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Cross sections for several processes involving electromagnetic fields in a nonlinear manner are derived
from the electrodynamic scattering matrix and are expressed in terms of the fourth-order nonlinear vacuum
polarization tensor. The differential cross section for the scattering of light by light is calculated as a function
of energy and angle. Numerical values are given for scattering at zero and at ninety degrees in the center-
of-mass system. Near 1.75 Mev the forward scattering cross section has its largest value of 4.2)&20 "
cm'/sterad, while the maximum right-angle scattering takes place near 0.7 Mev with a cross section of
2.8)&20 " cm'/sterad, all for unpolarized radiation. Numerical results are also given for scattering at,

the above angles between circularly polarized states. The conclusions in this paper agree with all the results
previously calculated for special cases.

" 'N an earlier paper' the nonlinear interactions
~ ~ between electromagnetic 6elds were expressed in
terms of the polarization of the electron-positron
vacuum. In this discussion the polarization tensor
derived in I will be related to the cross sections for the
occurrence of events which are consequences of the
nonlinearity.

The processes to be considered are the scattering of
light by light, ' two-quantum pair creation, ' the scat-
tering of light in an external held, 4 and the creation of
pairs in an external field. ' An expression for the cross
section for each of these is set up in Sec. II. The two
cases involving only radiation 6elds are then treated in
detail. A certain simplification occurs in the calculation
of the appropriate element of the scattering matrix and
of the polarization tensor, because the fact that all the
4-momentum vectors involved are null-vectors, together
with the conservation laws, implies that the matrix
element depends on the initial and Anal momenta only
by way of two parameters; these may be taken as the
incident photon energy and the scattering angle in the
center-of-gravity system. The total cross section for
two-quantum pair creation is easily obtained from the
diagonal (forward scattering) element of the S-matrix,
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as has been described elsewhere b this relationship
follows from the unitary character of the S-matrix.

To obtain the probability for the scattering of a
photon by an external field, the electromagnetic po-
tential in the 5-matrix is replaced by the potential of a
quantized wave (creation or annihilation operator) pius
the external potential which causes the scattering. The
matrix element of this operator between one-photon
states of the appropriate momenta then is the proba-
bility amplitude of the scattering process. Here the
evaluation of the polarization tensor is much more
difficult because the momentum vectors are not null
vectors. The forward scattering matrix element again
is simply related to the total cross section for pair-
creation in the external field. '"

Formulas for the dift'erential cross sections for transi-
tions between photon states of definite linear momen-
tum and deanite spin angular momentum (circular
polarization) are given to summarize the results of the
calculation of the scattering of light by light. This
choice is convenient because the transitions fall into
two groups: the more probable ones conserve spin
angular momentum, while the less probable ones do not.
In the limiting cases of low and high energy our results
agree with the published ones. '

L SCATTERING CROSS SECTION

The total probability 8' that a transition takes place
from an initial state +; is given in terms of the scattering
matrix S by
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the second part of the identity is a consequence of the
unitarity of the S-matrix. If not all transitions from
4, are being considered, then the probability 8" for
the occurrence of a process that is of interest may be
expressed in terms of a part S' of the scattering matrix
by

VV'=(+' ~'+~'+') =zf(q' ~"q'f)(q'~ ~'+') (2)

if S' is an operator whose matrix elements are only the
relevant scattering amplitudes. S' need no longer be
unitary, of course.

A. Two-Photon Scattering

In the calculation of the scattering cross section of
photons by photons, the states 4; and 0 f refer each to
the presence of two light quanta. Hence, to the lowest
order in the coupling constant, the operator S' of Eq.
(2) is equal to the operator 5&4& defined in Eq. (11) of
reference I if the quantities A„(h&"') are taken to be the
quantized electromagnetic field variables and if the
vacuum and single-particle parts are removed. Let
the initial state be characterized by the presence of two
quanta with momenta P~ ——h~p and P~= —hap, energies
c~P&~ =c~P2~ =h&:&&m=m«'&0, and polarization vectors
e„"'(—y) and &:„"'(—p), respectively, inclosed in a large
but finite volume V. The expectation value indicated
in Eq. (2) can now be easily evaluated with the help
of the usual substitution

A, (k, 4)~V(2IkI V) 'L~,"(k)a"(k)8(ho—
~ k~)

+e„"'(k)a"'(—k)8(ho+
~
k~)],

(3)

where a"(k) annihilates and a""(—k) creates a photon
of momentum k and polarization e„"(k). The many
terms that arise from difI'erent identifications of P;
with the k(" all give the same contributions because of
the symmetry of the polarization tensor.

