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The problem of potential scattering by a number of similar scatterers is reformulated so that the potential
is eliminated from the equations and replaced by a function which characterizes the scattering properties
of the individual scatterer. The resulting equations can be used for the more general case where the single-
scattering process is not describable by a potential, e.g. , absorption or—to a certain extent —inelastic
scattering. A solution of the equations by iteration is considered and compared with Born's approximation.
As an application, the second approximation for the scattering of thermal neutron by a small crystal is
calculated.

I. INTRODUCTION

'OST papers on multiple scattering deal with the
-- case where the coherence between individual

scattering processes can be disregarded. This is true
either when the wavelength is small in comparison with
the distance between scatterers or when the individual
scattering is essentially incoherent. The subject of this
paper is the opposite end of the range, where elastic
scattering and wave interference are of prime im-
portance.

Most problems involving scattering of an incident
particle by a scatterer are complicated many-body
problems, in which often not even the correct form of
the hamiltonian is known. To describe elastic scattering,
an "efI'ective potential" is usually introduced which is
chosen so that it gives the observed scattering ampli-
tudes. For the study of multiple scattering, the effective
potentials of the scatterers are introduced into the
Schrodinger equation. This paper formulates the mul-

tiple-scattering problem so that it contains not the
effective potential but the scattering properties of the
individual scatterers. Once the problem of potential
scattering is restated in terms of the scattering proper-
ties of the individual scatterers, it is plausible that the
equations remain approximately correct if the individual
scattering problem is not really a potential problem.
This is similar to the idea underlying the S-matrix
theory. But since in our problem the scatterers are held
at fixed finite distances, the S-matrix alone does not
give sufFicient information about the scatterer; it is
necessary to know its behavior when the stream of
incident particles issues from a source at a finite distance
rather than from in6nity, as well as the scattered
amplitude at finite distances.

Another reason for this investigation is that the
solution of the multiple scattering problem is often
simpli6ed by eliminating the potential from the equa-
tions, even if the potential is definitely known.

Most calculating methods are based on the smallness
of the interaction. If the scatterers are, for instance,
nearly imperietrable objects, the potential is very large
so that the usual approximation methods fail. However,

~ %'ork supported in part by the ONR.

the scattering cross section of a single scatterer may be
small, so that the problem in its restated form may be
solved by expansion in terms of the single-scatterer
cross section. The case of point-scatterers has been the
subject of extensive work, 6rst in the classical dispersion

theory, and later in Kwald's rigorous lattice theory.
Goldberger and Seitz' treated the refraction and dif-
fraction of slow neutrons by nuclei in an analogous way.
Foldy' studied the case of random atomic positions of
point scatterers. The present paper generalizes these
results for scatterers of finite size.

In Part I the general equations are derived, and the
solution by iteration is investigated and compared with
Horn's approximation. The two methods are shown to
be complementary. The results are applied to the cal-
culation of the second approximation of the intensity
of a thermal neutron beam scattered by a small crystal.

In Part II, the propagation of waves in an infinite
medium is treated. It is found that the eGect of radiation
damping on multiple scattering is difrerent from that
assumed in previous work; in particular, for an infinite

crystal the individual scattering amplitudes must be
corrected for the 1ack of radiation damping, since no
particles are lost by scattering to infinity in an indefi-

nitely extended medium.

II. SINGLE SCATTERING IN MOMENTUM
REPRESENTATION

The general formalism of scattering in momentum
representation has been presented by M9iller. ' For the
simplest case of nonrelativistic scalar particles, the
Schrodinger equation is

P(—5'/2m) P+r, E5$= 0, —

with the additional requirement that the asymptotic
form of the wave function be

P~~ikz+P(g @)ezkr/»

' M. L. Goldberger and F. Seitz, Phys. Rev. 71, 294 {1947).' L. L. Foldy, Phys. Rev. 67, 107 (1945).' C. MPller, Kgl. Danske Videnskab. Selskab. Mat. -fys. Medd.
23, No. 1 (1945); 22, No. 19 (1946).
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I.et —2rS
u(k)=

~ v(x) exp( —ik x)dx,
k'(2v)' &

—2m
f(k)= ~l vf(x) exp( i—k x)dx,

k'(2ir)' ~

kp'= 2rrr/O'= E.

