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predicts gz/» for the configuration of Cs® but ds/; may
also be possible. If the configuration of Cs™ is g2 and
enough energy is available, one would expect the transi-
tion to Ay to be more probable than that to dy.. If
slightly less than 80 kev is available for the K capture
process, the value of log fi~35. This would indicate an

allowed transition and would suggest dy; as the con-
figuration of the ground state of Cs!.

The authors are indebted to Mr. A. Lessor for help
in the chemical separations and to Messrs. A. Smith,
C. M. Huddleston, and W. H. Cuffey for help with the
measurements.
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The internal conversion coefficients for electric and magnetic multipole radiation have been computed
for the K-shell in the relativistic case with the unscreened coulomb field acting on the electron. The
numerical results, which are obtained to four-significant-figure accuracy, were computed on the automatic
sequence relay calculator (Mark I) and are given here for 12 values of Z in the range 10< Z < 96and 6 gamma-
ray energies (between 0.3 mc? and 5.0 mc?) for the first five electric and first five magnetic multipoles.

I. INTRODUCTION

HE results of the calculation of the K-shell

internal conversion coefficient (defined as the
ratio of conversion electrons to quanta) which are
presented herein were very briefly described in a
previous communication.! Subsequent to May, 1949,
tables of these coefficients together with an extensive
interpolation were circulated privately. Inasmuch as
plans for the calculation of the L-shell coefficients were
instituted very soon after the completion of the K-shell
work, publication of the present material was held up
in the hope of presenting all of the numerical results
together. This does not seem to be feasible, and this
paper is written in the interest of making the K-shell
results more readily available.

At the time of completion of this work the only
existing accurate calculations of the K-shell internal
conversion coefficients were those of Hulme? (for elec-
tric dipole, Z=84), of Taylor and Mott?® (electric
quadrupole, Z=284) and of Fisk and Taylor* (magnetic
dipole, quadrupole, and octupole, Z=84). Shortly
afterward, Griffith and Stanley® made calculations of

* This document is based on work performed for the AEC at
the Oak Ridge National Laboratory.

t Now at New York University, Washington Square College,
New York, New York.

{ Now at Argonne National Laboratory, Chicago, Illinois.

! Rose, Goertzel, Spinrad, Harr, and Strong, Phys. Rev. 76,
184A, 1883 (1949).

*H. R. Hulme, Proc. Roy. Soc. (London) A138, 643 (1932).

3 H. M. Taylor and N. F. Mott, Proc. Roy. Soc. (London) A138,

665 (1932)

4J. B. Fisk and H. M. Ta.ylor, Proc. Roy. Soc. (London) A143,
674 (194); A146 178 (1934); H. M. Taylor, Proc. Cambndge,
Phxl Soc 32 291 (1936).
(1949) . Griffith and J. P. Stanley, Phys. Rev. 75, 534, 1110

the K-shell electric dipole coefficients for five values of
Z in the range 69-89. Subsequently, the coefficients for
electric dipole, quadrupole, and magnetic dipole for Cu,
In, Po, and U at low energies were obtained by Reitz.%
Here screening was taken into account by numerical
integration of the Dirac radial equations with a
Thomas-Fermi-Dirac potential. In the present work
where 22 0.3 (kmc? is the gamma-ray energy) no effect
of screening is considered. Comparison with Reitz’s
results where our calculations overlap fully justifies this
procedure. Calculations of the L;-shell coefficients with
unscreened wave functions have been carried out by
Gellman et al.7 for the same multipoles, and the same Z
and k-values as appear in Reitz’s work. However, these
results are primarily of orientation value, since the
neglect of screening cannot be justified in this case. In
fact, in the calculation of the L-shell coefficients?
(including all sub-shells) which are now under way,
screening is taken into account in the same manner as
was done by Reitz. In addition, low energy K-shell
coefficients for all important multipoles and for essen-
tially the same range of values of Z as in the K-shell
work are being carried out with screened wave functions
in parallel with the L-shell computation.

Until the L-shell and low energy K-shell results
become available, it is necessary to supplement the
present values of the coefficients with low energy extra-
polations based on a comparison of these values and
those obtained from the nonrelativistic formulas of
Uhlenbeck and Hebb® and the essentially nonrelativistic

¢ J. R. Reitz, Phys. Rev. 77, 10 (1950).