The matrix element of the operator part of S(4) to be evaluated is

Q=(P&) &&&; P&, 4~(A "A, 'A&, 'A, ')~+
X (A„'A'„'A A, '&)&~P 2&«,&PI, &.),

where A„(k(')) is abbreviated by A„'. The symbol ( )2 denotes
the two-particle part of the enclosed expression: the operator is
to be decomposed into products of annihilation and creation
operators; then the terms containing two factors of each are taken
with the annihilation operators standing on the right. This
operator, therefore, annihilates two particles and creates two
others; in particular, it transforms a two-particle state into
another two-particle state via the vacuum state. The latter fact
suggests that Q be factored as follows:

Q= Z (P&, &«., P&, &&2~ (A 'A ")+(A 'A p) ~P&, X&., P&, &&2)

perm

X(0~ (A), 'A, ")+(A)t'A ') tO)(; I ." 'I, )(, I
"'.'l )

X (0~ Ag. '+Ay'~ 0) (0
~
A,"+A,4

~
0).

= 5tq-, e)

FIG. i. Definition of the initial and final states in terms of the
wave numbers p and q and the polarization vectors e". The
directions of the vectors e" for circular polarization are those of
the angular momenta associated with the rotation.

The sums are respectively over the 36 and 288 distinct permuta-
tions of the primed and unprimed indices separately. These all
make the same contribution, however, because they are multiplied
by the symmetrical function G„„p,(1234). Hence

Q—+288[e„"&e„"' k( k«& P&)—S(k«'& —P&)/2V~P&~]
X[e„"'e„"~s(k&"—P2)s(k~' —Pm)/2V~P2~ j
X Ls» s(k'" —k"')k(ko"'+ Ik"' I)/2(2~)'I i&'"

i j
X LS„S(k&'&—k&'&) i&(ko&'&+

]
ll&'& [)/2(2&&)'[ k&'&

[ ].
The probability 8" then becomes

2 p o.4 1
W, '= —

~ d4z —
~ dQ(k) e "&e„"'

V2J 12gs2 &02&&2]

k k
G„,&, I 1&& cv; —P) co; —, &0» «&

I
~ (4)

Over-all momentum and energy conservation have
reduced the number of independent arguments of 6,
whose space and time components have been written
separately for greater clarity; the scale factor ~ has been
dropped from the arguments because 0 is dimensionless
and, therefore, homogeneous of degree zero in ~. The
factor D2/ V)J'd'xj is interpreted as (2c/V)T, the
incident photon Aux multiplied by the time during
which transitions have been taking place. ' The total
cross section is, therefore, given by the right side of
Eq. (4) with this factor omitted.

The differential cross section for scattering into the
state containing one photon with momentum in the
solid angle dQ amund the direction of P&= haq and
polarization e„"',while the other photon has momentum
—P3 and polarization e„"4, is clearly

&r,(8, y; (o) = e )&, 1e X2e X3*e X4*

G„,&,.(p, s); —p, cv; —q, —co; q, —(u) ~', (5)

energy conservation requires that the scattered quanta
still have the energy hc«re=he«~ q~, as is indicated by
the arguments of the polarization tensor in Eqs. (4)
and (5).

e now introduce some conventions with regard to
the unit vectors specifying states of polarization. The

' B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).
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symbols e„'(P) and e„'(P) will denote spacelike unit
vectors lying perpendicular to and in the scattering
plane, respectively. The set (e', e', P) forms a right-
handed system. The unit vectors for right and left
handed circular polarization are given by e+= 2 &(e'+pe')
and e =2 &(e'—pe'), respectively. For simplicity in
writing, the following abbreviation will now be intro-
duced:

M«, «p«p«4(8 (o) =—,' e "&e„"pe«""e."4*

G„„«.(p, cu; —p, (s; —q, —(o; q, —(v), (6)

where

8=cos '(p q/pp')

is the angle of scattering in the scattering plane. Fig-
ure 1 illustrates the symbols that have been introduced.