(3)

(4) where
+1

Er(x, y) = Jl Pr(t)unx'+y' 2xyt)&—Jdt. (12)
—I

equations~

VA 2l+1
f (x)—2 ~' f (y)Er(x, y)= E (x, ko), (11)

y2 k2 2

Then the equivalent of Eqs. (1) and (2) is

r u(k —k')
f(k) — f(k')dk'= u(k —krr),

&g, k '—ko'

where ho is the propagation vector of the incident wave.
The symbol k (for hook-integral) below the integral sign
has the following meaning: in polar coordinates k', 8',
p', the path of integration with respect to k' is to be
indented at k'= ko and deviated into the lower half of
the complex k' plane. Explicitly,

where the first integral or the right-hand side extends
only over the sphere k"=ko' and I' stands for the
principal value of the second integral. The direct sig-
nificance of f(k) is given by

f„(r) (2m'/r) exp(ik, r)f(kpr/~ r
~ ),

which states that the asymptotic value of the scattered
wave f„is proportional to the value of f at the point
where the vector r intersects the sphere k'=ko'. To
exhibit the meaning of Eq. (6) in coordinate space, it
can be re-transformed, giving term by term

2m (2rrt)' p exp(ikrrr„)
vlf v

J
~ v(r&)f(r&)drp

4xk4 rl2

2m
= ——v exp(ikrr r), (9)

h'

i.e., the well-known integral equation of scattering, 4

multiplied by ( 2rwv/fi')— ,

When the potential has spherical symmetry, the
introduction of polar coordinates k, 8, p makes possible
a separation of variables. VVith the usual notation, let

I u(k —k')
f(k')dk'

"I k"—&o'

i vrko r u(k —k')
u(k —k')f(k')dQ+ P, f(k')dk', (7)k"—kp'

To exhibit the connection between the kernels E~ and
the potential v, one can substitute the definition (3) for
u, which reduces to

00

u(k) = II v(r) sinkrdr
2~2k /

(13)

—HS

Er(x, y) = ~1 rv(r) Jr+., (rx)Jr+i(ry)dr. (15)
n.k'(xy) & ~ p

It is possible to separate the inHuence of radiation
damping as follows by the definition (7) of the symbol
k, one can write instead of Eq. (11):

fr(&) 27rP — fr(y)Er(x, y)
"o y' —ko'

-2l+1
= Er(x, kp) +ix'kpfr(kp) . (16)

2

Now consider the auxiliary equation

V

g, (x) 2~P I
—g, (y)Er(x, y) =

0 y' —ko'

2l+ 1
Er(x, y), (17)

which involves only real quantities; hence, g& is real.
Then,

2
fr(x) =gr(x)

l
1+ iK kpfr(kp)

21+1

and in particular, for x= ko

gr(kp)
fr(kp) =

1 i 'kogr(k—o)2/(2l+1)

and use the expansion theorem'

sinr(x'+y' —2xyt) & (rrr+-,')
J+r(rx—)J +t(ry)P (t)

(x'+y' 2xyt) & — o (xy) &

(14)
to obtain

f(k) =Qrfr(k)Pr(cose) Equation (17) can be thought as having been derived

and one obtains the set of one-dimensional integral

4N. F. Mott and H. S. W. Massey, The Theory of Atomic Col-
lisions (Oxford University Press, London, 1949), p. 116,

6 V. Fock, Z. Physik 98, 145 (1935); M. Levy, Proc. Roy. Soc.
(London) A204, 145 (1950).' G. N. Watson, Besse/ Functions (Cambridge University Press,
London, 1944), p. 366.' H. Ekstein, Phys. Rev. 15, 1322 (1949).
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noticing thatby separating a three-dimensional equation similar to
Eq. (6) but containing the principal value instead of
the hook-integral. This equation may be considered as
describing a scattering problem in which radiation
damping is absent. Equation (19) then is the degenerate
one-dimensional form of Heitler's integral equation'
which shows the inRuence of radiation damping on the
actual solution.

The connection with the usual formula

t
exp(ikp! r—R!)

J
—exp(i«. R)dR

! r-R!
4m

=exp(i«r) . (26)
ff.

