
INTERNAL CONVERSION COEFFICIENTS

predicts g7(p for the con6guration of Cs"' but d~g~ may
also be possible. H the con6guration of Cs'" is g7~2 and
enough energy is available, one would expect the transi-
tion to k~l~m to be more probable than that to date. If
slightly less than 80 kev is available for the E capture
process, the value of log ft 5 T.his would indicate an

allowed transition and would suggest d~~~ as the con-
6guration of the ground state of Cs"'.

The authors are indebted to Mr. A. Lessor for help
in the chemical separations and to Messrs. A. Smith,
C. M. Huddleston, and VV. H. Cu6ey for help with the
measurements.
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The internal conversion coefBcients for electric and magnetic multipole radiation have been computed
for the K-shell in the relativistic case with the unscreened coulomb 6eld acting on the electron. The
numerical results, which are obtained to four-signidcant-6gure accuracy, were computed on the automatic
sequence relay calculator (Mark I) and are given here for 12 values of Zin the range 10&~Z~&96and6gamma-
ray energies (between 0.3 mc' and 5.0 mc') for the 6rst Gve electric and Grst Gve magnetic multipoles.

L INTRODUCTION

HK resul. ts of the calculation of the E-shell
~ ~ internal conversion coef6cient (de6ned as the

ratio of conversion electrons to quanta) which are
presented herein were very brie6y described in a
previous communication. ' Subsequent to May, 1949,
tables of these coefBcients together with an extensive
interpolation were circulated privately. Inasmuch as
plans for the calculation of the I.-shell coefFicients were
instituted very soon after the completion of the E-shell
work, publication of the present material was held up
in the hope of presenting all of the numerical results
together. This does not seem to be feasible, and this
paper is written in the interest of making the E-shell
results more readily available.

At the time of completion of this work the only
existing accurate calculations of the E-shell internal
conversion coefficients were those of Hulme (for elec-
tric dipole, Z=84), of Taylor and Mott' (electric
quadrupole, Z=84) and of I'isit and Taylor' (magnetic
dipole, quadrupole, and octupole, Z=84). Shortly
afterward, GrifBth and Stanley' made calculations of
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the E-shell electric dipole coefBcients for 6ve values of
Z in the range 69-89. Subsequently, the coefBcients for
electric dipole, quadrupole, and magnetic dipole for Cu,
In, Po, and U at low energies were obtained by Reitz. e

Here screening was taken into account by numerical
integration of the Dirac radial equations with a
Thomas-Fermi-Dirac potential. In the present work
where k&~ 0.3 (keck' is the gamma-ray energy) no effect
of screening is considered. Comparison with Reitz's
results where our calculations overlap fully justiaes this
procedure. Calculations of the L~-shell coefBcients with
unscreened wave functions have been carried out by
Gellman et e/. 7 for the same multipoles, and the same Z
and. k-values as appear in Reitz's work. However, these
results are primarily of orientation value, since the
neglect of screening cannot be justi6ed in this case. In
fact, in the calculation of the I.-shell coefBcients'
(including all sub-shells) which are now under way,
screening is taken into account in the same manner as
was done by Reitz. In addition, low energy E-shell
coefBcients for all important multipoles and for essen-
tially the same range of values of Z as in the X-shell
work are being carried out with screened wave functions
in parallel with the L;shell computation.

Until the L-shell and low energy E-shell results
become available, it is necessary to supplement the
present values of the coefBcients with low energy extra-
polations based on a comparison of these values and
those obtained from the nonrelativistic formulas of
Uhlenbeck and Hebb' and the essentially nonrelativistic

e J. R. Reitz, Phys. Rev. 77, 10 (1950).' Gellm~, Grifeth, and Stanley, Phys. Rev. 80, 866 (1950).
M. E. Rose and G. Goertxel (to be published).' M. H. Hebb and G. E. Uhlenbeck, Physica 5, 605 (1938).See

also S. N. Dance and P. Morrison, Phys. Rev. SS, 122 (1939).
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TAsLE I. Internal conversion coefBcients. The power of ten by which the entries should be multiplied
is given by the number in parentheses.

Z k as

10 0.3 9.041 ( -4)
0.$ 1.804 {—4)
i.o 2.476 ( —s)
1.8 6.361 ( -6)
3.0 2.552 ( —6)
5.0 1.224 {-6)

20 0.3 S.617 ( —3)
0.$ 1.183 ( —3)
1.0 1.721 ( —4)
1.8 4.522 (-5)
3.0 1.808 ( —S)
s.o S.s4z {—6)

3o o.3 i.s18 (-2}
O'.S 3'.362 (-3)
1.0 5.175 ( -4)
1.8 1.393 ( -4)
3.0 5.552 ( —5)
s.o z.s83 ( —s)

40 0.3 2.949 ( —2)
o.s 6.8so ( —3)
1.0 1.116 ( -3)
1.8 3.083 {-4)
3.0 1.227 ( —4)
S.o S.621 ( -5)

S4 0.3 5.640 (-2)
o.S 1.401 (-2)
1:O Z.'479 ( —3)
1.8 7.136 ( —4)
3.O 2.848 ( —4)
$.0 1.277 (-4)

64 0.3 7 931 (-2)
0.5 2.072 ( -2)
1.0 3.910 ( —3)
1.8 1.16S (-3)
3.0 4.676 ( —4)
5.0 2.069 ( -4)

7Z 0.3 9.882 ( —2)
0.$ 2.699 ( —2)
1.0 5.384 ( -3)
1,8 1.656 ( -3)
3.0 6.703 ( —4}
S.O 2.941 ( -4)