An examination of I, Eqs. (21) to (24) indicates
the possibility of 6ve distinct scattering con6gurations
in the case of linearly and circularly polarized light. In
the former, these correspond to M~~~~, &2222, &~~22,

M&2» and &~2~2, with weight factors 1, I, 2, 2, and 2;
in the latter they are M++++, M++, 3E+ +, M+ +,
and M+++ with weights 2, 2, 2, 2, and 8. The diBer-
ential scattering cross section for unpolarized radiation
is then given by two alternative formulas

n4

p, (8, a)) = —(I%I')p„
4m K2OP

(Ikf I')"= 4CI ~»»l'+ Ikf »»I'+2lkf »»I.
(7)

+2 le »» '+2
I
~»»l']

= kC I kf++++ I'+
I ~++—I'+

I
kf'+-+-I '

, I +4lkf„,. I'].

B. Toro-Photon Pair Creation

In the treatment of this process, the states 0'; and +f,
Eq. (2) refers to the presence of two photons and of an
electron-positron pair, respectively. It is easy to verify'b
that to the lowest order in the coupling constant the
matrix S' appropriate to pair production is equal to S,
so that Eq. (1) may be used. The terms of order a' in

this equation then give

C. Scattering of Photons by an External Static Field

Here again, S' of Eq. (2) is equal to S'", but now the
quantities A„(k&'&) must be taken as the sum of a
quantized wave amplitude A„(k"') and a fourier com-
ponent of the external Geld A„'(k&'&). Only the one-
particle part is to be used. The quantized A„(k"&) are
again expressed as creation and annihilation operators,
Eq. (3), while the three-dimensional fourier transform
A„' can be introduced by setting

A„'(k) = « 'A—„'(k/») b(kp/») . (10)

In terms of this quantity, then

fop (2w)'a' t.
W,"=

I dQ(k, )
V 4»'

J
dkpdk4e„"'(p)A«'(kp)A, '(k4)

XG„«„(p, (u; kp, - pp; kp, 0; k4, 0)

X8(p—k,+k,+k,) . (11)

Dropping the factor CJ'dip/V] yields the total cross
section, while the differential cross section for scattering
into the solid angle dQ around the direction —k2= q
and to the polarization e„"'(q) is

n4 r
e '(8 cp) =4m' — ' dRe„"'(p)e„" '(q)

K

P q f P
XA*'I ——+R IA 'I ———R

I

2 i t 2 )
P P

XG»«. I p, co; —q, —~; ——+R, 0; ———R, 0
I

2 2 )

where P=p —q and 8=cos '(p q/co') are the momen-
tum transfer and scattering-angle, respectively. The
basic polarization vectors are again taken in the
scattering plane and perpendicular to it, for conveni-
ence.

D. Pair-Creation by Photons in an
External Static Field

Wp= —2 ReC(f;, S'4'P;)]

2
I

2CP
= ——

)
d'x ImCkf«g«p«g«p(0, cg)]

P'2 J K2~2

By an argument corresponding to the one in 8, the
total cross section for the production of electron-

(g) positron pairs by a quantum of energy hc»pp and
polarization e„" is

for the total probability that a pair be produced by
two photons of momenta yI = hKy, y2= —hKy, energies

clp~l =clppl =kc»pp, and polarizations e„"', e„"'. The
total cross section is therefore

0„'CO =—4x'0, 2

Im JI dRe„"e„"*A«'(R)A '(—R)
K (4

e(co) = —2(a /«co') ImCM&g«p) q»p(0, (u)].
XG„.«,(p, (a, —p, —(o; R, O; —R, O) . (13)
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we have

D(1234) = D(3412)=D(2143) =D(4321) = D(n, y),

D(2341) = D(4123) = D(1432)=D(3214) =D(y, a),
D(1243) = D(4312) = D(2134) =D(3421)=D(u, P),

D(2431) =D(3124)=D(4213)=D(1342)=D(P, n), (15}

D(1324) =D(2413)=D(3142)=D(4231) =D(P, y),

D(3241) =D(4132)=D(2314)=D(1423) =D(y P) .