2—kp2

Hence, by multiplying Eq. (24) by exp(i«R) and
integrating with respect to the parameter R, it is shown
thatexp(ikpr)

P,.(r) P Pi(cose)(2l+1)Lexp(2ibi) —1] (20)
2i&p& k'(~' —kp«) t

G(r, R) exp(i«R)dR (2. 7)
2

X(r, «)=—
is established by comparing with Eqs. (8), (10), and
(18). One finds

23+1
fi(k, )= [exp(2i8i) 1],—

4m2iko t u(k-k')
a(k, «) — ' a(k', «)dk'=u(k —«) (28)k"—k '2t+ 1

(22)gi(kp) = tan8i.
2m2ko of which Eq. (6) is a special case. The transformation of

Eq. (25) into momentum space (after multiplication by
(—2m~/k')) leads directly to Eq. (28) ifg, (kp) is unbounded, because the homogeneous equation

corresponding to Eq. (17) may have solutions. This is
understood by the observation that a system without
radiation damping can have nonvanishing solutions
without a source at in6nity.

For the study of multiple scattering, we will have to
consider the case where the source of incident particles
is at a finite distance R. The solution of this problem is
the Green's function G(r, R) which satisfies the dif-
ferential equation:

2m t'
a(k, «) = — vx(r, «) exp( —ik r)dr. (29)

fi'(2 )p'r~

In the theory of multiple scattering (Part II) we will
have to consider an analog of Eq. (28) from which radi-
ation damping has been eliminated:

t u(k —k')p(k', «)
p(k, «) —P dk'= u(k —«). (30)k"—kp2

If G is considered known, y is also known. In momentum
representation, we consider the equation

(21)

V'+s E!G(r,R) =—b(r —R) (23)

For calculations in momentum representation, it is
more convenient to use the solution of the related
equation

2' t exp(ik, ! r—r'! )
x(r, «)+, n(r') x(r', «)dr'

4prk' & ! r—r'!

The connection between 6 and x is established by

'%. Pauli, Meson Theory of %@clear Forces (Interscience Pub-
lishers, Inc. , New York, 1948},p, 45,

and if the required asymptotic form represents outgoing
waves only, the integral equation

2m t expL«kp! r—r'!]
G(r, R)+— e(r')G(r', R)dr'

4prk' &
~
r—r'!

2m exp(ikp! r—R!)
(24)

4 k !r-R!

If the potential has spherical symmetry, separation of
variables is again possible, leading to the set of one-
dimensional integral equations

21+1
ai(k) —2x ' ai(y)Ki(k, y) = K&(k, x) (31)

~I y2 —&o2 2

and

3' d3' 2l+ 1
Pi(k) 2prP —Pi(y)Ki(k, y)= K,(k, a).

~2 P2 2
(32)

In the case where the wave function has several com-
ponents, the scattering problem can be treated in a
similar manner. In particular, for the scattering of elec-
tromagnetic waves by an object of dielectric constant
«(r) we have'

f(k)+kXkX I f(k')dk'
u(k —k')

k"—kp'

= —kXkXKpu(k —kp) (33)
' H. Ekstein, Phys. Rev. 62, 255 (1942}.
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dk'
(34) F„(k)— exp[ i—r„ (k—k')ju(k —k')F„(k')

k' —k

analogous to Eq. (7). The asymptotic value of the scat- gives
tered field is connected to f by

K„(1/r) exp(ikor)2v'f(kor/~ r~)

similar to Eq. (8). The potential u is defined by

u(k) =
(2v)' ~

t
e—1

exp( —ik r)dr

similar to Eq. (3). In Eq. (33), ko"-= &a'/c' and Ko is the
field intensity of the incident wave. The variable f is
connected to the polarization P by

f=(2)r) '
l exp( —ik r)VXVXpdr. (36)

Most of the results obtained for the scalar case can be
generalized for the case of many components, but this
paper will mainly be concerned with the scalar case.

III. MULTIPLE SCATTERING: GENERAL EQUATIONS

We consider cX similar scatterers at positions r= r„.
The total potential V is

so that

dk'

G.=exp(ir„k)F „, (44)

G„(k)— u(k —k') G (k')
k"—k'

dk'
= u(k —ko) exp(ir„k, )+ P

~y, k' —ko'

Xexp[i(r„—r ) k'7u(k —k')G„(k ). (45)

dk'
=u(k —ko) exp[ i—r„(k—ko)j+ Q k"—k()'

Xexp[ —ir (k—k') ju(k —k')F (k'). (43)

If, for the moment, the quantities on the right-hand
side are considered as known, Eq. (43) is an inho-
mogeneous integral equation which can be solved in
terms of the function n(k, )c) as follows: Let

V=+ v(r- r„).