78 0.3 1.136 ( —1)
o.s 3.21s ( —2)

1.8 2,120 —3
3.O 8.6S9 ( —4)
5.0 3.783 ( —4)

83 O.S 3.669 (-2)
1.0 7.980 {—3)
1.8 2.S84 (-3)
3.0 1.065 ( —3)
5.0 4.646 ( -4)

8.549 ( -3)
1.112 (-3)
8.837 (-5)
1.521 ( —5)
4.646 ( —6)
1.823 (-6)
4.892 (-2)
6,850 {-3)
$.941 ( —4)
1.084 ( —4)
3.391 (-5)
1.32V (-S)
1.194 (-1)
1.8O4 ( —2)
1.717 (-3)
3.343 ( —4)
f.ovs (-4)
4.198 ( -5)
2.042 ( —1)
3.3$2 ( —2)
3.538 ( —3)
7.407 ( —4)
2.457 (-4}
9.603 ( —5)

3.O82 (-1)
s.83o ( —2)
7323 ( —3)i.vzs {—3)
6,026 (-4}
2.366 ( —4)

3.4$6 ( —1)
7.485 ( —2)
1.099 {—2)
2.856 {—3}
1.O41 ( -3)
4.113 ( —4)

3.425 ( —1)
8.s79 ( —2)
1.468 ( -2)
4.161 ( —3)
i.svz {-3}
6.zss {—4)

3.196 ( —1)
9.242 (-2)
1.810 (-2)
5.499 ( —3}
2.13s (-3)
8.549 ( —4)

9.721 (-2)
2.163 (-2)
6.970 ( —3)
2.768 (-3}
1.11S ( —3)

6.822 (-2)
5.866 (-3)
2.8O3 {—4)
3.360 ( -5)
S.osi ( —6)
2.645 (-6)
3.576 {—1)
3.392 (-2)
1.817 (-3)
2.371 ( —4)
s.944 ( —s)
1.973 (-S)
7.852 (-1}
8.285 (-2)
5.044 ( —3)
7.233 (-4)
1.907 ( —4)
6.417 (-5)
1.180 (0)
1.41O (-1)
9.954 ( -3)
1.S89 (-3)
4.426 ( -4)
1.513 (-4)
1.414 (0}
z.fz3 ( —1)
1.943 (-2)
3.682 ( —3)
1.11S (-3}
3.910 ( -4)
1.283 {0)
2.43S ( —1)
2.824 ( —2)
6.133 (-3)
1.974 (-3)
7.06v (-4)
i.o37 (o)
z.sss (-1)
3.'Vgs ( —2)
9.O44 (-3)
3.054 ( —3)
1.112 (-3)
8.102 (-1)
2.594 (-1)
4.svs (-2)
1.211 ( -2)
4.233 {—3)i.s62 ( —3)

2.615 ( —1)
s.48s (-2}
1.554 {-2)
s.s84 {-3}
2.083 ( -3)

s.iv3 ( —1)
2.947 ( —2)
8.544 (-4)
7.Z21 ( —5)
1.368 ( —5)
3.786 (-6)
2.486 (0)
1.599 {—f)
$.340 ( —3)
5.020 ( —4)
1.0f3 ( —4)
2.870 ( —5)

4.919 (0)
3.627 (-1)
1.424 ( —2)
f.sio ( —3)
3.263 (-4)
9.488 ( —S)

6.s18 (o)
S.672 (-1)
2.698 ( —2}
3.275 ( —3}
7.613 ( —4)
2.27V ( —4)

6.252 (0)
7.487 ( —1)
s.oof (-z)
7.508 ( —3)
1.938 ( —3)
6.040 ( —4}

4.663 (0)
7.808 ( —1)
v.ovs ( —2)
1.248 ( -2)
3.464 ( -3)
1.112 (-3)
3.143 (O)
7.651 ( —1)
9.186 (-Z)
1.841 {—2)
5.400 ( -3)
1.776 ( —3)

2.095 (0)
7.41V (-1)
1.121 ( —1)
2.463 {—2)
7.516 {-3)
2.S18 (-3)
7.184 ( —1)
1.332 (-1)
3.1s3 ( —2)
9.931 ( —3)
3.379 (-3)

ag

3.84S (o)
1.451 (-1)
z.ss8 ( —3)
1.531 ( -4)
2.301 ( —5)
5.377 ( —6)

1.700 (1)
7.39$ ( —1)
1.541 ( —2)
1.047 ( —3}
f.voi ( —4)
4.116 ( —S)

3.042 (1)
1.562 (0)
3.9ss {—z}
3.1OO ( —3)
5.476 ( -4)
1.375 (-4)
3.569 (1)
2.255 (0)
v.zi 1 {-2)
6.63Z ( —3)
1.278 ( —3)
3.332 ( —4)

2.776 (1)
2.643 (0)
1.277 (-1)
i.soo ( —2)
3.259 ( —3)
8.964 (-4)
1.735 (1)
z'.S47 (o)
1.766 (-1)
2.47s ( —2)
5.834 ( —3)
1.666 (-3)
9.969 (0)
2.361 (0)
2.2$8 ( —))
3.628 ( —2)
9.087 (-3)
2.673 (-3)
$.732 (0)
2.190 (0)
2.716 (-1)
4.819 (-2)
1.261 ( —2)
3.795 ( —3)

2.022 (0)
3.171 ( —1)
6.109 -2)
1.659 —2)
$.093 —3)