D(u, v) = [1 ie 4—(uy2—y4+vy&y3)] '

To carry out the integration over the hyperplane
defined in I, Eq. (25), it is convenient to introduce
three new variables by relations like these:

y =(1-*)(1-y), y =(l-s)y,

ys ——x(1—y),

Then integrals of the form

p4 Sp.

r' 1

drP(y)D(u, v)~ dy y(1 —y) dx
at p J,

~~yt =1, yi &fl

X
J

dsP'(x, y, s)D'(u, v), (17)
0

D'(u, v) =
I 1—ie —4y(1 —y)

X[ups+ v(1 —x) (1—s)] I
—',

where P and P' are polynomials, must be evaluated.
One can deduce useful algebraic relationships among
many of these by equating two expressions that contain
diGerent functions P' obtained by different permuta-
tions of the substitutions Eq. (16) applied to the same
function P(y;) in the integrand.

Straightforward integration, together with the ju-
dicious use of the relationships just mentioned, yields
lengthy expressions for the Ap(1234), and so for the
A "(1234), as functions of a, p, and y. They are listed
in Appendix A. It is useful to give special designations
to the three transcendental functions that appear in

II. CONSTRUCTION OF THE POLARIZATION TENSOR

In this section we shall evaluate the five distinct
invariants that determine the polarization tensor of
quantized 6elds by calculating the eleven quantities
A&"(1234) (I, Eqs. (30), (31), (33), (34), and (35)) and
applying I, Eqs. (36)—(41). The denominator D(1234)
(I, Eq. (27)) simplifies greatly when the values of the
four momenta from Eq. (5) are introduced. Thus, in
terms of the parameters

o = —(k&&~ k&2&)/2&&~ = —(k&@k&4&)/2&&2 = &g&

p= —(k&"k&")/2K'= —(k"'k&4')/2«'= —id' Sill'(8/2) 1

(14)
y = —(k«'k&4')/2a'= —(k"'k&3')/2«'= —oP cos'(8/2)

I(u, v) = l(v, u) =
"0 4y(1 —y) —(u+v)/uv

&& I log[1 i ~ 4—uy(—1 y)]—
+ log[1 —ie —4vy(1 —y)] } (20)

with the real part

1 ( a+1 ) ( a+1
Re[1(u, v)]=—Re yi (+@i

2a L a+b(u) ) ( a b(u) )—
( a—1 ) ( a—1

E a+b(u) ) &a b(u) )—
a+1 y ( a+1

+@I — /++I
& a+b(v) & } a—b(v))

where

and

( a —1 } ( a —1

} a+b(v)) &, a —b(v) i

a = [1—(u+v)/uv]l,

b(u) = [(u—1)/u]&, u& 0, u) 1

= i[(1—u)/u]t, 0&u&1

Z

@(s)=
J

log(1 —t)dt/t;
0

(21}

(22)

'The Spence function @{a) has been encountered in electro-
dynamic problems by G. Racah, Nuovo cimento 11, No. 7
{1939).It is discussed at length by K. Mitchell, Phil. Mag. 40,
351 {1949),who also gives tables of numerical values.

the A" in addition to rational functions of u, P, and y.
They are

~l
B(u) =— ' dy log[1 —ie —4uy(1 —y)]

2J,

(I—1) '
sinh —'(—u) l —1; u &0Eu)

(1—Q) '
sin 'ul —1; 0&u&1Eu)

(Q—1) ' vi(u —1y t

I
cosh 'u'-1- —

)
—I; «u, (»)

B ) 2 E 8 )
pl dy

T(u) = log[1 —ia —4uy(1 —y)]
"0 4y(1 —y)

= [sinh '(—u)t]' u&0

= —[sin 'u&]', 0&u&1

=[cosh 'u']' —4v' —ix cosh 'ut; 1&u
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TABLE I. Expression of the matrix element M(x/2, co) in terms of the basic invariants A"
for transitions between circularly polarized states.

(].234) A»43((324) A»4 (&234) A»4'(j324) A»»($234) A "»((432) A»»((234) A»»(]432) A»»($423) A»»(&234)

3f++++/GP K

/CO K

3f+ + /(c7 K

=M+ +/(d K

iV+.++ /GP K

—2
—2

—2

0
—4

0

u and v are two distinct members of the triplet (&&., p, y).
It should be noted that (I+v)/Iv~&0 then follows from
the values of n, p, and p in Eq. (14). Hence care must
be taken in the integration only if the logarithms have
branch points, only, therefore, if I or v is greater than
one. In this case, the imaginary part of I(u, v) is found
to be

1m[I(u, v)) = —(v/2a) log[v(a+b(u))'), I ~& 1
(20")= —(~/2a) log[I(a+b(v))'), v~& 1.