To obtain the generalization of Eq. (3) we form

(37)
Let G ' ' be dehned as the formal solution of

dk'
G '"'(k) —" u(k —k')G„& '(k')

"I, k"—k'

=P exp( ik r„—) t v(r) exp( ik r)—dr, (38)
exp[i(r„—r ) k'ju(k —k')G„(k') (46)

~~ k"—kp'

and
so that the quantity U(k) to use instead of u(k) for
multiple scattering is dk'

G„'"'—~ u(k —k')G„'"'(k')
~g k"—kp'U=ug exp( —ik r„). (39) = u(k —ko) exp(ir 'ko), (47)

G P G (iii)yG inr

If we designate by F(k) the equivalent. of f(k) in mul- so fhaf
tiple scattering, Eq. (6) becomes

dk'
F(k) — P exp[ ir„(k——k') ju(k —k')F(k')"„k"—k,'

=u(k —ko) g exp[ ir„(k——ko)]. (40)

By multiplying Eq. (28) by

exp[i(r. —r ) ujG (u)
(49)

We define a set of functions F„(k) by the equations
and integrating with respect to the parameter x, one
obtainsdk'

F„(k)—t exp[ ir (k—k—') ju(k —k')F(k')
k 2—ko~ dx

G '"'(k)= " exp[i(r„r„) ujG —(u)n(k, u)dk,
~I, ff' —ko'

(5o)
=u(k —ko) exp[ i r (k——ko) j. (41)

G (k)=a(k, ko) exp(ir„kp)
(42)

dx

By summing Eq. (41) with respect to n, one sees that so that

Substitution of Eq. (42) into the second term of (41)
+ P exp[i(r —r„) ujG (u))x(k, u) (51)

mon
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or, returning to the original notation,

F„(k)= n(k, ko) exp[ —ir„(k—kp) j
Summation with respect to n shows that

Q„P„=P. (56)

p(r, R)=v(r)G(r, R) (57)

dx On the other hand, if Eq. (24) is multiplied by o and

+ p expL —ir (k—po)]n(k, po)F (po). (52) the notation
mgn d~ ff2 —$02

Equation (52) together with Eq. (42) is a restatement
of the multiple scattering problem from which the
original potential has been eliminated, and only the
function n characterizing the properties of the in-
dividual scatterer has been left. It is now possible to
drop the restriction to potential scattering and consider
n as solution of a much more general problem. For
instance, the original interaction hamiltonian may not
be diagonal in coordinate representation, or it may be
non-hermitian so that it describes particle absorption.
Inelastic scattering processes may be described in part
by this formalism, by considering all inelastically scat-
tered particles as lost, so that the elastic phase b.
becomes complex. Of course, the present equations do
not account for the particles which have been inelas-
tically scattered at least once. This generalization is
clearly approximate also in another respect; every
inelastic process changes the state of the scat-
terer, whereas in our formalism the scatterers have
definite time-independent properties. One can assume
that the present approximation will be adequate as long
as only a small part of the scatterers has been excited.
Clearly, the present approximation does not cover such
cases as Compton-scattering, which is essentially
inelastic.

From the viewpoint of mathematical convenience, if
a definite potential is either known or assumed, Eq.
(52) is useful when the potential is very large. One may
think of impenetrable spheres or very deep potential
holes where the large numerical values of U prevents
the usual approximation methods, whereas n(k, po) may
be quite small.

To illustrate the physical meaning of Eq. (52), the
equivalent of the preceding calculation in coordinate
representation will be given.

If the potential is given by Eq. (37), the integral
equation for scattering, multiplied by V is

2m t exp(ikpr»)
ViP+ V V(rp)iP(rp)dro ——V exp(iko r).

A'4m ~ r12
(53)

is used, we have

2m
p

exp(ikorip)
p(r, R)+ v(r) p(rp, R)dr.

