investigate the behavior of the longi-
tudinal photons, we define a longitudinal field A(x) by

G(r) = — d~j~m„— d~ d~j"(*)

Xj "(x')n„B„D(x x'—) (.33)

88 IPR
X(x)= A „(x).

«L —("+a') j&
(37)

The scalar field has been eliminated from the hamil-
tonian. '

lim Q(x, r0) = c& "A „.
go —+ —00

The subsidiary condition is therefore

8&—&4'(—~)=0,

(34)

(35a)

if expectation values are defined in the usual way, or

8&+&0'(—~)=0, (35b)

if they are defined with an indefinite metric g. However,
8 can be eliminated from the S-matrix without using
(35). The nth-order term in the S-matrix

S&~&—(i /n&) )&fx~. . . &Ex&P(P"(x ). . .jw(xi))

&(P(A,„(x„) A, i(xi)) (36)

is expanded into a sum of ordered products in the
manner described in A, Sec. V. In the ordered products
of the vector-potentials we replace A„by the right-
hand side of (8) and notice that all terms containing 8
vanish. This follows from the proof of Eq. (82) of A

without the use of (35). If (35) holds for the initial
state, it will also hold for the final state.

9The details of the calculation are similar to those of the
derivation of {34) in A.

"See A, Eq. {69),

IV. EVALUATION OF THE S-MATRIX

In order to state the subsidiary condition for the
initial state 4'(—~) in the S-matrix formalism, we
notice that"

Blip K S
m„(x)= e„(x)+ S(x).

«[—(«'+ &1')]i
(39)

Terms proportional to B„A do not contribute anything
in the S-matrix for the same reason which made it
possible to eliminate the scalar field. We may therefore
replace finally A„ in the ordered products in the 5-
matrix by

«(n„+ &) '&)„)-
8,„— A.

L
—(«'+ ~')3'

The probability for the emission of a longitudinal
photon of momentum k will therefore be «'/( '«+k')
times the probability for the emission of a corresponding
transverse photon. For sufFiciently small but non-
vanishing photon mass one cannot expect to observe
any longitudinal photons. The part of S which contains
the transverse 6eld &t„(x) goes over continuously into
the corresponding expressions of ordinary quantum
electrodynamics only as r&

—4.
We have shown that it possible to construct a non-

gauge invariant quantum electrodynamics with non-
vanishing photon mass in agreement with observation.
The requirement of gauge invariance has, of course, a
strong aesthetic appeal, but it is not warranted by
observations alone.

This A commutes with 8 and satisfies the commutation
rules,

[A(x), A(x') j= iD(—x x') — . (38)

It describes, therefore, creation and annihilation of
longitudinal photons in the usual way. The transverse
field Q,„satisfying nf'0', „=0and 8&0',„=0is defined by