? Gellman, Griffith, and Stanle Phys. Rev. 80, 866 (1950).

8 M. E. Rose and G. Goertzel 8;0 be published).

9 M. H. Hebb and G. E. Uhlenbeck, Physica 5, 605 (1938). See
also S. M. Dancoff and P. Morrison, Phys. Rev. 55, 122 (1939).
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electron in the continuum. From the results of the
Toronto group? it also appears that the ratio of K to L
conversion coefficients as calculated by Hebb and
Nelson®? (electric) and by Tralli and Lowen® (mag-
12 M. H. Hebb and E. Nelson, Phys. Rev. 58, 486 (1940).
BN. Tralli and I. S. Lowen, Phys. Rev. 76, 1541 (1949).

very small Z and large k, or more specifically, for
eZ/hv<1, where v is the velocity of the conversion

11 P, Axel and R. F. Goodrich, ONR report (unpublished).

105, D. Drell, Phys. Rev. 75, 132 (1949).

results of Drell.l® A convenient set of graphs for this
purpose has been prepared by Axel and Goodrich.!! As
has been emphasized elsewhere, the direct use of these
all but rather small Z and %. The same remark applies
to the Born approximation results of Dancoff and Mor-
rison,? which applies with sufficient accuracy only for

nonrelativistic formulas leads to considerable error for
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netic) is subject to surprisingly large errors because of
the approximations made.

II. RESULTS AND DISCUSSION

The parameters chosen for the machine computation,
which was performed on the automatic sequence relay
calculator (Mark I) at the Computation Laboratory
of Harvard University, were: 12 values of Z in the
range 10<Z<96 and 6 values of % in the range 0.3<%
<5.0 For Z>83 it was necessary to drop the value
k=0.3, and five values in the range 0.5<£2<5.0 were
used. In each case the first five electric and first five
magnetic multipoles were computed. The calculations
were originally carried out for Z>40, based on the
expectation that the approximative results would be
sufficiently accurate for Z <40. In this range the values
of Z chosen were such as to obtain an approximately
uniform scale in Z? since one expected, very roughly, a
Z* dependence of the conversion coefficient. The ex-
tension of the computations to Z <40 was made at a
later stage when the original expectations proved to be
too optimistic.

The restriction to 22 0.3 was made for the following
reasons. The computations involve the evaluation of a
large number of series (hypergeometric functions) which
become slowly convergent in this region (k#~0.3). More
rapid convergence could be obtained by transforming to
functions of the reciprocal argument on the other side
of the radius of convergence. However, in this region of
the k— Z plane the effect of screening is important, and
it did not appear worth while to invest the necessary
effort in such unscreened calculations in view of the
plans for making screened calculations. The hyper-
geometric series which occur [see Appendix, Eq. (28)]
were evaluated term by term up to the point where the
first term neglected had an absolute value less than
10-%, the first term being equal to unity, of course.
The gamma-functions of real and complex argument
(see Appendix) were obtained by a Taylor series repre-
sentation of Sterling’s formula wherein the first term
neglected made a relative error of less than 10~¢. The
680 values of the internal conversion coefficients ob-
tained in this way are accurate to at least four sig-
nificant figures. While this accuracy is far better than
present experimental needs require, it is necessary for
the purpose of interpolation to values of the conversion
coefficient at Z—k values other than those which appear
in the machine calculations. Interpolations were carried
out to obtain coefficients for 26 values of Z and 16
values of %k representing-a total of 4020 values of the
conversion coefficients. For this purpose it is convenient
to interpolate the ratio of the values given below in the
tables to the Dancoff-Morrison Born approximation
formulas,? since this ratio is much less sensitive with
Z and k than are the computed coefficients themselves.
The interpolated results checked with other calculations
where overlap occurred.?:3:

The analytical basis of the calculation is given in the
Appendix. For reasons of space limitation only the
machine computed coefficients are given in Table I
below. In this table «; and 8; are the conversion coef-
ficients for electric and magnetic 2!-pole radiation, re-
spectively. More extensive tables including the inter-
polated values appear separately.* A limited number of
interpolated values can be obtained from the curves
given in Figs. 1-10, which represents only a part of the
numerical results. Although it is not to be expected that
many cases will arise which involve multipole orders
with /> 35, reasonably accurate values for /=6 can be
obtained as follows. While «; and B, are sensitively
dependent on /, the ratios aiy1/a; and Bi41/8; are fairly
insensitive. Consequently, a one-step extrapolation gives
ag and Bs with an error of about 5 percent. Figure 11
illustrates this extrapolation for electric multipoles.