4m'A2

t'
P„= p

~
p(r —r, R)P (R+r )dR+p(r —r, kp). (59)

mgn eJ

Here, p(r, ko) means the solution of Eq. (58) if the
source is removed to in6nity; i.e., exp(iko r) is sub-
stituted for 1/

~
r—R

~
Lexp(ikp

~

r—R
~ )j. Equation (59)

restates the multiple scattering problem in terms of
p(r, R) which is essentially the Green's function of the
individual scattering problem. The meaning of Eq. (59)
can be seen more clearly if, after summation over n, the
original notation is used:

v(r —r„)iP(r)=s(r —r„)P ~G(r—r„, R)tt(R+r, r)—
XiP(R+r„)dR+s(r —r )G(r—r„, ko). (60)

IV. SOLUTION BY ITERATION

The most obvious method for solving Eq. (52) is
iteration. In the first approximation, we disregard all
integrals on the right-hand side. In the second approxi-
mation, the values of F„so obtained are substituted
into the integrals and so forth. It is usually more con-
venient to consider this solution as a power series in
terms of a parameter. For this purpose, let no be a
number representative of the order of magnitude of
n(k, po). For instance,

or
no= n(ko, ko) (61)

2m exp(iko
~
(r—R j )

v(r) (58)
4rrko

~
r —R(

By the procedure used in the preceding calculation in
momentum space, one shows by comparison of Eqs.
(55) and (58) that

ViP= P

and define a set of functions P„=iP(r)v(r —r„):

(54) np —— (1/4pr) n'(k, ko)d& (62)

where the integration extends over a sphere k'=ko'.
Then we can define a dimensionless function u by2m

t exp(ik, r»)
P.+ tt(r —r.) ~

P(rp)drp
4~$2 J 0!= AOA. (63)

s(r—r„) exp(iko r). (55) np has the dimension of a length. If the solution of Eq.
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(52) is written as a power series in np,

F —Qn&F (i)
I

substitution into Eq. (52) and comparison of coef-
ficients shows that

large values of k'. When the potential is very large, as
for impenetrable spheres, up is also very large, whereas
o.p may be quite small. To obtain an idea of the magni-
tude of o.p, let us consider the case of very small scat-
terers. If we use the definition (61), then, by Eqs. (28)
and (6)

F„&"= a(k, k,) exp[ —ir„(k—kp)) (65) np ——n(k&&, k&&) = f(k&&) (74)

and, for l/1, and since for small scatterers only S-scattering is im-
portant,

d1C
F„&"= P ~" exp[ ir—„(k—pp)]n(k, y)F &'

mon J» p&P koo
(66)

f(ko) =fo(ko) = . [exp(2i~o) —1]
4m2~kp

(75)

In first approximation, we obtain after summation

F&'&(k) = n(k, ko) g exp[ —ir„(k—kp)] (67)

and, for the scattered wave, by Eq. (8)

(27('/r) exp(ikor) n(kor/r, kp) +[exp[—ir„(k—ko) ],
(68)

i.e., the sum of all waves scattered by the individual
scatterers under the inhuence of the primary wave
alone. This is, of course, what one has to expect in the
first approximation. It is clear now that our expansion
is just the usual expansion into primary, secondary,
tertiary, etc. , waves, which is usually made for infinitely
small scatterers. The expansion (64) is not restricted in
this respect. This expansion can be expected to be
useful when the number of scattering units is small.
Actually, it will be shown that its first term is, under
certain practical conditions, sufFicient even when )V
exceeds 10". However, for extended media other
methods must be used which will be discussed in the
second part of this paper.

The expansions (64, 65, 66) can be compared to Born's
approximation, which is obtained by direct iteration of

by Eqs. (10) and (21). If, in addition, Bp is small, we
have

Bp
A'p )

2X2kp
(76)

and by summation

so that np is of the order of (1/2&r"-) times the scattering
length. Thus, where the potential is large but the
individual scattering length is small, the expansion
(64—66) is preferable to the Born approximation.

To discuss the second element mentioned above, we
may consider the extreme case where the scatterers are
represented by delta-functions. Then, the second Born
approximation diverges already for the single scatterer;
it is easy to verify that this holds for F&" in Eq. (73).
However, Eq. (66) gives

dK
F„&'&= — a(x, k,)n(k, pp) exp[ ir„(k——pp)]

~p, 1~2—kp'

XP exp[ ii'(pp 'kp)] exp[ ir„(k kp)] (77)

X[S(k—ip)S(x —
k&&)

—S(k—k&&)] (78)

Eq. (40). I.et us again define a parameter such that

u —upu) (69) F&-'= n(&p, k&)) a(k, p&)

~' —k'
where u is dimensionless, and up has the dimension of a
length. For instance,

No ——u(0).