Some numerical values of these three functions and
their behavior in the limits of large and small arguments
are given in Appendix 8 and Table IV.

It is clear from the discussion of the scattering cross
section that the imaginary parts of the functions 8, T,
and I are connected with the contribution of real
intermediate pairs to the cross section. The consistency
of this interpretation follows from the fact that the
imaginary parts are zero unless 1(N, v=n=co'. the
total energy must exceed the rest energy of a pair.

Kith these results we can obtain the cross section
for two-photon scattering and two-photon pair creation
by inserting the values of the photon momenta and
their polarizations. In the remainder of the paper this
is done for several special cases.

IV. LOW ENERGY APPROXIMATION

The result obtained for the polarization tensor in I,
Eq. (48) is applicable here. The evaluation of 3II from

Eq. (6) gives the following values for circularly polarized
radiation:

M++++(e, &d) = (I/15)&d'(3+cos~8),

M++ (e, &d) = —(22/45) a)',
(23)

&M+ + (8, (o) = —(11/90)co'(1+cosa)',

M+ +(&&, ~) = —(11/90)&v'(1 —cos8)-",

and finally, for unpolarized radiation,

&r.(8, cu) = (a'/4+V)[139/(90)')(o'(3+cos'f&)' (24)

These results, of course, are in agreement with those
derived from formulas (10, 9)' of Euler."

V. RIGHT-ANGLE SCATTERING

For this scattering angle &&.= —2P= —2y=aP. Be-
cause P and y are the same, those permutations of the
A(1234) which differ only by the interchange of the
variables k(" and k(" are numerically equal. Hence the
tensor G„„q simplifies somewhat to the following form:

G„„&, (1234)= I A
"4'(1234)g&'& (1234)+ 4"4'(1324)

X[g ' (1324)+g "(2341)]+A""(1234)[g&"(1234)
+g&'& (1243))+A "4'(1324)g "&(1324)
—(1/2co') A""(1234)[g&"(1234)+g&"(3412)

+g&'&(2143) +g"&(4321)]+(1/a&')A""(1432)

X [g"'(1432)+g"'(4123)+g'"(3214)+g'"(2341)

+g&"(1342)+g'"(4213)+g&'& (3124)+g'" (2431)]
—(1/2&d')A'"'(1234) [g"'(1234)+g"'(3412)

+g& & (3421)+g&'& (2134))+(I/(u') A'"'(1432)

X [g&"(1432)+ g&o (3214)+g'o (3124)+g'" (2431)]
+ (1/co')A'"'(1423) [g&4'(1423)+g'"(3241)

+g&"(2413)+g'" (1324))+(1/ru') A""(1234)

+[g"'(1234)+g"'(4312)+g&"(1243)

+g"'(4321)]I „„&„. (25)

The quantity M»~»3) 4 is a linear combination of the
functions A". The coeScients depend, of course, on the
particular values of X; that are being considered. For
transitions between states of circular polarization they
are listed in Table I. Once the A" are obtained, they

TABLE II. Expression of the matrix element 3f(m/2, co) in terms of the transcendental functions B, T, and I.

~++++
M++
M+ +—Lf
wM 1++—

Constant (B(ra') —B( —o&s/2) )

10+4/au'

3/a

T( —~s/2)

0
2—4/oP

10+4/oP

6/uP

1(aP, —&as/2)

—10—(10/oP) —2/~4

—(4/aP) —2/~4

I ( —o&s/2, —ra2/2)

2/o)4

1+2/(4

(2/~)+2/~4

(1/oP) +2/w"

This differential cross section gives the number of scattered particles rather than the number of scattering events, so that it is
t~vice as large as the cross section discussed in this paper.
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(ig~)i')„.

