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The Solution of the Schr5dinger Equation for an ApproTi~ate Ato~ic Field*
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(Received October 6, 1950)

An approximate atomic potential having an effective nuclear charge for potential, " that is, bilinear in

the radial distance from the nucleus, is discussed and shown to approximate reasonably well to Hartree or
Fermi-Thomas potentials. The Schrodinger equation with the approximate potential is solved as a series
of hydrogenic wave functions and as a power series in Ar/(1+Ar) (A being a parameter of the potential).
Some illustrative numerical results pertaining to the mercury atom are presented.

1. THE APPROXIMATE POTENTIAL

HE atomic potentials' Z„(r)/—r of Hartree and
Fermi-Thomas may be represented adequately

for many purposes through the simple formula for Z„,

Z,z= Z/(1+Ar).

Figure 1 gives a comparison of the dHFerent potentials
for the mercury atom. '

Figure 2 tests the formula by showing A(r) = (Z/Z„
—1)/r as a function of r for different atoms, Z~ being
that given by Hartree. ' lt is seen that Z„g is quite
satisfactory out to radii for which Z~ is from 10 to 20
percent of Z, and is certainly too big beyond these radii.
An analysis of the curves in the regions where they
are Qat shows that a good average value for A is 1.525Z&.

The approximate potential may of course be improved
substantially by adding terms with higher powers of r
in the denominator of Z~~, usually a quadratic and a
cubic term suKce to give high accuracy over essentially
the whole range of r. However, the cost of this in extra

I4o-

mathematical complexity is too great for any but the
simplest of atomic calculations.

The Fermi-Thomas rp function, satisfying x&p"=q&
with r=0.88534x/Z&=bx, is given by vs=(1+Abx) '
in our approximation. Figure 2 gives Ab=(y '—1)/x
(qr being that for a neutral atom) as a function of x.
A comparison of the expansions of q and rpg near the
origin shows that A(Z)~1.79Z&, while direct substitu-
tion of q~ in the Fermi-Thomas equation shows that
A~1.34Z& for x near 2&/3=0.42. The solutions qo of
the Fermi equation corresponding to positive ions,
i.e., those which are zero at a 6nite x, say, xo, may be
simply and precisely approximated for all x by p~
= (1 x/xp)/(1+ qx), where g depends (although in-
sensitively) on x0. This is tested in Fig. 2, where q
=(1—x/xo —so)/(pox) is plotted against x for a few
xo's. The parameter q could be calculated from the
Fermi-Thomas boundary condition xoy'(xo) = (X—Z)/
Z, E being the number of electrons in the ion, but this
gives a spurious q value because y~ does not have the
right slope at xo. The q, has an accuracy comparable
to that of the relatively complicated Sommerfeld4
approximate solution of the Fermi equation. Also, the
error in y, as a representation of qo is mainly in the
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FIG. 1. Comparison of Z~'s for mercury. Smooth curve: Hartree
2Z„; y= Ferrrn-Thomas 2Z„; X =2Z„g for A =8; Q =2Z„g for
A=i; +=2Z„g for A=6.

*Some of this work was a part of the author's doctoral thesis
at Cornell University.

~ Atomic units will be used throughout the discussion.
~ D. R. Hartree, Phys. Rev. 46, 743 (1934); Proc. Roy. Soc.

(London) 149, 210 (1935).
~D. R. Hartree, Pr~. Cambrid e Ph L S~. 24, 89 (1928);

Proc. Roy. Soc. (I ondon) I43, $06 1934) and 166, 450 (1938).
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FIG. 2. The upper two curves show q as a function of x/10; x is
the Fermi-Thomas variable and xo is the ionic radius. The next
curve shows Ab as a function of x/10 using the Fermi-Thomas
function y for neutral atoms. The lower seven curves show A as
a function of r for diHerent atoms, using values of Z~ given by
Hartree.

' A. Sommerfeld, Z. Physik, 78, 283 (1932).
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direction of making it more "Hartree-like" if q is given
a value which makes qQ and q, agree at smaller r, since
then q, is somewhat smaller than qQ for large r while

yQ is somewhat larger than the Hartree function for
such r.