We have then the expansion

(70) where

S(k) = P„exp(—ir„k). (79)

F—Q Np&F(i)

F&»=u(k —ko) P exp[ ir„(k k—p)], —

(71) This equation holds in general; if, in particular, the
scatterer becomes vanishingly small, o. becomes a
constant (equal to one, if np is chosen as in Eqs. (61)
or (62)). But F&" still converges, because

dk'
(l+1) F"'= ~' Q exp[ ir„(k—k')]-

/~2 P 2

X u(k')F&'-'&(k'). (73)

S(k—
p&)S(ip —kp) —S(k—kp)

= P exp[ —ir„(k—&p)+ir„(ko—x)] (80)

The convergence of the two series will depend on the has oscillating terms only. This oscillating behavior is
value of the parameters up and up, respectively, and on sufhcient to make the integral converge, as one can
the rapidity of decrease of a and zc, respectively, for easily verify. The corresponding formula in Born s
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approximation is The integrand (78) consists of terms

F&'& = u(pp —kp) u(k —pc)S(k —pp)S(pp —k,), (81)
~p, ~'—kp'

which is divergent when u becomes a constant. We may
conclude, in genera, l, that the expansion (64—66) is
preferable when the potential is large or the scatterers
small.

On the other hand, one can see intuitively that in the
case of largely overlapping scatterers the Born approxi-
mation will be preferable; in this case, the interaction
of scatterers, disregarded in Eq. (67), is of major impor-
tance. Therefore, it would be probably impractical to
subdivide the total potential into a sum of individual
terms and proceed according to Eqs. (64—66) in the case
of electron scattering by a small metal crystal. To
illustrate the point by an extreme example: if the scat-
tering by a small homogeneous body is to be calculated,
one could arbitraxily subdivide the body into smaller
homogeneous cubes, calculate their individual scattering
amplitudes n and use the expansion (64), but this would
clearly be impractical, even though the expansion finally
may converge to the correct result.

Comparison of first approximation (67) with the erst
Born approximation (72) admits the following simple
interpretation: given a number of scatterers with
potential p, one de6nes an "effective potential" n(k, pp)

in momentum space, and proceeds by iteration of the
scattering equation (40) I where a(k, k') has been sub-
stituted for N(k —k') j. In particular, for very small
scatterers, the effective potential is the constant O,p. In
the latter case, one can even define a potential in coor-
dinate space which is a delta-function, whexeas in
general the transformation into coordinate space of an
equation of the type (40) with n(k, k') substituted for
pt(k —k') would lead to an integro-differential equation;
in other words, the interaction matrix n(k, k') is no
longer diagonal in coordinate representation.

For the case of slow neutron scattering by nuclei, the
above interpretation is widely used in scattering cal-
culations: when more than one kind of nucleus exists,
one can make the obvious generalization and replace
each nucleus by a delta-function with appropriate
constant factor, essentially the scattering length.

However, this interpretation holds only for the first
approximation; the higher terms are different, as shown
for instance by comparison between Eqs. (78) and (81)
(where o& is to be substituted for N). A similar result was
obtained by Breit" in connection with the scattering
of a neutron by a bound proton: Fermi's replacement
of the actual interaction by an effective delta-function
is correct only if one uses Born's first approximation
with the effective potentials.

However, a somewhat modified rule for the equiva-
lent potential for small scatterers can be stated as
follows:
"G. Breit, Phys. Rev. 71, 215 (1947}.

pl™l
P (2)

~a
S(k—pp)S(pp —kp); (82)

&'—k'p'

and this has the same form as Born's second approxi-
mation, with a cutoff

I
pp I))kp, 1/r „.It can be shown

similarly that the higher approximations can be written
formally like terms of the Born approximation with a
cutoff of the same order.

Thus we can formulate the following heuristic rule:
replace the actual potential by the effective potential"
ap and proceed by Born's approximation, cutting oG all
integrals at some value ~))1/r„, kp. In many cases, as
in the following application, the result is quite insen-
sitive toward the exact point of cutoff.

V. SCATTERING OF THERMAL NEUTRONS BY SMALL
CRYSTALS (SECOND APPROXIMATION)

The nuclear scattering of neutrons by crystals is well
understood in the two extreme ranges of very small and
very large crystals. '" In addition, the theory of an
infinitely extended plane-parallel plate of finite thick-
ness has been adapted from the dynamical theory of
x-rays. ' No results for three-dimensional crystals of
intermediate size are available. In this section, the
preceding results will be used to calculate in second
approximation the intensity scattered by a spherical
crystal, for a special orientation of the primary ray with
respect to the crystal.