4.46$ ( -4)
1.356 ( —4)
2.993 (-5)
9.379 (-6)
3.791 (-6)
1.68S (-6)
4.313 ( —3)
1.245 (-3)
2.5S4 ( —4}
7.685 ( —5)
2.965 {—5)
1.261 ( —5)

1.857 ( —2)
5.101 ( —3)
9.937 {—4)
2.796 (-4)
1.024 ( —4)
4.134 ( —5)

S.865 {—2}
1.544 ( —2)
2.834 ( —3)
7.54Q {—4)
2.614 ( —4)
9.938 ( —5)

2.317 {—1)
S.831 ( —2)
9.973 ( —3)
2.467 (-3)
7.906 ( —4)
2.732 (-4)
s.vs3 (-1)
1.417 ( -1)
2.332 {—2}
5.520 ( -3)
1.6V9 ( —3)
5.401 ( -4)
1.186 (O)
2.89z {-1)
4.650 ( —2)i.ovo ( —2}
3.138 (-3)
9.S6S (-4)
2.075 (0)
s.o3o {—1)
7.989 ( —2)
1.808 —2)
5.190 -3)
1.528 —3)

8.171 {—1)
1.289 ( —1)
2.888 ( —2)
8.1V9 (-3)
2.354 {—3)

3.321 (-3)
6.709 {-4)
9.132 (-5)
z.osi ( —s)
6.s9s (-6)
2.462 ( —6)

3.1S9 (.-z)
6,139 ( —3)
8.028 ( —4)
1.743 {—4)
5.409 ( —5)
1.937 ( —5)

1.341 (-1)
z.so3 ( —z)
3.132 ( —3)
6.S63 ( —4)
f.964 ( —4)
6.73o ( —5)

4.131 ( —1)
7.465 ( —2)
8.975 ( —3)
1.818 ( —3}
5.253 ( —4)
1.723 ( —4)

1.520 (0)
2.672 ( —1)
3.085 (-2)
6.013 ( —3)
1.666 ( —3)
5.160 (-4)
3.441 (O)
6.O19 ( —1)
6.848 ( —2)
1.311 —2)
3.553 -3)
1.064 -3)
6.344 (o)
1.116 (0)
1.268 ( —1)
2.411 (-2)
6.456 (—3)
1.89S (-3)
9.877 (0)
1:vs6 (o)
z.oos {-1)
3.812 (-2)
1.016 ( —2)
2.952 ( —3)

2.556 (0)
2.946 {—1)
5.617 ( —2)
1.497 ( —2)
4.328 (-3)

2.461 ( —2)
3.282 {—3)
2.728 (-4)
4.379 {—5)
1.124 ( —s)
3.545 ( —6)

2.265 (-1)
2,940 (-2)
2.385 ( —3)
3.755 ( —4)
9.415 ( —5)
2.870 ( —5)

9.187 (-1)
1.16S {—1}
9.204 ( —3)
1.4zo ( —3)
3.477 ( —4)
1.025 (-4)
2.64s (o)
3.3Z9 ( —1)
2.585 ( —2)
3.920 {—3)
9.4os (-4)
2.689 ( —4)

8.376 (0)
1.086 (0)
8.461 ( —2)
1.269 (-2)
2.984 ( —3)
8.24$ ( -4)
1.613 (1)
2.215 (0)
f.vvv {—1}
2.680 {-2)
6.271 ( —3)i.vo6 ( —3)

2.488 (1)
3.697 {0)
3.098 ( —1)
4.739 {-2)
1 ~ 113 (-2)
3'.oio ( —3)

3.2$4 (1)
$.272 (0)
4.630 ( —1)
7.212 (-2)
1.706 {—2)
4.616 ( -3)
6.957 {0)
6.430 —1)
1.022 —1)
2.441 —2)
6.630 ( —3)

1.829 (-1)
1.606 ( —2)
S,ios ( —4)
9.2s9 (-s)
1.895 (-S)
5.057 (-6)

(o)
1.4O6 ( —1)
v.oo6 (-3)
7.935 ( -4)
1.6O2 ( —4)
4.166 ( —5)

6.z92 (0)
5.400 ( —1)
2.661 (-2)
2.986 ( —3)
5,949 ( 4)
1.511 ( —4)

1.681 (1)
1.474 (0)
v.3oz ( —2)
8.161 ( —3)
1.610 ( —3)
4.oo9 ( —4)

4.518 (1)
4.360 (0)
2.27o (-1)
z.svo ( —2)
5.057 ( —3)
1.237 (-3)
7.28o (1)
8.036 (0)
4.519 {—1)
s.zs9 ( —z)
i.o44 ( —2)
z.s47 ( —3)

9.204 (1)i.zo6 (1)
v.4si {-1)
8.991 (-2)
1.814 (-2)
4.444 ( —3)

9.856 (1)
1.557 (1)
f.058 (0)
1.32S ( —1)
2.721 ( —2)
6.vz4 ( —3)

1.862 (1)
1.399 (0)
1.820 ( —1)
3.809 ( —Z)
9.514 {—3)

1.364 (0)
v.86s (-2)
z.4o4 (-3)
1.949 ( —4)
3.17S (-s)
7.169 ( —6)

1.176 (1)
6.73V (-1)
z.osz {—2)
1.662 ( —3)
2.692 ( —4)
$.970 (-5)
4.322 (1)
2.508 (0)
7.663 (-2}
6.zo6 ( —3}
9.999 ( —4)
2.183 (-4)
1.070 (2)
6.536 (0)
z.osz ( —1}
1.67$ ( —3)
2.696 ( —3)
5.820 ( —4)