Our 6nal potential for an ion is now

Z(1—r/rp) Z—1V—V = + r&rQ
r(1+ar)

= (Z —S)/r

rQ

r) rQp

2. THE SOLUTION OF THE WAVE EQUATION

For the potential V& we may write the radial wave
function in the usual way as R=r'e —"g(r) with e=
+(—2E)&. Then, introducing the independent variable
x=Ar and the abbreviations a= e/A and P=Z/A, the
difkrential equation for g is

d'g dg 2(l+1)
I I

2P—+- —2a, +g
dx' dx x I I x(1+x)

0&x& ~

2a(l+1)
=0

1

This is a conQuent form of the Heun differential equa-
tion, ' having regular singularities at @=0 and x= —].,
and an irregular singularity at in6nity. In the case that
n=O, (1) is a hypergeometric equation. If /=0, (1)
may be reduced by the transformations g= e *(1

~ J. C. Slater, Phys. Rev. 42, 33 (1932).
~ E. L. Ince, Ordinary Dige cetic/ Equations (Longmans, Green

and Company, London, 1927), p. 394.

where ro is the ionic radius and a=q/b~Z~. In the
special case where ro is large we get the potential —V~(r)
=Z//r(1+Ar). For the present, we shall principally
discuss Vg as a generator of Schrodinger wave func-
tions, postponing a consideration of Dirac functions as
well as a more extensive treatment of V and of various
atomic calculations for a later report. Since Vg is close
to the Hartree potential over a range of r where most
wave functions have their largest amplitudes, we may
expect V~ to yield a set of useful functions for electrons
in the atomic core but not in the outermost shells.
Without too serious consequences we will not dis-
tinguish between separate potentials for separate elec-
tron groups and the approximate potential itself. Our
wave functions therefore will be orthogonal. Some
evaluation of the accuracy of wave functions calculated
with Vg is provided. by a work of Slater, ' who has
shown that empirical approximations (correct to within
about one percent) to Hartree functions are generated

by potentials which, compared with the Hartree po-
tentials, are very poor at large r and for r in the vicinity
of the roots of his functions, sometimes being off by a
factor of two or more and having the wrong sign as
well. It is to be presumed that the wave functions
arising from V& are in many cases suKciently close to
Hartree functions.

+x)f(x), z=1+2x to a case of the spheroidal wave
equation studies in detail by Chu and Stratton. ' A con-
Quent Heun equation arises also in the hydrogen mole-
cule ion problem, which is mathematically closely re-
lated to the present one. It will be observed that for
either of the potentials Vg or V the integrals of the
%KB approximation may be evaluated in terms of
the standard elliptic integrals, since the integrand is a
rational function of r and the square root of a quartic
polynomial in r.~

The eigensolutions to (1) may be conveniently ex-
panded in hydrogenic functions, as in perturbation
theory. This has the advantage that the largest terms
can often be picked out. Instead of the Laguerre poly-
nomials proper, we will use the equivalent conQuent
Quent hypergeometric polynomials. Setting

g=Q c„F(—v, 2l+2, 2nx),
v=Q

and using the recurrence formulas for the F functions,
it is found that the c, are given by the recurrence
relation

c,+~(v+ 1)(v+ 1+2)/2+ c„{P—a(l+ v+ 1)—(1+v+ 1)'I
+c„ i(v+l)(v+21+1)/2 v=0, 1, 2, ; c i=0. (2)

A more general potential, involving higher powers of
r in Z» as mentioned before, may be treated similarly
through repeated application of the recurrence for-
mulas for the F functions; each successive additional
power of r beyond the 6rst, in either the numerator or
denominator of Z», gives two extra terms in the re-
currence formulas for the c„. The convergence of ex-
pansions of the present kind, when n is an eigenvalue,
has been proven by McCrea and Newing. "

Another useful expansion is suggested by Jaffe's"
discussion of the hydrogen molecule ion problem. In
(1), let g=(1+x) ' 'h(x) and then let $=x/(x+1).
Then

$(1—$)'h"+ {2(l+2) P—2(a+ 21+3)$+2(l+ 1)I
h'

+ {2P —2a(l+ 1)—2(l+ 1)'+(1+1)(1+2)(I h =0,

0()&1.
Developing h in a power series about the origin,
h=g"„Oa.p", it is found, upon substitution in the
differential equation and after some reduction, that the
a„are given by

—,'(v+1)(v+21+2)a~~+ {P—a(v+1+1)
—(v+1+1)'Ia,+xz(v+l)(v+1+1)a, g=O,

v —012, . - u (=0

~ L. J. Chu and J.A. Stratton, J.Math. Phys. 20, 259 (1941).
W. G. Baber and H. R. Hasse, Proc. Cambridge Phil. Soc. 31,

564 (1935).'E. T. Whittaker and G. ¹ Watson, Modern Analysis {The
Macmillan Company, New York, 1943), article 22.7.' McCrea and ¹wing, Proc. London Math. Soc. 37, 520 (2934}."G. Ja6e, Z. Physik 87, 53$ {1935).