Because of the small size of the nuclei, a can be set
equal to one. Ke shall consider a simple Bravais
lattice; a generalization for a composite lattice would
be obvious. The function S(k) can be written

S=g c„exp( ia —k)„ (83)

where a„are the lattice vectors and c is unity inside,
and zero outside the sphere of radius p. By Poisson's
sum formula"

5=P„s(k—2prA„),

"G. C. Wick, Physik. Z. 38, 403, 689 (1937}.
'~ S. Bochner, Vorlesuegen aber Fouriersche Integrale (Leipzig,

1932},p. 203.

— exp( i—r„„pp),
a2—kp'

which contribute very little beyond»'m't I" l&»l'»

I
&)]./r „,since the denominator has become almost

constant, and a large number of periods of the oscillatory
function cancel each other. Hence, the integral can be
cut off at this limit. On the other hand, the constant
term S(k—kp) contributes only X terms as against the
first term in brackets which contributes S' terms. Thus,
if the number of scatterers is not too small, the second
term is negligible in the domain where all terms con-
tribute about evenly. Therefore, F(') can be written
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where A are the reciprocal lattice vectors, and s is the
fourier transform of the function c(r) which inter-
polates the discrete values c„:

s(k) = (1/s) I c(r) exp( —ik r)dr

ing reciprocal points are on the I.aue sphere x'= kp'. All
other contributions are much smaller, and we shall take
them into account in a summary manner, by using the
average value of

I
S

I

' over a cell of the reciprocal lattice,
rather than the exact function. Since, by Kq. (83), S is
periodic in momentum space, we can use Parseva)'s
theorem to obtain

= (1/n) r' exp( —ik r)drdQ
&ISI')=v

cell

(89)

4~ —4x d t'sinkp)=—(sinkp —kp coskp) =
k'v sk dk( k

(85)

%'e have

(ko+ 2x A))' —ko' =0. (86)

S(k—«) =S(l,—«)+1 VS(k, -«)
Qs(kp «2«A )+p' P VS(ko «2x'A ) (87)

In the integral (78) this is multiplied by S(«—ko)
=P s(ko —«—2sA„). 8ince the function s decreases
rapidly from its maximum value at the origin, only the
immediate neighborhood of those points x will be of
importance which make the argument of one of the
terms vanish. But the gradient of s at that point van-
ishes by Eq. (85), so that the second term in (87) is
negligible. Thus, the value of F&" in the neighborhood
of the forward direction is approximately constant, and
we have

dx

,LI 5'(k -«) I'-S(0)j.
~A ~'—kp'

(88)

The range of values
I pl for which F&" is constant can

be estimated by determining the point at which s(k)
begins to decrease noticeably from its peak value. By
Kq. (85), the 6rst zero is the 6rst root of

tankp= kp.

Thus, Eq. (88) may be considered correct for a range
of the order of

I pl p&2.
We consider now J (2) for values of k close to the

reflecting point, i.e., k= ko+2+Aq+p. From the geom-
etry it can be seen that this case is symmetric to the
previous one, so that Eq. (88) holds also for the neigh-
borhood of the rejecting direction, and for the same
range. Of the terms in the sum (84), only the two with
m=0 and m= 1 are important, because the correspond-

"This is a simpli6ed derivation of a result obtained previously
by A. I . Patterson, Phys. Rev. 56, 972 (1939), and H. Ekstein,
Cahiers phys. I, 33 (1942),

v being the volume of the unit cell."
We consider the value of the second approximation

for a direction close to the incident beam (k=ko+p)
in the case when the crystal is exactly in re8ecting posi-
tion; i,e., one reciprocal lattice point satisfies the
condition

By inspection of Eq. (83) this can be seen to be also the
value of S(0), so that the contributions of the two terms
in the integrand cancel for the more remote reciprocal
lattice points. This example illustrates the general
theory of the preceding section: we would have obtained
the same result by cutting off the integral and disre-
garding the contributions of all points A, m/0, 1.
However, the naive use of Born's approximation would
have led to a divergent integral. It is true that taking
into account the finite nuclear radius one would obtain
a function cx decreasing asymptotically so that the
integral would converge; but then, the Born approxima-
tion would be incorrect (in most cases far too large)
although finite.

