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A{4, e)=Zp pie 'P&A(k, I'}, (2)

where e makes an angle v with respect to a fixed direction in the
plane normal to 1r and A{K, I') corresponds to right (8=1) and
left (I'= —1) circularly polaxized radiation. ~ The result for the
intensity, in the linearly polarized case, for emission of a general
multipole mixture is

W{Ps, h, e) ZrL(2J'+1}/{21+1))la(JJ'L)I'

sin2r Zs&s Zsr Im[a(JJ'I)a~(Jj'I.'}$
2IPsl
2Jp+1

XZpI'~ ~ + D~p(~)(080)D~, p&~'&(Oa%)

X& ~Cz ~ ~Cz ~ '
(3)

where the polarization-dependent part arises from the inter-
ference between different multipoles (order 2~ and 2~*). In (3)
the ~ corresponds to J=Jp~), the u coefficients are reduced
matrix elements' (independent of magnetic quantum numbers
but dependent on parity), the D&~) factors are the rotation mat-
rices of order L, 8 is the angle between h and Pp, and the C's are
vector addition coefficients. 4 Since the imaginary part of the
matrix-element product vanishes, ' the potentially anisotropic
term in (3) disappears.

The detector processes referred to do not distinguish between
right and left circular polarization or between these and un-
polarized radiation. VVhat is needed is a "nuclear quarter-wave
plate. " One obtains the desired circular polarization detector by
using magnetized iron as a Compton scatterer. ' Then an azimuthal
anisotropy in the Compton scattered intensity will arise because
the intensities of the right and left circularly polarized components
of the xadiation are different. In fact, these intensities for unmixed
2~-pole radiation are

W(Po, h, P) 1+ IPoIP cosd, (4)
J'(J'+1)—L(L+1)—J(J+1)

where (P= ~1).
The only essential factor limiting the magnitude of the aniso-

tropy is the relative number of electrons contributing to the
magnetization in iron (~0.1). As an example of the application
of our result we may consider the neutron capture leading to an
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N an attempt to utilize polarized neutrons for purposes of.. nuclear spectroscopy we were led to a consideration of the
anisotropy properties of the emitted gamma-rays. ' It is well
known that for the capture of s-neutrons the intensity is isotropic.
Therefore, the question arises of obtaining information concerning
angular momentum of compound states and/or multipolarity of
the p s by looking for anisotropy with polarization-sensitive
detectors.

It can be shown that with ordinary Compton scattering, pair
formation, or photoelectric processes as detection devices (all of
which measure linear polarization} no anisotropy will occur. The
probability that a neutron with polarization Pp will lead to the
emission of a photon with propagation vector 1I; and polarization
vector e is

W(P„1, e)
lz (&{Ps,eto)IKI& )(~-IIIs(~, e)lc )*I' (1)

with A, 8, and C representing probability amplitudes of initial,
intermediate, and final states, xespectively; mp, m, and m' the
magnetic quantum numbers of target, compound, and final
nuclear states. The angular momenta of these states are Jp, J,
and J', respectively. H, and II2~e A are the capture and y-
emission interaction operators; for the emission of plane polarized
radiation the vector potential A is

even-even compound nucleus and a transition leading to the
ground state. Such a transition may be identified by using energy-
sensitive detectors. Then, since the anisotropy is determined by
the coefficient of I' in (4) a determination of this sign selects one
of the two possibilities J=Jp&$ and, since J=L, the sign meas-
urement determines the multipole order of the radiation as well.
It should be noted that there are certain exceptional cases where
the anisotropy vanishes. The only cases of interest are J=2—+J'= 3
with the emission of quadrupole radiation (L=2} and, consider-
ably less likely, J=S—+J'=6 with octupole radiation (L=3). Of
course, J=O corresponds to isotropy. So far as dependence on
angular momenta is concerned, the anisotropy is maximum when
J'{J'+1)—J(J+1)= ~L{L+1)(2Jp+1~1).This occurs when
Jp=0, J=J'=$ and when Jp=), J =0; in both cases W~1
HIP lPscuse and for these particular cases dipole radiation is
expected. Thus, for complete neutron polarization' only right,
left circular polarization is obtained at 8=2r, 0(J=Jp+$} and at
0=0, 2r(J= Jp —$).

A special case of the foregoing considerations was discussed
by Halpern. s

*This paper is based on work performed for the AEC at the Oak Ridge
National Laboratory.
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' g ECENT measurements' of the decrement 8 and the differ-
ence between the magnetically saturated and the demag-

netized elastic constants (the bZ effect) of nickel have shown that
these effects are much smaller at 10 megacycles than they are in
the low frequency range. Complete decrement-frequency and
~-frequency curves have been measured on a well-annealed
polycrystalline rod with the results shown by Fig. 1. The decre-
ment has reached a maximum value at about 150,000 cycles,
while the ~/ED ratio is decreasing continuously with frequency.
It is the purpose of this note to show that this effect is due to a
relaxation in the domain wall motion caused by the fact that the
wall cannot follow the applied stress at high frequencies, on ac-
count of the induced micro-eddy-currents.