A considerable amount of experimental data on
internal conversion coefficients now exists, and the
numerical results given here have been used by many
investigators to make assignments of angular momen-
tum and parity to nuclear levels. It would seem certain
that the theoretical basis of these calculations is sound,
but it is worth while to note that in many cases the
assignments made are in agreement with other nuclear
spectroscopic data. For example, the assignments based
on internal conversion measurements!® in the decay of
Co® and Cs® are in agreement with the results of
angular correlation measurements.!® However, in some
instances discrepancies exist. Notable cases are those
in which assignments are based on the rough theoretical
estimates of radiation lifetime. A compilation of the
internal conversion data as well as experimental results
obtained by other methods of nuclear spectroscopy is
now being made. It seems too early to draw any con-
clusions from such comparisons, in view of the uncer-
tainty of many of the proposed decay schemes and the
possibility of more accurate measurements of internal
conversion coefficients. One conclusion which seems to
be wvalid concerns the apparent scarcity of electric
cipole lines. Out of a total of 89 cases where assignments
can be made, 84 are fairly definitely not electric dipole
and in the remaining cases the assignment as electric
dipole is not certain by any means.

The authors take pleasure in expressing their appre-
ciation to Professor H. H. Aiken of the Harvard Com-
putation Laboratory and to Dr. A. M. Weinberg of the
Oak Ridge National Laboratory through whose efforts
the Mark I calculator was made available to us. The
assistance of all members of the Oak Ridge Mathe-
matics Panel, led by Dr. A. S. Householder, as well as

4 M. E. Rose and G. H. Goertzel, AEC report (to be published).

16 Waggoner, Moon, and Roberts, Phys. Rev. 80, 420 (1950).

16 E. L. Brady and M. Deutsch, Phys. Rev. 74, 1541 (1948);
'(78, 55)8 (1950). F. Metzger and M. Deutsch, Phys. Rev. 78, 551
1950).
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F16. 1. The electric multipole conversion coefficients (K-shell)
for Z=20 as a function of 1/k=(gamma-energy/mc?)~1. The

Fi1G. 3. Same as Fig. 1 for Z=354.

numbers attached to the curves give the value of /. The ordinate APPENDIX

scale at the right refers to the low energy portion of the curves . o e .

for 24 and 25 poles. The number of conversion electrons per unit time is
found by the usual perturbation procedure to be

that rendered by Drs. N. Tralli, S. D. Drell, and G. B. N,=2ran¥| (¥r| ¢+ a-Al¢) |2 (1)
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to unit energy range!’ and ¥, the initial state wave
function, is normalized to unity in all configuration
space. A sum over all final states, including magnetic
substates, and an average over initial magnetic suk-
states is implied by the sum sign. In (1) « is the Dirac
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F1G. 6. Same as Fig. 1 but for magnetic multipole conversion.
17 M. E. Rose, Phys. Rev. 51, 484 (1937).
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matrix vector, « the fine structure constant, » is the
number of electrons in the initial state, while ¢ and A
are the scalar and vector potentials of the radiation
field (see (3) below).

It is most convenient to use the following representa-
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Fi1G. 8. Same as Fig. 1 but for magnetic conversion and Z=54.
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tion of the multipole fields.!® Designating the spherical
hankel function by

xi(x) = (m/22) H13 (%), (2
where H® is the hankel function of the first kind, we

Z2=78

3
T

5
|

R
G Sy = So
Lol vovnud e
S S, S,

)

17k
FiG. 10. Same as Fig. 1 but for magnetic conversion and Z=78.

8 See, e.g., V. Berestetzky, J. Phys. US.S.R. 11, 85 (1947);
also W. Heitler, Proc. Cambridge Phil. Soc. 32, 112 (1936).

have for the magnetic 2-pole

An=[2/xl(0+1) Pxa(kr) LY (3, o),

di"= ’ (33)
where L is the (orbital) angular momentum operator
L=—irXgrad, (3b)

k is the wave number (numerically equal to the energy)
of the radiation, and ¥,™ is a normalized spherical har-
monic.!? For electric 2'-pole radiation

A=[2/ml(4+1) Px1—1(kr)[r grad+Ir/r]V (3, ¢)’(3c)
¢ =121/ w(I+1) Fxu(kr) Y ™(8, ).