To evaluate the contribution of the two remaining
reciprocal lattice points, we set

kp+ 2~A) ——xg, (90)

the integral being extended over the sphere of radius kp.

In using the tangent plane approximation for the second
term, we choose as new origin for a system of plane polar
coordinates r, qh the point x=x~, so that

do
I
s(« —«,) I

2= 2s ' rdrs~(r)
p

~4xp c" dr~ d psinprq
(93)

Ev& ~p rdr E r )

and remember that the point x=xI is exactly on the
Laue sphere. By Eq. (84)

ls(ko «) I
~ Is(«—ko)+s(««~)

I

= lr(» —ko) I'+
I
~(«—«i) I', (91)

since, owing to the rapid decrease of s, the overlap is
negligible. In carrying out the integration, the sphere
a'= kp' can be replaced by its tangent plane, because the
range of s is small against the radius kp. The two con-
tributions to

I
S I' have spherical symmetry with

respect to the two points kp and x~, respectively, which
are both situated on the sphere. Hence, the principal
value contributes nothing to the integral (88), and we
are left with

x'z
F&"=—td&rLIs(« —ko)l"-+Is(« —«&)I'—S(0)j, (92)

2&p ~
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This integral can be calculated by differentiation with
respect to the parameter p, giving

(94)

The first term gives obviously the same contribution,
so that

the argument of the complex number o,p is of im-
portance. According to Eqs. (74) and (75), ao is, strictly
speaking, never real, not even in the case of pure poten-
tial scattering, because of radiation damping, and even
less when absorption is present. However, for small
absorption and small phase bp, the imaginary part is
small, of second order. In this case, according to Eqs.
(64), (67), (95), and (97)

Fiz' = 2z(2zr%)z(p4/ko) Z—2zrzkoN (95)

The second term is entirely negligible; this illustrates
the rule of the preceding section; we would have ob-
tained the same result by merely cutting off and
dropping the term S(0).

The second approximation is here entirely due to
radiation damping. As a consequence, the second term
in the expansion of

~ f,.~', proportional to no', vanishes
for real O.p, as one sees unmediately by forming the
square modulus of epF &"+Q.p'F('&. Therefore, it is
necessary to calculate the third approximation F&" in
order to obtain the first nonvanishing correction to the
scattered intensity.

For this calculation, we use the rule stated in Sec. IV
to limit the integration to the neighborhood of the
sphere ~-'= kp'. Ke have

(4zr)'p'
[F]2 zz 2

2

7, 26+p8—Np
9v'kp'

Sy introducing the number of atoms per cm'

I= 1/zi,

the scattering length

6= 21(' ct'p,

and the wavelength

X= 2ir/kp,

Eq. (98) simplifies:

/2«pz) z

I L1-(7/4)(«») i(3~)

(99)

(100)

(101)

(102)

dx
F(3)— 5(zzz —zz) F&'& (zz),

~a X'—&p'

where we consider only the exact I.aue rejecting direc-
tion. Again, we have only the contributions of the
neighborhood of xj and kp', and again, because of the
symmetry with respect to the tangent plane of the
I.aue sphere, the principal value is negligible. According
to the previous result, F"' is approximately constant
for a distance rp=2 from either x=x~ or kp. For this
range, we can use the peak value

s(0) =4s p'/3v

to approximate S. Hence, by analogy to Eq. (92)

&~pa ~&~~ 26~7pb

F&'& = F&'&—— 2zrrdr =—,(97)
2&p o» p kp'O'

the factor 2 being due to the contribution of the two
lattice points. For the absolute square of the amplitude,

In a typical case, m=3&10", X=1.5)&10 ', a=10 ",
with a particle diameter 2p=10p, the second term
amounts only to 9 percent. Thus, the range of validity
of the first approximation is larger than is frequently
assumed in cautious estimates. "This fact is caused by
the vanishing of the term proportional to O.p'. It is true
that our calculation concerns only the intensity in exact
I.aue position, whereas for comparison with experiment
an integration over all crystal orientations would be
necessary. However, it is probable that the exact Laue
orientation is the "worst" case with respect to the
importance of higher order terms.

That the corrective term is negative is what one.
would expect: for su%ciently large crystals the intensity
must become proportional to p' rather than to p6.

Hence, if the crystal is large enough so that the second
term matters, the int, ensity must be smaller than if this
term had been omitted.

'4 Fermi, Sturm, and Sachs, Phys. Rev. 71, 589 (1947).