2.429 (2)
1.751 (1)
6.os9 ( —1)
5.123 ( —2)
8.345 ( —3)
1.793 (-3)
3.zsv (z)
2.914 (1)
1.145 (o)i.ofv ( —1}
1.693 ( —2)
3.664 ( —3)

3.349 (2)
3.930 (1)
1.789 (0)
1.683 ( —1)
2.880 ( —2)
6.32O ( —3)

2.906 (2)
4.596 (1)
2.421 (Q)
2.4o9 ( —1)
4.238 ( —2)
9.447 ( -3)
4.979 (1)
3.054 (0)
3.21v (-1)
5.821 ( —2)
1.3zo ( —z)

88 0.5 4.138 ( —2)
1.0 9.409 ( —3)
1.8 3.132 ( —3)
3.0 1.306 ( —3)
s.o s.697 (-4)

i.ozo ( —1)
2.613 ( —2)
8.929 ( -3)
3.6zs (-3)
1.468 (-3}

2.643 (—1)
6.661 ( —2)
2.016 ( -2)
V.432 (-3)
z.sos (-3)

6.900 ( —1}
1.S94 (-1)
4.063 ( —2)
1.321 (-2)
4.568 ( -3)

1.813 (O)
3.698 ( —1)
7.762 ( —2)
2.189 ( -2)
6.868 ( —3)

1.373 (o)
2.156 (-1)
4.8o4 ( —2}
1.349 (-2)
3.824 (-3)

3.726 (O)
4.356 ( —1)
8.362 ( —2)
2.234 ( —2)
6.4S4 ( —3)

9.029 (0)
8.9oo ( —1)
1.4$2 —1)
3.512 —2)
9.613 —3}

2.149 (1)
1.829 (0)
2.493 ( —1)
5.340 ( —2}
1.3s3 ( —2)

5.111 (1)
3.784 (0)
4.26S ( —1}
7.982 ( —2)
1.848 {—2)

92 0.$ 4.S16 ( -2)
f.o 1.068 ( —2}
1.8 3.640 ( -3)
3.o i.s3s (-3}
5.0 6.709 ( —4}

96 0.5 4,89Q ( —2)
1.0 1.206 ( —2)
1.8 4.222 {-3
3.0 1.804 (-3
S.O 7.913 (-4

1.066 (-1)
3.083 ( —2)
1.102 {-2)
4.551 ( —3}
1.851 (-3}
1 ~ 129 {—1)
3.706 -2)
1.383 -2)
$.799 -3)
2.370 -3)

7.S78 —2
2.507 (-2)
9.435 (-3)
3.59$ {—3)

2.713 (-1}
9.438 -2)
3.156
1.212 —2)
4.664 -3)

6.S90 -1)
1.8$0 —1)
5.008 -2}
1.670 -2)
s.860 (-3}
6.142 (-1)
2.156 (-1)
6.216 {-2)
2.130 ( —2)
7.589 ( -3)

1.601 (Q)
4.17Z ( —1)
9.423 -2)
2.745 -2)
8.775 —3)

1.341 (0)
4.684 —1)
1.147 —1)
3.461 -2)
1.130 -2)

2.152 (0)
3.379 ( —1)
7.514 ( —2)
2.104 (-2}
s.932 ( —3)

3.529 (0)
5.547 (-f)
1.23$ —1)
3.461 —2}
9.769 -3)

$.0$7 (0)
6.oo3 (—1)
1.162 ( —1)
3.119 (-2)
9.028 ( -3)
6.901 (0)
8.356 ( —f)
1.635 ( —1)
4.421 (-2)
1.286 (-2}

1.098 (1)
1.153 (0)
1.929 (—1)
4.731 {—2)
1.306 ( —2}

1.319
1.496 (0)
z.sv8 ( —1)
6.428 (-2)
i.v96 (-z}

2.339 (f)
2.25O (O}
3.204 ( —1)
7.020 ( -2)
1.8os {-2}
2.466 (1)
2.752 (Q)
4.123 {-1)
9.274 (-2)
2.427 (-2)

4.976 (1)
4.435 (0)
s.323 ( —1)
1.028 ( —f)
2.429 ( —2)

4.$96 (1)
5 137 (0)
6629 {—1)
1.327 (-1)
3.211 (-z}

results of Drell. "A convenient set of graphs for this
purpose has been prepared by Axel and Goodrich. "As
has been emphasized elsewhere, the direct use of these
nonrelativistic formulas leads to considerable error for
all but rather small Z and k. The same remark applies
to the Born approximation results of DancoG and Mor-
rison, ~ which applies with sufhcient accuracy only for

AS D Drell Phys Rev 75 132 (1949)"P. Axel and R. F. Goodrich, ONR report (unpublished).

very small Z and large k, or more specifically, for
e'Z/ke«1, where e is the ve1ocity of the conversion
electron in the continuum. From the results of the
Toronto groupv it also appears that the ratio of E to I.
conversion coe%cients as calculated by Hebb and
Nehon" (electric) and by Tralli and Lowen" (rnag-

~ M. H. Hebb and E. Nelson, Phys. Rev. 58, 486 (1940).
'3 N. Tralli and I. S. Lowen, Phys. Rev. ?6, 1541 (1949).
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netic) is subject to surprisingly large errors because of
the approximations made.