With this normalization the number of quanta radiated

per unit time is
No=1/=n%. (3d)

It will be noted that / and m correspond to quantum
numbers for the angular momentum and z-component
thereof for the radiation field.

The internal conversion coefficient is N./N,, and is
denoted by a; and B; for 2'-pole electric and magnetic
radiation, respectively.

The wave functions can be conveniently expressed
in terms of the two-component spinors

V. 1
i—% ) (4a)

(G+u/25)
—(j—w/2j)} Yyt

RIS
(] vt ) Vi
2j+2
. 1 ) *
(H—H— ) Y,'H“H}
2j+2

Then the initial state wave function may be written in
the form

(-1 J; u)=(

and

QG+3, 75 0= (4b)

_ (@’lu'l(f)arﬂ(l)) (52)

guin(r)Q(1)
In Eq. (5a) and in the following we abbreviate
QUn, jn; ma) by Qn). Here f and g are (real) radial
functions, j; is the total angular momentum quantum
number, m, corresponds to the z-component of j;, and
I, is either j;—3% [Eq. (4a)], or ji+3% [Eq. (4b)]. The
operator ¢, is given in terms of Pauli spin matrices and

can be written as
sinde—®
) ©

—cos?

cosd
a-r = . .
sinde*?

so that it is hermitian and unitary.
In exactly the same way the final state wave function
may be expressed in the form!®
(iF Loia (7)o, 2(2) )
j=
Glzjz(r)Q(Z)

19 The (real) radial functions F and G are denoted by f and g,
respectively, in reference 17.

(Sb)
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with j; and m. interpreted as above; again ly= jy=3.

(a) Electric Multipole Conversion

(. 3)

we find that the following angular integrals appear:

Using

T1=(2@)| V1), ()
Ty=(@92(2)| V"] 0, 2(1)), (7b)
Ts=(0,2(2) | (r grad+1Ir/r) V" -aQ(1)), (7c)
T4=(Q(2)|0- (r grad+ir/r) Y| 0, Q(1)), (7d)

where in T3 and T4 the grad operator acts on ¥;™ only.
By the unitary property of o, we find T'y=T',. Using the
relations
ro,0-grad=r-grad—e-L,
o- L) =[7.G+1)—Ll+1)—1]00), i=1,2 (8)

we find

T3= Tl[l+jl(j1+ 1) - ll(l1+ 1)

—je(Jat D +l(let+1)], (%)
Ts=Ti[I+72(je+1)—lo(la+1)
—nGFD+HLG+1)]. (9b)

The evaluation of T, can be carried out in a straight-
forward manner. We have

T1= Q(l, lzjg; lljl)Sjgmml(lh).

In Eq. (10) the Sigmm; 4 are transformation coefficients
for vector addition corresponding to the vector addition
of I and /; with z components m and m;, respectively, to
give the resultant /, with z component ma=m-+m,;.2
The Q coefficients are independent of the magnetic
quantum numbers. In fact,

Q; laga; 1ig1) =[Siz, 0, 320 Sy, 0, 34D
X (V| V2| V1,0) S5, 1, —4 DSy, 1, —3 (2D

(10)

X (Yi!| V2| Y1) Siz 0,300} -1 (11)
We make use of
(1)L +1)7
47(2l+1)
X S13,0, 00815, m, m ) (11a)

for the integral of three spherical harmonics. The
average over m and m; and the sum over m, gives?®

2 E. Wigner, Gruppentheorie (Friedrich Vieweg und Sohn,
Braunschweig, 1931), Chapter XVII. The tabulation of these

coefficients given in E. U. Condon and G. H. Shortley, Theory of

Atomic Spectra (Cambridge University Press, Cambridge, 1935),
pp. 76-77, suffices for all cases considered here. In the latter ref-
erence the coefficients are denoted by (Wymm,|lilams).

@+t X (T?