IQ

I FORWARD SCATTERING

2 RIGHT AN GLE SCATTERING

~l -2I-2 (LI

M++++(0, a)) ~~ (log4ar' —1)'+ (5/2) —xi (1og4pp' 2)—
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independent of angle at intermediate energies to having
a strong maximum in the forward direction, this peak
does not contribute significantly to the total cross
section because the solid angle over which it extends
becomes small too rapidly. 'b

At very high energy the quantities M approach the
following values:

IO. G /
I IOOO

I'iG. 3. Differential cross section for scattering unpolarized
light (cg system). The unit is 1.07)&10 " cd/sterad; the unit
of energy is mc',

H(a) =H(—a) =nPe4[APP4'(1324)+APP4'(1243)

+4A ""(1324)—2A""(1342)
—2A""(1324)fe p, ,

= -'
I 3—(2+ 1/a) B(n) —(2—1/a) B(—n)

+ (2+ (1/a) —1/2a') T(a)

+(2—(1/n) —1/2a') T(—a) } (29)

From these relationships it is easy to obtain the matrix
elements for transitions between states of circular
polarization. The results are summarized in Table III.

In Fig. 4 the energy dependence of }3f(0,a&) ~'/&o' is

shown; again the contributions of real and virtual pairs
are indicated separately. The forward scattering of
unpolarized radiation is illustrated in Fig. 3. The com-

plete absence of a contribution from M+ +(0, &o) can
be attributed to the conservation of angular momentum:
this transition involves a change in spin angular mo-

mentum and, therefore, in the component of the total
angular momentum along the direction of propagation.
Figure 5 is a composition of the two curves in Fig. 3;
it shows a plausible angular dependence of the cross
section for unpolarized light at a number of energies.
Although the cross section changes from being almost

matrix element. In fact, M~~) 2xp.4 becomes

Mx~ip~pi4(0, a&)

= (e„"'(p)e„"'(—p) )(e,""(p)e„""(—p))F(n)

+(""'(p)""'"(—p))('"'(—p)e."'"(p))F(—n)

+(e»"'(p)e»""(p))(e."'(—p)e."'"(—p))H(a), (27)

where

F(a) = n'2[A'-'"(1234) 1A""(1234)
—2A""(1234)]e p, ,

=-,' f
—1+(6—1/n)[B(a) —B(—n) j
—(2+1/2n')T(a)+(2 —1/2n') T(—a) }, (28)

The cross section, therefore, decreases as (n4/w g')

X (logos)'/aP, in agreement with the result of Achieser. 'b

The total cross section for two-quantum pair creation
can be deduced by application of Eqs. (9) and (18) and
(19). It is

p»= 2( n/—~'co') Im[H(a)+rl(F(a)+F( —n)) j
= ~( n'/~'~') I2(1+(I/~p) I/GJ ) Cosh 1~

—(1+ / ')(1—/ ')'+( —v)[(1/ ~')(1—1/~')'

+(1/4aP) cosh 'co)} (31)

where q=1 if the incident photons of energy mc'co have
parallel plane polarizations, and p=0 if they have
perpendicular polarizations. This result is identical with
that of Breit and Wheeler. "

Finally, we may discuss the experimental significance
of the results. Let us consider two photon beams of
equal energy and of intensity e photons/sec colliding
with each other; scattered photons are collected from a
length I. of their common path. Then the number E
of collisions occurring per second is

y —(NP/A)L(p/e)~10 4PnP(L/A) sec——& (32)

where A is the area of the beam in cm', and fT~3X 10 "
cm' was taken as the cross section for scattering into a
fair solid angle at an energy of about 1 Mev (see Eq.
(7) and Fig. 5). For presently attainable values of the
experimental parameters, therefore, it would seem that
.V is too small to be detected in the presence of the
probable background radiation.

We wish to express our appreciation to Dr. Hartland
S. Snyder for helpful discussion and criticism. We ate
grateful to Elizabeth Karplus, Dale Meyer, Rika
Sarfaty, and William F. Donoghue for aid with the
numerical work.

APPENDIX A

The five invariants appearing in I, Eq. (47) have the general
structure

'In a recent interesting paper (to be published), Toll and
Wheeler essentially reverse the procedure by which Eq. (31) was
derived. They start with this result and calculate the entire
functions H(a) and (F(a)+F(—a)) from their imaginary part
by assuming that these functions are analytic over one-half of
the a-plane. The present calculation indicates that this assumption
is justified.
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TAsLK III. Expression of the matrix element M(0, co) in terms of the transcendental functions 8 and T.