II. RESULTS AND DISCUSSION

The parameters chosen for the machine computation,
which was performed on the automatic sequence relay
calculator (Mark I) at the Computation Laboratory
of Harvard University, were: 12 values of Z in the
range 10~& Z~& 96 and 6 values of k in the range 0.3~&k
~&5.0 For Z~&83 it was necessary to drop the value
k=0.3, and 6ve values in the range 0.5~&k~&5.0 were
used. In each case the first five electric and 6rst five
magnetic multipoles were computed. The calculations
were originally carried out for Z~&40, based on the
expectation that the approximative results would be
sufficiently accurate for Z &40. In this range the values
of Z chosen were such as to obtain an approximately
uniform scale in Z' since one expected, very roughly, a
Z' dependence of the conversion coefIicient. The ex-
tension of the computations to Z&40 was made at a
later stage when the original expectations proved to be
too optimistic.

The restriction to k~& 0.3 was made for the following
reasons. The computations involve the evaluation of a
large number of series (hypergeometric functions) which
become slowly convergent in this region (k =0.3). More
rapid convergence could be obtained by transforming to
functions of the reciprocal argument on the other side
of the radius of convergence. However, in this region of
the k —Z plane the effect of screening is important, and
it did not appear worth while to invest the necessary
effort in such unscreened calculations in view of the
plans for making screened calculations. The hyper-
geometric series which occur Lsee Appendix, Eq. (28)j
were evaluated term by term up to the point where the
6rst term neglected had an absolute value less than
10 ', the first term being equal to unity, of course.
The gamma-functions of real and complex argument
(see Appendix) were obtained by a Taylor series repre-
sentation of Sterling's formula wherein the 6rst term
neglected made a relative error of less than 10 '. The
680 values of the internal conversion coefficients ob-
tained in this way are accurate to at least four sig-
nificant 6gures. While this accuracy is far better than
present experimental needs require, it is necessary for
the purpose of interpolation to values of the conversion
coefFicient at Z—k values other than those which appear
in the machine calculations. Interpolations were carried
out to obtain coeKcients for 26 values of Z and 16
values of k representing-a total of 4020 values of the
conversion coefFicients. For this purpose it is convenient
to interpolate the ratio of the values given below in the
tables to the Dancoff-Morrison Born approximation
formulas, ' since this ratio is much less sensitive with
Z and k than are the computed coeKcients themselves.
The interpolated results checked with other calculations
where overlap occurred. "'

The analytical basis of the calculation is given in the
Appendix. For reasons of space limitation only the
machine computed coeKcients are given in Table I
below. In this table n~ and P~ are the conversion coef-
ficients for electric and magnetic 2 -pole radiation, re-
spectively. More extensive tables including the inter-
polated values appear separately. "A limited number of
interpolated values can be obtained from the curves
given in Figs. 1—10, which represents only a part of the
numerical results. Although it is not to be expected that
many cases will arise which involve multipole orders
with l) 5, reasonably accurate values for l=6 can be
obtained as follows. While o. & and P& are sensitively
dependent on l, the ratios a~+~/a~ and P~~~/P ~ are fairly
insensitive. Consequently, a one-step extrapolation gives
a~ and Pe with an error of about 5 percent. Figure 11
illustrates this extrapolation for electric multipoles.

A considerable amount of experimental data on
internal conversion coefIicients now exists, and the
numerical results given here have been used by many
investigators to make assignments of angular momen-
tum and parity to nuclear levels. It would seem certain
that the theoretical basis of these calculations is sound,
but it is worth while to note that in many cases the
assignments made are in agreement with other nuclear
spectroscopic data. For example, the assignments based
on internal conversion measurements" in the decay of
Co" and Cs'" are in agreement with the results of
angular correlation measurements. "However, in some
instances discrepancies exist. Notable cases are those
in which assignments are based on the rough theoretical
estimates of radiation lifetime. A compilation of the
internal conversion data as well as experimental results
obtained by other methods of nuclear spectroscopy is
now being made. It seems too early to draw any con-
clusions from such comparisons, in view of the uncer-
tainty of many of the proposed decay schemes and the
possibility of more accurate measurements of interval
conversion coefFicients. One conclusion which seems to
be valid concerns the apparent scarcity of electric
cipole lines. Out of a total of 89 cases where assignments
can be made, 84 are fairly de6nitely not electric dipole
and in the remaining cases the assignment as electric
dipole is not certain by any means.

The authors take pleasure in expressing their appre-
ciation to Professor H. H, Aiken of the Harvard Com-
putation Laboratory and to Dr. A. M. Wemberg of the
Oak Ridge National Laboratory through whose efforts
the Mark I calculator was made available to us. The
assistance of all members of the Oak Ridge Mathe-
matics Panel, led by Dr. A. S. Householder, as well as

"M. E. Rose and G. H. Goertzcl, AEC report (to be published).
'I'Waggoner, Moon, and Roberts, Phys. Rev. 80, 420 (1950).
'6 E. L. Brady and M. Deutsch, Phys. Rev. 74, 1541 (1948);

78, 558 (1950). F. Metzger and M. Deutsch, Phys. Rev. 78, 551
(1950).
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IO

IO

IO IO

a,

IO'

IO

IO
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FIG, 1. The electric multipole conversion coefBcients (E-shell)
for Z~20 as a function of 1/k~(gamma-energy/etc~) '. The
numbers attached to the curves give the value of /. The ordinate
scale at the right refers to the low energy portion of the curves
for 24 and 2'I poles.

that rendered by Drs. ¹ Tralli, S. D. Drell, and G. B.
Arfken vras invaluable.

Frc. 3. Same as Fig. 1 for Z=S4.