=2+ D@+ D)2+ D) 7O bejes L) I (12)

The internal conversion coefficient can be obtained
in terms of radial integrals from (1), (3d), (9), and (12):

N, 2wakl

-y, (13)
N, (+1)Q+1)
where
Ui=(2x/1?) hzllz 272+ DLQE; Lajz; by I
X |U(R1+Re— Rs+Ra) tajn+[ 7252+ 1)
=l 1)— 111+ D+ h(+1)]
X (Ry+ Ry 2i2] 2. (13a)

ELECTRIC MULTIPOLES

92

78
64

lllllHIIHHIIIIITIIIIIHHIHHI

}

2 3 A 83678950

k

F1c. 11. The ratio of electric 25 to electric 28 conversion coef-
ficients obtained by extrapolating a:/ai41. The attached numbers
refer to Z values.

403060 80 0

For the K shell (/;=0, j=%) we have
Ui=(+1)| Ri+Ro+2R4| %, 144

+l| Ri+Ry— (2+ l/l)Rs'-RA/ll %, -4 (13b)
and R;: - - R, are the radial integrals

(Ry) 12.1'2=f Fijaxif ui?dr, (13c)

0
(R3) tajo= f Guizxiguiridr, (13d)

)
(R3) taje= f F lyiax1—1g uirr*dr, (13¢)

0
(R 12i2=f Gaiaxi—1fuir’dr. (13f)

0

In (13b) the values of /55, for which the integrals must
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be evaluated have been written as subscripts outside
the absolute value signs. The selection rules giving the
values of /; and 72 over which the sum in (1) must be
taken are

[I=h| SL<IHL,  |l1=fi] <j2<Hy,
I+1h+1; even,

where the last is the parity selection rule.

(14)

(b) Magnetic Multipoles

The calculation for the magnetic multipole proceeds
in similar fashion. The angular matrix elements which
appear are

Ts=(c:2(2)| LY/ -00(1)) (15a)

and
Te= (9(2) I LYI'"I ~0(T,-ﬂ(1)),

which can be transformed to a common form

Ts=—Te=—T1[j2(jot1)—L(l+1)
+ 4G+ 1) = L(h+1)+3],

(15b)

Ty =(0:2(2) | V™| (1))
= (Q2ja—1y, j2; m2) | V™| Q(1)).

From the selection rules valid for magnetic multipoles

[I=h| =1 LI+, [I=41] € 5<H-7y,
I+1,+15 odd

we recognize that the values of 2j,—/, which enter for
the magnetic 2-pole are the same as the values of /,
which enter for the electric 2%-pole radiation so that
(10) and (11) can be used in this case also.

Finally, the magnetic internal conversion coefficient
is given by

(16)

2rakl ,
"enarn v
where
U= Q2x/8) T (2j:+ 1) ja(Gat 1) —ba(lat-1)

laja
+ 710G+ D) =hG+1)+371
X[QU; 252—1s, j2; by j) TP R+ R | *122  (17)

and
(R) tajn= f Fyiaxiguiridr, (17b)
)
(R{) 2= f Gujaxifuiridr. (17¢)
0
For the K-shell
Uz'= (H‘ 1) lRa"l'R;'l 2H-z. 144
+(@+1)%/l| R+ R | %1y, (18)

(c) Radial Integration and Transformation
of Results

The radial integrations are carried out exactly as in
Hulme’s calculation.? For the hankel function we use
the series representation

Hz+;<l><x)=<—i)i+l(%’f)**e*xz' (). (1) (19)

r=0pI(l—») I\ 22

and for the radial functions of the final state wave
function the integral representations'’ are employed.
The radial functions for the ground state are

f=—(QQ—v)Drr—1gazr,
g= ( 1+7) ) DyY—1g—aZr, (20)
where

v=(1—a222)} (20a)

is the total energy (including rest energy) in the K-shell
and

D=(2aZ)"* 2T (2y+1) ] (20b)

is a normalization factor.
We introduce the following notation for quantities
occurring in the final state wave function:

v =[(2+3)?— 22}, (21a)
¢ 2y’
jot= _e_@&“, (21b)
47p| T(y'+i8)|?
tE=aZW/p, (21¢c)

where p(>0) is the final state momentum and
W=(p*+1)} is the final state energy (including rest
energy). Then we find for the electric multipole con-
version (omitting common factors of modulus unity)

