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F1G. 1. Schematic idealized representation of the oxygen
octahedra in hexagonal barium titanate.

Experimentally, hexagonal BaTiO; has been found to be non-
ferroelectric. I have applied the Lorentz local field correction to
the hexagonal modification to ascertain if it leads reasonably to the
conclusion that the hexagonal modification should be nonferro-
electric.

To simplify the calculation a little, the crystal structure was
idealized, somewhat. The O octahedra were all taken as equal
regular octahedra with the Ti ions at the centers and with di-
mensions the same as the octahedra of the cubic modification.?
The directions of the O octahedron chains were taken as mutually
perpendicular. The resulting dimensions of the unit cell of the
idealized hexagonal structure are ¢’=>5.68A, ¢’=13.9A, and ¢’/a’
=245, compared with the actual dimensions of ¢=5.735A,
¢=14.05A, and ¢/a=2.450.

At the site of each O and Ti ion, the local field was calculated
due to the polarization of all the other O and Ti ions contained
with a cylinder of infinite length with axis parallel to the ¢ axis
and of radius equal to a’/v3=0.584’ circumscribed about the par-
ticular site as a center. As in Slater’s paper, it was assumed that
only the Ti ions undergo ionic polarization. The field due to the
polarization of the Ba ions, Pgp., was approximated as the ordi-
nary Lorentz correction of 4rPg./3. Ignoring the effect of the
material outside of the cylinders, is equivalent to approximating
the surrounding material as being uniformly polarized.

The calculation indicated a necessary value of 1.6X1072 cm?
for the ionic polarizability of the Ti to produce ferroelectricity
in the hexagonal modification. This is appreciably greater than
the necessary value of 0.9X1072¢ cm? calculated for the cubic
modification and presumably just barely attained there at the
ferroelectric Curie point temperature of 120°C. Therefore, subject
to the assumption that only the Ti ions undergo ionic polarization,
it may reasonably be expected that hexagonal BaTiO; should be
nonferroelectric. This is consistent with the experimental finding.

LETTERS TO THE EDITOR

Physically, the absence of ferroelectricity in hexagonal BaTiO;
may be traced to (1) the existence of short finite chains of alter-
nating Ti and O ions instead of infinite chains, and the noncol-
linearity of successive chains, (2) the absence of a highly polariz-
able O ion between the two Ti ions at the neighboring ends of
successive chains, and (3) the larger distance between these Ti
ions as compared with the Ti—O distance.

I should like to thank Professor C. Kittel for proposing this
problem and for making helpful suggestions.
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EXPANSIONS of the Bose-Einstein integral functions
Flo, @) =[1/T(0)] [} (e 1/e=—1)dx )

in powers of @, which would correspond to well-known develop-
ments of the Fermi-Dirac integral functions,! are desirable for
discussing the behavior of the F(s, ) for small a. However, the
power series for the Bose-Einstein functions seems not to be
generally known.

The F(c, @) defined in Eq. (1) can be continued analytically
for complex o by an integral, say G(s, ), which is analytic over
the entire o-plane and for all positive a, save for the singularity
at o=1 when a=0, by a procedure similar to that of McDougall
and Stoner.! Here, however, we seek only a continuation for all &
and small positive e, and shall follow a simpler treatment. By
the use of Mellin transforms? one can express the Bose functions
in terms of power series whose functional behavior for small « is
translucent, and which are, for those o of greatest interest,
particularly well suited to numerical computation when a<1.

In deriving the result it is sufficient to consider the case a>0,
o>1, and o7#integer. The Mellin transform of F(s, «) is then

F (o, s)=j:7 F(o, a)a"‘da=f:nglfi—:‘;a"lda
=T()¢(6+a), (2)

where {(s+o0) is the ordinary Riemann zeta-function. The inverse
transformation then gives:

Fla, &)= (1/2xi) [ $(a, s)a-tds
= (1/2mi) f:ra“l‘(s)r(sﬁ-a)ds, ¢>0. (3)
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Fic. 1. Contour for
evaluating the Mellin in-
tegral of Eq. (3).
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For |a| <2, the contour of Fig. 1, which is indented at the
(simple) poles of the integrand, can be used. (The cut along the
negative axis of reals makes possible immediate use of the Stirling
asymptotic expansion of logI'(s)? to show that the integrand
vanishes on the arcs as the contour recedes to infinity.) The
function {(s+o) has a simple pole at s=1—¢ with residue +1,
and I'(s) has simple poles at s=—n with residues (—1)"/n!
Consequently, we have

F(o,@)=T(1—0)a" '+ = (—:!)—ng'(a'—n)a". @)
n=o M:

This is patently an analytic function of ¢ if o< 0 and for all non-
integral o.