APPENDIX

The number of conversion electrons per unit time is
found by the usual perturbation procedure to be

X.=2~~I p~(p, [y+n A[y,)[, (t)
where Pf, the final state wave function, is normalized

IO

IO

I
I~O 05

I I I I I

RO RS 30 O'O
CLS IO I5 RO R.5 5.0

FIG. 2. Same as Fig. 1 for Z~40. FIG. 4. Same as Fig. 1 for Z~64.
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10—

0
Io =

Ilo—

«I
IO =

+ O OS IO a aa a.5 aO 0 05 IO I.5 2 0 2.5 5.0

Fxo. 5. Same as Fig. 1 for Z~'l8.

to unit energy range" and f;, the initial state wave

function, is normalized to unity in all configuration
space. A sum over all final states, including magnetic
substates, and, an average over initial magnetic suh-
states is implied by the sum sign. In (1) e is the Dirac

0
IO ~

Fro. 7. Same as Fig. 1 but for magnetic conversion and Z=4

matrix vector, a the fine structure constant, e is the
number of electrons in the initial state, while p and A

are the scalar and vector potentials of the radiation
6eld (see (3) below).

It is most convenient to use the following representa-

IO—I

IO =

I—IO

—IO
I

IO

«4IO—
—5

1

4
4

lo

-s
IO 05 I 0 I.S RA) R.S 5.0

Io

Fzo. 6. Same as Fig. 1 but for magnetic multipole conversion.

"M. E. Rose, Phys. Rev. Sj,, 484 {1937).

0 0$ lo I 5 20 LS 50
I/Ir,

Fzo. 8. Same as Fig. 1 but for magnetic conversion and Z 54.
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lp— have for the magnetic 2'-pole

Ap= [2/xl(l+1)]&yg(kr) LP ("(8, y),
p) =0, (3a)

10 =0

)0—

= )o'

—Io

where L is the (orbital) angular momentum operator

L= —irXgrad, (3b)

k is the wave number (numerically equal to the energy)
of the radiation, and F~ is a normalized spherical har-
monic. "For electric 2'-pole radiation

A~ =[2/ml(l+1)j&y~ q(kr)[r grad+Er/rjVg (8, y), 3P~"=i[2l/s. (l+1)]~x~(kr) V~ (0, q).

With this normalization the number of quanta radiated
per unit time is

1V,= 1/s'k. (3cl)

)OO

)0+ I I I ) I ) I

0 0.5 ).0 ).5 2.0 2.5 3.0
)/)t

)0

FIG. 9. Same as Fig. 1 but for magnetic conversion and Z=64.

lo =I

tion of the multipole fields. ' Designating the spherical
hankel function by

xl(x) =(s/2x)~H(+lo&(x), (2)

where II'&'& is the hankel function of the first kind, we

and
(j I +1) '—

,u —t
E 2j+2 )

(4b)Q(i+2,i; ~) =
(j+~+1q '

1'+t""

Then the initial state wave function may be written in
the form

(if~,i,(r)e„Q(1))
4 g~„,(r)Q(1) &

(Sa)

It will be noted that l and m correspond to quantum
numbers for the angular momentum and z-component
thereof for the radiation 6eld.

The internal conversion coefficient is X,/S„and is
denoted by a& and P& for 2'-pole electric and magnetic
radiation, respectively.

The wave functions can be conveniently expressed
in terms of the two-component spinors

( (i+I /2j)'
Q(j l j;~) =

~

— . . I (4a)
I (i ~/2i-)», —:"+'&

0IO—

o))0—

4

&n Eq. (Sa) and in the following we abbreviate
Q(f„,j„;m„) by Q(e). Here f and g are (real) radial
functions, j& is the total angular momentum quantum
number, mj corresponds to the z-component of j&, and
f& is either j&—

2 [Eq. (4a)), or j&+~ [Eq. (4b)j. The
operator o, is given in terms of Pauli spin matrices and
can be written as

Io =4

I

)0

I

I ) I ) I ) I ) I ) I ),oo)o O O, 5 ),O ).5 2.O 2.5 S.O
I/)1

FIG. 10. Same as Fig. 1 but for magnetic conversion and Z=78.

"See, e.g., V. Berestetzky, J. Phys. U.$.$.R. $$, 85 (1947);
also %. Heitler, Proc. Cambridge Phil. Soc. 32, 112 (1936).

(iEtg;2(r) o „Q(2))
4 Gi„,(r)Q(2) &

(Sb)

'9 The (real) radial functions F and 6 are denoted by f and g,
respectively, in reference 17.

( cos8 single '")
&single'~ —cos8 i

so that it is hermitian and unitary.
In exactly the same way the 6nal state wave function

may be expressed in the form"
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with j.- and m~ interpreted as above; again /~= jg+ ~.

(a) Electric Multipoie Conversion

Using

~0 eq

L,tr oj

(2l+1) '(2j1+1) ' P I
T1I'

= (2j2+1)(2l+1) '(2j1+1) '[Q(l; l2j 2, lrj1)]'. (12)

The internal conversion coeKcient can be obtained
in terms of radial integrals from (1), (3d), (9), and (12):

we find that the following angular integrals appear:

T1 (Q(2) I

——Y1"
I Q(1)), (7a)

T =(.Q(2)IF I .Q(1)), (7b)

T2 ——(o'„Q(2)
I (r grad+ ir/r) &1"

I eQ(1)), (7c)

Tt= (Q(2) Ie (r grad+lr/r) F1
I
0,Q(1)), (7d)

where

S, 2makl

$0 (l+1)(2l+1)

U1= (22r/l') p (2j,+1)[Q(l; l,j,; l,j,)]'
&mix

X I l(R,+R, R2+R4—)1»2+[j 202+ 1)

(13)

T1 Q(l; l——2j 2, l1j1)Si2meu ' ' . (10)

In Kq. (10) the S12mmt&"'i are transformation coefficients
for vector addition corresponding to the vector addition
of / and l& with s components m and m&, respectively, to
give the resultant l2 with s component 2222=222+2121.