SOLUTION OF SCH ROD I NGER EQUATION 73

Z A' (n+l+1)(n —l)(n+1)
&1=——eA+-

n 4 (Z/n)+(n+1)Af1+v+1~ ~2l+v+1~
f(v)= I,

A' (n —l —1)(n+l) (n —1)
(4)

4 (Z/n)+(n —1)Athen b„satisfies just the same difference equation as
the c. of Eq. (2). As in the hydrogen molecule ion prob-
lem, the series is convergent for all $ in 0($(1.Thus,
the evaluation of one set of expansion coeKcients
provides two representations of the wave function.

The solutions to (1) may also be expanded in series

of bessel functions, in powers of (1+Ar) ', and in

other ways. For the potential t/'„an expansion of the
wave function R in powers of (1 r/r0)//(1+—ar) (for
r(r0) is convenient, since the boundary conditions of a
smooth junction of E at ro with the hydrogenic solution

beyond ro is easily met by specifying the first two ex-

pansion coeScients.
In a three-term recurrence formula such as (2), the

eigenvalues of o. must be found before the formula can
be used to compute the CV. Formulas of this type are
ordinarily handled by a method of continued fractions
first used by Ince" in connection with Mathieu's equa-
tion. The method was improved by Bouwkamp" for
use with the spheroidal wave equation. Although

applicable in principle to most second-order difference

equations, this method turns out to be uncommonly
awkward in practice for Eq. (2). Alternatively, (2) may
be looked upon as an infinite set of linear equations in

the c,. For the self-consistency of the equations, the
determinant 6 of the coefficients of the cv must be zero,
Then A(n) =0 is a transcendental equation in a whose

roots are the eigenvalues. Since c & 1 may be expected
to be among the largest c„e meaning the principal
quantum number, the determinant can be conveniently
written around the "main term" P nn n'— —

As a zeroth approximation to 3=0, one may take

p 01n n'=0, —so th—at 00 Z/n nA——In t—he lim. it A=0
we have then the hydrogenic value for e. A much
better approximation would be

Equations (3) and (4) are useful for quickly obtaining
approximate eigen-~.

The roots of the infinite determinant may be calcu-
lated with arbitrary accuracy with the following tech-
nique. First, rewrite (2) for simplicity as

Cv 1dv, v—1+Cvdvv+Cv+1= 0&

(v+ l) (v+ 2l+ 1)
dv, v—1=

(v+ 1)(v+ i+2)

2I P—a(v+i+1) —(v+i+1)']

(v+1)(v+i+2)
dvv

so that the characteristic equation for n is

doo

d10 d11

d21 d22

1 00 d,„1
The determinant of the (m+1)th order, A~., equal to
6 with all rows and columns beyond the mth omitted,
may be expanded in minors starting at the lower right-
hand corner where d is situated:

(5)6~+1=dmmD~ —dm, m —16m—1

With the conventions 50=1, 61=d00, (5) permits the
computation in succession of the determinants ~ up
to any order desired. Let o.o be an approximate root of
h. Performing a variation of (5) with respect to a,
one has

Bh +1=6 5d +d BA —d, 186

If now one sets a„=b„f(v) and determines f(v) so that minant. The result is

f(v+1)/f(v)= (v+i+2)/(v+2l+2), i.e., so that

P n(n 1)——(n1—)' n(,n— 1—l)/2, — 0
(n 1)(n+l—)/2, P an n'—, (n —l)(n+1—)/20,n(n+l+1)/2, P n(n+1)—

—(n+1)'
=0. (3)

This mode of expanding the determinant is like that
used for the infinite determinant for characteristic
values arising from Hill's differential equation. '4 An
approximate root of (3) is found explicitly by intro-
ducing a0 ——00/A into the corner terms of the deter-

'2 E. L. Ince, Phil. Mag. 6, 547 (1928)."C. J. Bouwkamp, J. Math. Phys. 26, 79 (1947).
'4 Reference 9, $19.42.