If now o=m, a positive integer, although I'(1—o)a’"! and one
term of the series in Eq. (4) become infinite separately, their sum
remains finite. We have

F(m, a)—hm {I‘(I a)a""l-}- = 1) |;’(a- m+1)a’"‘1}
2 (=) n (=)m1 I'(m) e
+ 3 Sptemme= (e ogafer
(=)
+,,_3_1_n!_ to—n)ar,

where C is Euler’s constant. Therefore, by the principle of ana-
lytic continuation, Eq. (4) holds for all ¢. The series converges
absolutely if |a| < 2.

Equation (4) readily yields the differentiation property of the
Bose functions:

O"F(o, a)/dar=(—)"F(c—n, a).

When a—0, it is seen that F(s, @) diverges as o 17U if ¢<1,
and as log(l /a) if e=1, and of course converges toward {(o) if
a>1. If 1<¢<2, then F (o, @) has an infinite slope at the origin
although the function itself remains finite. Clearly, the origin
a=0 is a branch point for all the F(o, o).

The series in Eq. (4) converges quite rapidly in the neighbor-
hood of a=0 for positive o which are not too large. For example,
with an accuracy of at least 1 percent when a< 1, we have

F(3,0) =177Ta7% —146 +40.208a —0.012802,
F(3,a) =-354a} +2.61 +146a —0.104a> -+0.0042503,
F(5/2,0)=2.36at +1.34 —2.6la —0.730a2 +0.0347a3.
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These functions, together with ¢~%, are shown graphically in Fig. 2
for the range @< 1. For a> 1, the F(o, @) are conveniently evalu-
ated by the familiar series of exponentials.

The author wishes to thank Professor F. London for his in-
terest in this work.

* This work was done under contract with the ONR.
1J. McDougall and E. Stoner, Trans. Roy. Soc. (London) A237, 67 (1938).
2 E. C. Titchmarsh, Introduction to the Theory of Fourier I ntegrals (Oxford
University Press. London. 1948), pp. 7 ff., 190 fi. G. G. MacFarlane, Phil.
Mag 40, 188 (19
3E.T. Whlttaker and G. N. Watson, Modern Analysis (Cambridge Uni-
versity Press, London, 1947), p. 276.

Radioactive Decay of I's!

E. W. EMERY

Medical Research Council, Radiotherapeutic Research Unit,
Hammersmith Hospital, London, England

(Received June 18, 1951)

HE principal radiations emitted in the disintegration of I3
have been organized into schemes by Metzger and Deutsch
(M.D.)! and by Kern, Mitchell, and Zaffarano (K.M.Z.).2 These
are shown in Fig. 1, and it will be seen that they include essentially
the same features and differ only in the soft beta-ray branch.
However, a number of less prominent features remain to be ac-
counted for. Brosi ef al.? have found that a small fraction of the
disintegrations lead to the 12-day metastable level of Xe®!; a
gamma-ray of an energy approximately 720 kev occurring in
about 5 percent of disintegrations has been discovered by Cava-
nagh?, and subsequently reported by Cork et al.5, and by Zeldes
et al.;% Cork® has produced a convincing photographic spectrum
showing K and L conversion lines due to a 177-kev gamma;
Zeldes® has produced evidence of a weak 810-kev beta-ray. All
these radiations, except the 810-kev beta-ray, have been as-
sembled by Cork? into a scheme which must, however, be very far
from the truth. As the authors point out, there are wide anomalies
in the intensities. For instance, in one branch the 600-kev beta-ray
which arises from 85 percent of the disintegrations is shown fol-
lowed by the 723-kev gamma-ray (5 percent) leading to the
metastable level (1 percent). Moreover, the scheme places both
the 637- and the 364-kev gamma-rays in the soft beta-branch,
although M.D. have shown that only the first of these is asso-
ciated with the soft beta-ray, the other being in the 600-kev beta-
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1. Decay schemes for I#1: (a) Kern, Mitchell, and Zaffarano
(K M 2); (b Metzger and Deutsch (M.D.) with proposed additional
branches (dotted),