The Q coefficients are independent of the magnetic
quantum numbers. In fact,

~here in T3 and T4 the grad operator acts on F& only.
By the unitary property of e„we 6nd T2= T&. Using the
relations

ra~ grad= r grad —e L,

e LQ(i) =[j,(j,+1)—l;(l,+1)—r)Q(i), i= 1, 2 (8)

we find

T2 T1[l+j1(——j1+1)—l1(l1+1)
—j2(j2+1)+l2(l2+ 1)] (»)

Tt Tt[l+j2(j——,+1)—l2(l2+1)—j (j+1)+l (l+ 1)] (»)
The evaluation of Ti can be carried out in a straight-
forward manner. %e have

—l2(l2+ 1)—j1(j1+1)+l1(it+ 1)]
)&(R2+R4) 12i2I'. (13a)

.e:

e

.I

OI

7
64

I I I I 1 I IIIi .I S.r~.au
It

I I I 1 llll

For the E sheH (l1=0, j=~) we have

FIG. 11. The ratio of electric 2' to electric 2 conversion coef-
6cients obtained by extrapolating aI/aI+I. The attached numbers
refer to Z values.

U1= (l+1) I
R1+R2+2R1

I
'1, 1+i

R,/lI'1, 1 t, (1—3b)
Q(l; i2j2; i1jt)- [Si2, o. t 1""Sit.o. t'"&'

&((F12'I F1'I Y11')Sii 1 —t&'»)S +I 1+2 (+/)2
and R1 Rt are the radial integrals

%e make use of

(2l+1)(2l,+1) i
( F12 "2I Fg"

I Ft,~&) =
42r(2l2+ 1)

XS12, o, o&"»S12 ~ ~1&"&& (11a)

(R1) 12i2= F12i2+tfttjtr 1&,

(R2) 12i2= ' G12iextg&titr &&,
al p

(13c)

(13d)

(R3) &232 ' F12i2XE tg11ilr dry—
0

(13f)

for the integral of three spherical harmonics. The (13e)
average over m and vs~ and the sum over m2 gives'P

E. signer, Grl ppentheorie (Friedrich Viemeg und Sohn, 00

Sraunschvreig, 1931), Chapter XVII. The tabulation of these
coefELcients given in E. U. Condon and G. H. Shortley, Theory of
Atomk Spectra (Cambridge University Press, Cambridge, 1935),
pp. 76-77, sufBces for aH cases considered here. In the latter ref-
erence the coeiiicients are denoted by (ll1me21

I ll|4e22). In (13b) the values of l2j2 for which the integrais must
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(c) Radial Integration and Transformation
of Results

be evaluated have been written as subscripts outside
the absolute value signs. The selection rules giving the
values of t2 and j2 over which the sum in (1) mus
taken are

It—lrl ~~t2&~t+t„ ll—jrl &~j,&l+j„
t+tr+t2 even,

~2»2:q
—

& l (l+v)! t'i ~"
Itr ~rr&(s) = ( i—)'+'I

I
e'~ g I I

(19)
E 2 i ~~v!(l—v)! (22:)

where the last is the parity selection rule.

(b) Magnetic Multipoles
and for the radial functions of the 6nal state wave
function the integral representations'~ are employed.
The radial functions for the ground state are

The calculation for the magnetic multipole proceeds
in similar fashion. The angular matrix elements which
appear are

f (1 y) rD» Y
—le—as'

g=(1+y)&D»& re acr (20)T2=(r»,Q(2) ILFr I r»Q(1))

T2——(Q(2) I
I Fr I r»r»„Q(1)),

where
(15b) (20a)y= (1-r22Z') &

tbe
The radial integrations are carried out exactly as in

Hulme's calculation. ' For the hankel function we use
the series representation

which can be transformed to a common form

T2 — T2———Tr'[—72(g2—+1)—t2(t2+1)
+j,(j,+1)—l, (l,+1)+-,'],

T,'= (a,Q(2) I
Fr"

I Q(1))
= (Q(2j2—t„j„m2) I F,"IQ(1)).

From the selection rules valid for magnetic multipoles

is the total energy (including rest energy) in the E-shell
and

D= (2r2Z) &+&[21'(2y+1)] ' (20b)

is a normalization factor.
%'e introduce the following notation for quantities

occurring in the 6nal state wave function:

Il—lrl —1&t2&t+tr+» It—jrl &~j2&~t+jr, (,l+l,+l2 odd
v'= [(f2+sr)' ~'Z—']' (21a)

we recognize that the values of 2j~—l~ which enter for
the magnetic 2'-pole are the same as the values of l2

which enter for the electric 2'-pole radiation so that
(10) and (11) can be used in this case also.