(R)1,144=—i(W—1)}(1—7)*DN 1y

X[Ky, 03— exp(—2ine) K*;103],  (222)
(Ro)1,103= (W+1)}(14-7)IDN 144
XK 1pitexp(—2in) K*,iap ], (22D)
(Ra)1,103=— (W—1)¥(1+7)'DN 14y
XK1, 133—exp(—2ine) K*11,14],  (22¢)
Ry 3= —i(W+1)}(1—7)*DN1yy
X[K iy, ey texp(—2in) K*1143],  (22d)
and for the magnetic conversion
(R ), v g4=—(W—1)}1+7)!DN ;3
XK1, ry—exp(—2in)K*, ], (22€)
R v rry=—i(W+1)}(1—7)!DNrz3
XKy, reytexp(—2ing) K*y e, (226)
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where the % in the second subscript in Ry, Ry goes
with =171, Note that for both values of /', 2j—V'=1.
In (22) we have introduced

(—2in) v (23)
exp(—2ipy)=——"-"""""—
* +(j+3)+iaZ/p

and the value to be used for j is the same as the second
subscript in K. Also K* is obtained from K by changing
the sign of p in the formulas given below:

A (A )!
KX.J':Z EJ'Vy
=0 (A\—p)!

(24a)

A (Aw)!
Ky *=2 ) E;*,
r=0 (\—p)!

(24b)
and the E;,, E;* are defined by
( ) ( ) L(y+v'—»)
E,* 2k¢7 vID(2y'+1)
Y g’ T+’
x—(f—) Dy +it) |2
k \ip
(('r’+i£)F (Y +y—r, ¥ +1+iE;29'+1; 2s‘)) 25)

(V' =1)F(Y'+v—v, ¥'+it; 29 +1; 2)

where

=ip/laZ+i(p—Fk)] (25a)

and F is the hypergeometric function

I'©) @ T(e+mT(b+n) s . (25b)

T(c+n) n!

In (25) we have used the relations
F(a,b;¢;2)=(1—3)"F(a,c—b;c;2/(z—1)) (25¢)

and with

F(a, b;¢;5)=
(a’ b C, z) I‘(a)r(b)nﬂ

{*=—ip/laZ—i(k+7)]

2/ (24*-1)=12. (25d)

The result (25) applies only in the circle of con-
vergence: | 2f| <1. Applying the conservation of energy

kty=W (26)

it is seen that the region |2{| <1 applies only in a
narrow band of the Z—# plane near the K-threshold.
For all cases considered in the numerical work the
analytic continuation of (25) is required ; that is, we use

I(a)T ()
I'(e)
3 T'(@)T(a—d)
- T(e—c¢)
r®)re—a)
R
T'(b—c)
Applied to Ej, and E;* this gives

we have

F(a,b;c;2)

(=2)F(a,1—c+a;1—b+a;1/3)

(—2)F (b, 1—c+b;1—a+b;1/2). (27)

(=y+iOF(Y'+v, y—'; y—it; 1/2¢)

B

+ (—25“)*"“"‘P(7'+i5)1‘(7~l-if)((y

where we require [2¢|>1, |arg(—2¢)| < and

|larg(s/ip)| </2.

The task of obtaining E;, and E;* for »£0 is greatly
simplified by the use of recurrence relations. With the
aid of

(c—a)F(a—1,b;¢;2)
=b(1—2)F(a, b+1;c;2)+(c—b—a)F(a,b;c;2)
and

(c—a)F(a—1,b+4+1;¢;2)
=(—a+1)(1-2)F(a,b+1;¢;2)+(c—b—1)F(a,b;c;2)

we find the following recurrence relation which we write

(' =®)F(Y'+v, v—"; v+1—i&;1/2¢)

"+ig)(—20) TF (v 1418, 1= +iE; 2— v+ ik 1/25“)) ] 28)
(Y= 1—i)F(y'+ik, —y'+it; 1—v+it; 1/20) ’

in matrix form:
(—p/2k)

( Ej )_
E* i/ (DO Y= —v+r+1)

v 1—y+it v+t (1-20)E;,
v'—it  vtl—y—iE E;*

For all cases considered |2£]| >1 so that (28) and (29)
determine all the E;, E;* and from (13), (17), (18),
(22), and (24) the internal conversion coefficients are
obtained. Some further simplification may be made by

introducing the transformations discussed by Gellman
et al.”