2(i+m+1—)
bd 80..

(m+ 1)(m+ l+ 2)
(6)

+1(0r0+b&) ~m+1(a0)+
8o.

which determines a correction Sn to n(). The ba de-
duced in this way turn out to be remarkably inde-
pendent of m beginning at relatively low m (see Table
I), so that a good value for a can be found with little

Q'ith the approximate 0.0, the 6 and 8b may be
found in succession, and for suKciently large m it can
be required that
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TABLE I. Example of calculation of eigenvalues and expansion coefBcients; 2= 80, 1S state, A = 1/. 145, P= 11.6.

Initial a 10.673
nl 4am

—0.0730—4.5820—4.90316—4.70920—4.4510—4.2113—4.0039643—3.8273

—0.0730
0.0011526
0.03084828—0.14596234
0.62911285—2.5451451
9.7188354—35.217665

u +1/bu

—1.0
4.6306—22.205506

101.77943—438.16792
1772.3918—6767.3314

+1.3892X10 s

+1.4341X10 s

+1.4358X10 s

+1.4360X10 s

+1.4361X10 s

dm+l, m

0.33
0.5
0.6
0.66
0.71428571
0.750
0.77
0.8

2/m+2

1.0
0.66
0.50
0.40
0.33
0.28571428
0.250
0.22

New a ~10,67444
0 —0.07444
1 —4.582960
2 —4.903886
3 —4.7097760
4 —4.4514800
5 —4.2117448
6 —4.0043243
7 —3.8276533

Final a =10.674434976

—0.07444
0.007822209—0,001139227
0.0006721776—0.002232700
0.008923438

-0,034057814
0.12342105

a +j..44 X&0~

—1.0
4.6325867—22.221591

101.87962—438.70092
1774.9258—6778.3550

24564.703

—6.5978X 10-s
—50893X10 ~

—5.0275X10 6

—5.0245X 10-6
-5.0243X10 fl

&ex = —5.0243 X10 s

bhmg1

+5.02432X10 '
—2.32756X10 '
+1.11648X10 4

—5.11876X10-4
+2.20426X10 '
—8 91780X10 '
+0.0340566—0.12342

am+a ( corr.
—7.443498X 10~
+7.798933X10-s
—1.027578X 10 '
+1.60301X10-'
—2 8434X10 '
+5 634X 10-6
—1.15X10 6

+OX10-e

From infinite
From Eq. (4) determinant

A
r r

Hartree A ~6.986 A ~6 A ~6.896 A ~6

1S
25
2P
3S
3P
3D
45

4D
4E

74.48
30.41
29.87
14.76
14.19
13.08
6.87
6.34
5.27
3.09

73.61
29.23
28.56
12.97
12.39
11.24
4.72
3.29
2.43
1.15

74.39
30.40
29.86
14.40
13.91.
12.93
5.47
5.09
4.34
3.20

73.62
29.44
28.72
14.23
13.35
12.16
7.22
6.69
5.61
3.91

74.40
30.46
29.98
15.29
14.73
13.57
8.08
7.61
6.69
5.18

labor. With obvious modihcations this method could
be applied to any three-term recurrence relation like
(2). The similarity to Bouwkamp's method will be evi-
dent. It follows from Eqs. (2) and (5) that c„=(—1)"6„;
hence the calculations may be performed directly with
the c„.

The approximate c„(or d, „) computed with the
approximate n can be easily corrected after bn has
itself been determined. An illustrative example is given
in Table I for the 1S state of mercury assuming A
= 1/0. 145=6.896 and P=Z/A = 11.6. As in the example,
one characteristically 6nds that the 6 diverge in
opposite senses for n which are slightly above or below
the correct value. This provides a good check on the
calculations. Another check comes from the fact that
bn may be found at every step, and for a good initial
n is observed to converge rapidly to a limit. If the
initial n is poor, this convergence is poor, and it is best
to correct n before going too far and to start over. Not
more than one or two such iterations, depending on the
accuracy sought, provides both an eigenvalue and a
set of expansion coeKcients having many signi6cant
digits in most cases. An hour with a desk calculator

ALE II. Comparison of eigenvalues of e for Z=SO.

sufIices to determine an n correct to within one part in
a million, frequently better than this.