M (0, )=F( )+H( )
(0, )=z( }+F(—)

M+ ~ (0, o))=P{—a}+H(a)
M+. +(0, ~) =0

Constant

1

1
0

2—1/aP—2/oP—4—1/aP
0

8( —cd2)

—4+1/aP
1/uP

2+1/oP
0

1/aP —1/2(u—1/2 cd

2+ 1/oP —1/2co4
0

2 —1/(u2 —1/2 cd—1/2cv4—1/oP —1/2co4
0

TAsLK IV. Numerical values of the transcendental functions B, '1, and I for some values of the arguments.

B(Q) T(Q) I(Q, —Q/2) I(Q, Q)

—25—12.5

3—2
1.5
1—0.5—0.25
0
0.25
0.5
1

2
3
4

12.5
25

1.3583
1.0530
0.6141
0.5207
0.4038
0.3319
0.2465
0.1405
0.0760
0.0000—0.0933—0.2146—1.0000—0.6199—0.3768—0.0634
0.1405
0.8564
1.2462

—0.2887~i—0.3536+i—0.4083mi—0.4330mi—0.4796m—0.4899m

5.3474
3.9024
2.0841
1.7394
1.3138
1.0644
0.7768
0.4336
0.2315
0.0000—0.2741—0.6169—2.4674—2.0343—1.6906—1.1502—0.7330
1.2783
2.7878

—0.6581~—0.8814xi—1.1472+i—1.3170m.i—1.9354m—2.2950mi

0.0000

—0.9095

—0.2571

0.7675

6.5442

—0.5376~i

—0.9223+i

—1.9178~i

5.2977

0.9286

0.3454
0.1176

0.0000

2341 —b 2111—b 2121—b 2311—0 b 2143—0 (A2)
In addition,

p
2143 —0 (A3)

Many others diRer only by a permutation of arguments. Thus

f,.""(,p, ~) =f.p""(,~, P),f'; {-',p', .) =f.p-(:, p,
'-)',

f,:'"(-',P', )=f.~ (n,
'

',
P),

'

f ""( p v)=-fp""(P v)
where f stands for b+, t, andi. For b we have the identity

b,.""(,P, ~) =-b .p'"(, ~, P).

Ke now list the "irreducible" rational functions:

(A4}

(A5)

r '"=(3P'y ) '(3n2 —10py)
r»41= (3ap &}-1(3a&—5p )
r2111 (3p+)

—1

r' '= —(3P'7) '(3 +2P)
r2311 —(3ap~)

—1(n p)

b+ap" = —(3apy2) '(4n'+21np —12y2)

b+,.~1=(3n2v2)-1(4P+6nv)
p2111 —(3aP2~2) -1(n3+p3 ~3}

b.p,""=-(3 p'9)-'{3 '+p'+~')
»1= —(3u&2)-1(6a+2p}

b p'"'=(3 p'v)-'{1»~+6 -2PV)
b.p,- =-(3 p~)-(»~~-6 p+2P }

P"= (3a2P'} '(2a2 —2P')

b+p "=—(3aP'V') '(2n' —2a2P+3P'V)

(A6)

{Ai)

a4A {1,2, 3, 4) =r+b+ p/B(a)+B(p) j+b+p~)B(p)+B(p) )
+b+~ CB(v)+B(n) j+b- pl B(n) —B(P)3+b-p~C&(P) —B(v)j
+b-& P(v) —B(a)j+t pl:T'(a)+T(P) j+tppLT'(P)+ ~(v) j
+t&.l T(~)+~(a)j+i.pl(a, p)+ip&1(p, v)+i&.1(v, u). (A1)

The r's, b's, t's, and i's are rational functions of n, p, and p.
A number of these vanish for certain values of the indices. Thus

b —ap = (3a Y ) (12P +2P"Y 6 Y )

t p'"'= (37') '(12p'+4nv)+(nv'} '2P
2143 {3n2)-14

t p '=(37') '(37—4P)+(2n2A') '(P'+7' —n2)

t~a2341 (3p4)
—1(4P +12ay)

+(2n2P'V)-'(P'+n2P'+ p'~'-4 'V')

t p""=(3y ) '(2a —3y) —(4P'g) 'a
tp

2111—(3a2) —12 (4P2~2)
—la

t.p'"= -(3~')-'{ -3P) -(2 P~)-'
tp '~'=(3a') '2+(2apV2) '(n —P)