Finally, the magnetic internal conversion coefBcient
is given by

2xnkl
Pr= U I

(l+1)(2l+ 1)

where

f/r'= (2~/t') Z (2j2+1)[j2(j2+1)—t2(t2+ 1)
l2j2

+j,(j,+1)—tr(tr+1)+$]2

(21b)

g= aZW/p, (21c)

where p() 0) is the final state momentum and
W=(p'+1)& is the final state energy (including rest
energy). Then we find for the electric multipole con-
version (omitting common factors of modulus unity)

(Rr) r, re) = —i(W —1)&(1—y) ~DE ry)

X[Kr, r+~ exp( —2irr+)K—*lr~i], (,22a)

(R2) r, r+~= (W+ 1)'(1+&)'D&r~t

X[Er, ly)+exp( —2irry)E*r. ry)], (22b)

and

X[Q(t; 2j,—t„j,; t„j)]'IR,'+R4'I 2r», (17a) (R,)r, r+q = —(W—1)&(1+y) &DI/l~~

X[Er r, r~~ exp( 2—irr~)K—*r rr~~], (2,2c)

(R2 ) l22 2=
~~~ Pr2'r'2Xrgrlr'1» rt»y

p

(1"/b)
(Rr) rrg) = i(,W+ 1)&(1 y)—&Dtr/ rpy—

X[Er r, r~~+exp( 2irr+)K*—r r~~r, ](22, d)

~00

(Rr') l»2= ' «2&2xrfrrr'2»'d».
e/ p

and for the magnetic conversion
(17c)

(R2')r r+~= (W. 1)'—(1+&—)'D&r+~

For the E-shell

Ul'= (l+ 1) IR2'+Rr'I '2+2, r+&

+(i+1)'/t I
R2'+Rr'(2r r. r ) (18-)-.

X[Er r~~ exp( 2i»/~) E—*r »F «],—(22e)

(Rr') rr~t = i(W, +1)r(—1 y) ~D%+—)

X[El.»+)+exp( —»2/g)E*r. r-Fr]& (22f)
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and Ii is the hypergeometric functionwhere the ~ in the second subscript in E3', E4' goes
with lt'= $+1.Note that for both values of P, 2j—P = l.
In (22) we have introduced I'(c) ~ I'(a+n)r(b+e) s"

F(a, b; c;z)= (25b)
r(u)r(b). ~ r(c+~) ~!

y +i)
(23)exp( —2igp) =

+(i+i)+i~~/p

we have

In (25) we have used the relations

F(a, b; c; z)=(1—s) 'F(a, c—b; c; s/(s —1)) (25c)
and the value to be used for j is the same as the second
subscript in E.Also E*is obtained from E by changing and with

the sign of p in the formulas given below: ~'=-'P/L-&-'(b+P) j
& ()+v)!

Eg, ,=P jV.
-0 () —v)!

(X+v)!
Eg, ;*=+

-0 (X—v)!

and the E;„E;,~ are de6ned by

( p i " r(7+7' —v)

4E;„*& E 2k''& v!r(2y'+I)

(24a)

(24b)

2!*/(2!*-I)=2!. (25d)

The result (25) applies only in the circle of con-
vergence: I

2i'
I (1.Applying the conservation of energy

b+y= W (26)

it is seen that the region I2!"
I (1 applies only in a

narrow band of the Z-k plane near the E-threshold.
For all cases considered in the numerical work the
analytic continuation of (25) is required; that is, we use

r(u)r(b)
F(u, b; c;z)

I'(c)

f'=ip/L~~+i(p b)3— (25a)

](v'+if)F(v'+v v»'+—I+i~ »'+1 2&) &'xl, . . . I (25)
&(y' —ig)F(V'+v v, v'+if; 2v'+—I; 2i')

I'(a) I'(a —b)
( z) 'F(a, 1——c—+a; 1 b+a; 1/s)—

I'(a —c)

r(b) r(b —a)
+ (—z) 'F(b, 1 c+b;1 a—+b; 1—/s). (2'I)

I'(b —c)

Applied to E;0 and E,~* this gives

E 0 I 2' '
( & &

+ ' r(y'+y)r( —y+ '$)r(r' —iP) ( ( y+i/)F(y'+—y, y —'r'; y ig; 1/2i) l-
l

&E,,*& b &ip& r(v' —&+I) ~(v' ih)F(v'+—v, v ~'; ~+I ik; I/2f—)&

[(v'+ik)( 2t') 'F(—V'+ I+if, 1 V'+ik; 2 —V+i$; I/2—f ) ~ I+(- 2f)-'-' tr(v'+&) r(v-I- s) I

(~—1—ig)F(~'+i~, —~'+iP; 1—~+ig; I/2!') & l

where we require
I 2( I &1, I arg( —2f')

I
(s and

I arg(t'/ip) I «/2
The task of obtaining E;„and E;„*for v QO is greatly

simpli6ed by the use of recurrence relations. %ith the
aid of

(c a)F(a 1—, b; c; s)—
=b(1—s)F(a, b+1; c; s)+(c b a)F(a, b; c; s)— —

and

(c a)F(u 1, b+1; c;—s)—
= (b —a+1)(1—s)F(a, b+1; c; s)+(c b 1)F(u, b;c;s)——

we 6nd the following recurrence relation which we write

in matrix form:

( Ei, ~+I l (-p/»I. )

~E;;.+i& (v+I)(&+V'+v-I)(v'-&+v+I)

& +I v+ik —v'+ih
~ r(I —20)E;.~

xI II
'

l. (29)
i$ —v+1 y i$& —E —E;.*

For all cases considered
I 2/I & I so that (28) and (29)

determine aB the E;„E;„*and from (13), (I'1), (18),
(22), and (24) the internal conversion coeKcients are
obtained. Some further simpli6cation may be made by
introducing the transformations discussed by Gellman
et ul. ~


