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LETTE RS TO THE EDITOR

extrapolated ranges obtained from the corrected number plots
were not significantly difkrent from those obtained from the
original ionization distribution data.

These extrapolated ranges should correspond to the "practical
maximum range" defined by Bleuler and Ziinti. &' The "absolute
maximum range" is greater but is not as easily determined experi-
mentally. In Fig. 3 the extrapolated ranges determined from
plots similar to those in Fig. 2 are plotted as a function of the
kinetic energy of the electrons. The extrapolated ranges appear
to be independent of Geld size. The "absolute maximum ranges"
would be a few millimeters longer.

Fermis and Halpern and Hall' have discussed the polarization
effect of materials in a condensed state on the energy loss of
electrons. The upper curve in Fig. 3 is a plot of the ranges to be
expected on the basis of Halpern and Hall' s' treatment of density
e8ectsin water. This curve was constructed from their results
for water by numerical integration. The lower curve was con-
structed in a similar manner from the predictions of the Bethe-
Bloch formula as represented by Halpern and Hall. ' The cal-
culated ranges which include density sects approach the
experimental ranges more closely. The experimental "absolute
maximum ranges" would, moreover, be slightly greater than the
extrapolated range points shown.

t J. S. Laughlin and W. D. Davies, Science 111, 514 (1950).
4 Laughlin, Beattie, Lindsay, and Harvey, Am. J. Roentgenol. Raditlm

Therapy 65. 787 {1951).
4 R. B. Brode, Revs. Modern Phys. 11, 222 (1939).' E. Bleuler and W. Ziinti, Helv. Phys. Acta 19, 375 (1946).
4 F. L. Hereford and C. P. Swann, Phys. Rev. T8, 727 (1950).
4 E. Fermi, Phys. Rev. 5"l„485 (1940).
T O. Halpern and H. Hall, Phys. Rev. V3, 477 (1948).
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THIN (&80-kev) tungsten oxide target, (prepared by elec-
trolysis) was bombarded by 3.083-Mev deuterons from the

Wisconsin electrostatic generator. The resultant neutron spectrum
was observed by means of Eastman NTA nuclear emulsions, 100
microns thick, mounted 10 cm from the target and at angles of
0', 10', 20', 30', and 90' to the direction of the beam. A total of
1700 tracks have been measured. Both the criteria' for the meas-
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FIG. 1. Neutrons from the deuteron bombardment of 0&4 ht 0, 10, 20',
30', and 90' to the incident beam. N is the relative number of neutrons per
50 kev, and F~ is the neutron energy in Mev,
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FIG. 2, 0'4(d, n)F» angular distributions in the center-of-mass system.
Curve A is for formation of F» in the ground state, and curve B is for the
536-kev excited state. Butler's theoretical curves for high energy deuterons
on Ot4 (see text) are shown for purposes of comparison.

urement of the proton recoil tracks and the range-energy relations
have been discussed elsewhere. The data, plotted in 50-kev in-
tervals, and corrected for geometry3 and for variation of the
neutron-proton scattering cross section, 4 are shown as Fig. 1.

Neutron groups corresponding to a first excited state of F'T at
536~10 kev are observed. These groups occur at approximately
0.7 Mev for the 0' to 30' data. The group at 90' corresponding to
this first excited state would have an energy less than 0.5 Mev,
and no tracks due to neutrons of energy less than 0.6 Mev were
measured at that angle. The neutrons of energies 2.5 to 3 Mev at
the various angles ar'e possibly from carbon contamination
(ground-state neutrons from the C~(d, n}N" reaction). Neutrons
from the Grst excited state of N'3 would appear well below the
lower limit of observation.

Figure 2 shows the relative intensities of the ground-state
neutron groups (curve A) and of the 536-kev excited state neutron
groups (curve 8) as a function of angle in the center-of-mass
system. Figure 2 also shows Butler' s' theoretical curves for
angular distributions resulting from a stripping process. These
curves are for deuteron energies above the coulomb barrier which
for oxygen is about 2.5 Mev. Hence, it is interesting to compare
the shape of the experimental intensity vs angle curve for the
536-kev level of F'7 with the L~=O curve of Butler. If the
comparison is valid, this leads to the assignment of S~ to the first
excited state of F'7. Burrows, Gibson, and Rotblat' have bom-
barded 0"with 8-Mev deuterons, and they have interpreted the
angular distribution of the protons from the 0.88-Mev level of
O'T by means of Butler's theory. This led to their assignment of
Si to this first excited state of 0".Hence, it appears that the 0.536-
Mev level of F"and the 0.88-Mev level of 0"are the mirror levels
expected from the equality of e-e and of p-p forces.

Alder and Yu' have assigned Dots to the ground state of 0"on
the basis of a nuclear induction experiment. By mirror nuclei
arguments, the ground state of F" should also be D612. The shape
of the experimental intensity vs angle curve for the ground state
of F'7, as shown on Fig. 2, is not inconsistent with such an assign-
ment if it is remembered that for our low deuteron energy com-
pound nucleus formation might be expected to compete appreci-
ably with the stripping process. Compound nucleus formation
would probably tend to make the angular distribution more
isotropic.

The author is extremely grateful to Professor H. T. Richards
for suggesting this experiment, for his aid in the exposure of the
plates, and for many helpful discussions. She also wishes to ack-
nowledge the generous assistance of D. R. M. Williamson, and of
D. J. Donahue, R. E. Benenson, and D. S. Craig in the running of
the generator.
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