2121 (3P4)
—1(4n2 8nP 3P2) (2u+P3) —1(a3 P3+3n~2)

tp&""= (3n') '(2n —2P) —(4n2P'v') '(a —P) {&+ap+P'}
t P"={3j') '{2a—2P) —(4a2P'y') '(a —P)(a'+uP+P')

(A8)

(A9)

{A10)

iap""= —(3y') '(12p'+4ay) —(3ap7') '(12P'+2am)
+(6 p'~')-'(»-8P~)

ip~2'~= —(3a) '4 —(3upy) '8+(6P'y') '{3a2—8py)
iap""= (3y') '(4p —3y)+(6a2p'y') '{6a y+7ap —3p')

+(6n2P'~)-'(2P'+3 ~)
zy

""——(3p') '(4P2+12ay) —(6n2P'y2) '(3n2P'+3P'y
4np2p) +(6a2P2p2) —1(2P2+3ay)

p2111 (3~3)—l(2n 3~) (6aP~2}—1{5n—6p) —(6nP2~}
—1

ipse""= —(3a2) '2 —(3apV) '—(6@V') '

'.g- =+{»)-{-+3P}-«-p ~}-(»--p+6P }
—(6ap3V) (3n+P)

ip 2~'= —(3n2} '2+(6np'y') '(a'+4np+2y')- (6P~'}-'(3 +P)
i ~'= —(3p4) '(4a2 —8ay —3p )+{6np y} '(24a +38a2p

+» P—6P')-{6 P~')-'(3 +P}i'"= —(3v') '{2a—2P) —(6apv') '(5n —5P)
—(6+0'v) '(u —P)

ip ~"=—(3a') '(2a —2P)+(6a2py2) '(2n2 —5p')
—(6ag ~2) {a—p).
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APPENDIX B

De6nitions

(a2)

B(u) = q dy logL1 —i~ —4uy(1 —y) j. (Bi)
0

T(u) =jdy[4y(1 —y) j ' log[1 iz—4—uy(1 —y) j.

1(u, v) = dyr 4y(1 —y) —(uv) '(u+v) j '
0

X logLi —ie —4uy(1 —y) j. (B3)

0
IOO

Approximate Expressions
B(u) (1/3—)u (2/—15)uz (g—/105)u'; [ u

l
«1.

B(u) (1/2) log[4u[ —1—(1/2)kr8(u) [u[))1.
T(u) zz (1/—3)u'——(8/45)u' [u[ ~&1.

T(u) (1/4) logz [4u[ —((1/4) zzz+(1/2)iv log [4u [)8(u)

8(lul) =» 8(—lul) =o.

(a4)

(BS)

I.5

e 0

l 441 u I Q

i41 u I.4I

3 ut u 3.54
-4 (41 * 3I.6

5-

(iMi'g,
QJ2

0
10 '50

3.

I@I

2-

(c)
FIG. 5. Angular dependence of the cross section for scattering

unpolarized quanta at selected energies (cg system). These
curves were interpolated from the values of the cross section at
0', 90', and 180'. The shape at low energy is not to scale.

Denoting (u+v)/uv by x we get

1(u, v) I T(u)+T(v) jt 1+(1/2)x+(3/8)x +(5/16)x'1
+B(u}xIu+ (1/4) xfg(u)+ (1/24) xmfg(u} g
+B(v)xt v+ (1/4) xf)(v)+ (1/24) x'f2(v) ]

(1/4}(u+v) xr 1+x+(1/24}x'(45+4uv) j (86a)
for

[u[«1,
0
.I IO IOO IOOO

FIG. 4. DiEerential cross section for forward scattering (cg
system) between the indicated states of circular polarization.
The unit is 1.07X10 " cm'/sterad; the unit of energy is mc'.

V, and T represent the contributions of real intermediate
pairs, of virtual intermediate pairs, and their sum, respectively.
Note the difterent scales.

where

f (u) =3u+2u',
f,(u) = 15 +10 2+su3.

I(u, v) —(2/x)[B(v) —(4/3) (4/15)v'(u—+v)~], [u[&&1, (B6b)

1(u, v) (1/4) [logz[4u[+logv[4v[ —log'[ [u[ [v[
v' vi8(u) —log[—v[l,

$(&—i.