In practice, it is usually not necessary to go beyond
m= 10 or 20, except for states with the largest quantum
numbers corresponding to optical states. For example,
some fifty or sixty terms must be computed for the
n=5 states of mercury before the divergence of the c,
is evident (although only about fifteen are needed for
the m=4 states). Neither the approximate potential
nor the expansions that have been used for the wave
functions are suitable for such states.

The evaluation of the c, is completed by an examina-
tion of their behavior for large v. In (2), let c,=k„/
(f+v+1). Then

k(v+ 1)k~i+k. I 9/(1+ v+ 1)3—(~+~+v+1) I
+-', k i(v+2l+1) =0. (7)

In the limit of large v, P/(1+v+1) is negligible in

comparison with a+l+ v+1, and (7) becomes a difference

equation of hypergeometric type" with the asymptotic
solutions

k(v) = expL&2(2u) &(v+2l+1)&)

X(v+ 21+1)'+&{1&O(1/vt) I.

The & signs correspond to the independent solutions

of the difFerence equation, the minus sign giving con-

vergent expansions of the wave functions.
A few results obtained with the aforementioned

procedures are given in Table II and Fig. 3. Table II
shows eigen-e computed from (4) and from the infinite
determinant in comparison with Hartree's values, for
Z=SO. Figure 3 shows how the 2S and 2P levels split
as the non-coulomb potential Zvq/r is turned o—n

'sP. M. Batchelder, Linear Difference Equations (Harvard
University Press, Cambridge, 1927),p. 175.The difference equation
is of the "irregular" type, having a characteristic equation with
equal roots.
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Fro. 3. e as a function of A for S Gxed at 80 and for the 25 and
2P states. 6 cga-~gp shows the splitting of the states as the
non-coulomb character of the potential is ampli6ed through
increasing A.

OA-

through increasing A. Normalization factors for the
wave functions may be easily found in terms of the
c„by making use of the orthogonality of the Ii func-
tions and the recurrence formulas for them. Such
quantities as transition probabilities are also computed
in a straightfonvard vray from tables of c, and one may
see the separate hydrogenlike contributions to the
6nal value.

An example of the use of the approximate potential
directly is the calculation of the scattering amplitude

0.0i

O.OI O. I 1.0
i(/A Oft Z V S tv e/a.

FIG. 4. Comparison of scattering amplitudes in Born approxi-
mation. y is calculated directly with the approximate potential—Z~g/r. 4 is calculated with the potential cut-oG at R for the case
that AR= 26.fgz is the Fer'mi-Thomas scattering amplitude.

f(8) for a fast electron in the potential. In the Born
approximation,

&r'm t."sinEr Z
f(&)= r'dr

k2 J 0 Kr r(1+A r)

8s'tnZ
t
sin(E/A) Ci(E/A)+cos(E/A) [s/2 —Si(E/A)]

k*A I E/A

8s'mZ (Ky

k'A' & A)
(8)

where E=(4sme /k) sin(8/2), ew being the incident
electron momentum and 8 the scattering angle. In the
limit of small E/A, s(s) diverges as [x log(1.781@)
+-,'s —x]/x, reflecting the fact the approximate po-

tential is too large at large r so that the incident elec-
tron is a8ected too much in a distant collision. If
one cuts off the potential at r=R, then (8) is replaced
by

8&mZ sin(E/A)[Ci(E/A) —Ci((1+AR)K/A)]+cos(E/A)[Si((1+AR)E/A) —Si(K/A)]

8/mZ )E~
k'A' (A 3

For small E/A, C (K/A) =AR —log(1+AR). The func-
tions y, 4, and that f(8),

fear,

arising from the Fermi-
Thomas potentiaV' may be conveniently compared on
a log-log graph. This is done in Fig. 4, where fear is

' N. F. Mott and H. S. W. Massey, The Theory of Atomic Col/i-
sioes (Oxford University Press, New York, 1949).

plotted against Z &s sin(8/2) and y and 4 (for AR =26)
are plotted against K/A. It is seen that q and C are
indistinguishable except at small K/A, and that C and
fpr agree satisfactorily.

In conclusion, the vrriter vrishes to thank Professors
Richard P. Feynman and Hans A. Bethe for friendly
discussion and criticism.