The simplest model that will demonstrate the AE effect is the
90' wall model shown by Fig. 2. This model applies to iron,
since the directions of easy magnetization lie along cube axes.
The equation of motion for such a domain wall for a sinusoidally
applied magnetic field H, is

M'(4'x/dP) +R'(dx/dl) +K'x =HI,e2"t, (1)
where M', R', and K' are the effective mass, resistance, and
stiffness constants of the wall and I, is the saturation magnetic
intensity. At the low frequencies considered here, M' can be neg-
lected, K' can be evaluated from the initial susceptibility, and R'
from power losses.

Taking account of the fact that the domains are distributed in
all directions, the average displacement for a field EI is

s= HI./3K'. (2)
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FIG. 1.Values of decrement and AB/Bg plotted as a function of frequency.

Frc. 2. Domain wall motion for a 90' domain wall.

The change in intensity of magnetization associated with the
domain wall motion is I=XI,/D, so that the susceptibility is

xo= I/H =I.'/3K'D, or K'= I s/3xoD, (3)

where D is the domain thickness in the direction of domain
motion.

The power loss for a 180' wall has been calculated' by Williams,
Shockley, and Kittel for a domain whose cross-sectional area is
large compared with its thickness. The loss in a 90' wall will be $ of
this; and if we equate this power loss to the rate at which the
energy is supplied, we have

16D'IP e /xR =HI,vD, or e= ~RH/16DI„(4)
where R is the resistivity of the material and o the velocity of the
wall. From Eq. {1),if the dissipative term is controlling, we obtain

dx/dt =v =HI, /R', hence R'= 16DIP /x R. {5)

Hence, from Eqs. {1),(2), and (3) the complex susceptibility is

x=xo!D+iflf 1
where fp, the relaxation frequency, is

fo ——E'/2~R'= R/96x pD'= ~R/24@ pD', (6)

pp being the initial permeability. This is the same relaxation fre-
quency as that obtained by calculating the eddy current shielding
for a plate the same thickness as the domain.

It is difEcult to observe this relaxation of the domain wall
motion magnetically, since it is obscured by eddy current damping
of the whole specimen. However, by using domain wall movements
caused by mechanical stresses, no over-all 8ux is generated and as
shown by Fig. 1, this relaxation can be observed, The magnitude

of the change in the elastic constant (DE) and the damping can
be calculated by inserting the complex value of the susceptibility
in Seeker and Doring's expression' for the ~effect. This results in

~E/ED=9)PE po /20@I s(1+jf/fo)
=9) E,p,o(1—jf/f )/20 I,'(1+f /f ). (7)

The real part of this equation represents the difference between
the saturated Young's modulus E, and the demagnetized Young's
modulus, ED, as a function of frequency. The imaginary part
represents the dissipation associated with the domain wall motion,
and the "Q" of the motion is given by taking the ratio of the real
and imaginary parts of the complete elastic constant, i.e., E,—AE.
Since the decrement 8 is m/Q, we have

(8)

The 90' wall model does not represent nickel, which has its
easy direction of magnetization along the L111j directions.
Doring, in considering the dE/E~ effect, has shown that the
result of this modification is to replace {3/2)X by P»& L5c44j(c» ~ps

+3c44)g, where )»I is the magnetostrictive constant along L111)
direction and c~~, c~2, and c44 are the three elastic constants of
nickel. For X»&= —25)C10 s, I,=484, c»=2,53&10"dynes/cm',
c~q = 1.58' 10'», c44 = 1.23' 10', and the measured values of
go=340 and E,=2.22)(10'~ dynes/cd, the calculated low fre-
quency value of ~/EDis 0.224 and the maximum value of 5 is
0.353. From the initial slope, 5jf=2.SX10 and the frequency of
maximum decrement fp=150,000 cycles, the average domain size
is about 0.05 mm. The actual shape of the ~/ED curve of Fig. 1

indicates a distribution of domain sizes from 0.15 mm to 0.02 mm,
which is in good agreement with the optical measurements of
Williams. '
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&HERE is very little experimental data on the loss of energy
of electrons in phosphors. The availability in this laboratory

of thin uniform chemically deposited layers of phosphors afforded
an opportunity of making such measurements. The preparation of
these films of zinc sulfide is described in a Letter to the Editor. '
The films studied were deposited on glass and varied in thickness
from about 0.1 to 0.45 micron.

The samples were excited by electron bombardment at voltages
from 2 to 40 kv in a demountable post accelerator cathode-ray
tube. A film of aluminum 0.01@, thick was evaporated onto the
surface of the phosphor to prevent "sticking. " Corrections were
made for the energy lost by the electrons in this layer. The bright-
ness at constant beam current (current density 0.8 pa/cd) as a
function of beam voltage was measured with a photomultiplier
tube. These quantities were displayed on a cathode-ray oscillo-
scope and the resulting trace photographed.

A typical voltage brightness relation is shown in Fig. 1. After
the initial portion of the curve (not shown here) over which the
brightness increases as a power of the voltage, there is a consider-
able range over which the brightness is a linear function of voltage,
after which it passes through a fairly sharp maximum. The point
at which the relation deviates from a straight line is interpreted


