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Flu. 2. Changes in the pulse amplitude {at 25 Mc) as a function of time,
or distance in the material, at the magnetic field intensities of Fig. 1. The
top trace is that with zero applied magnetic field, and the bottom trace is
that with saturation field.

Similar effects have been observed in iron-silicon single crystals
(3.8 percent Si) but the magnitude of the effect is much smaller.
Cobalt has not been examined.

Although the equipment used is capable of detecting velocity
changes of less than 0.1 percent, no velocity changes were observed
with applied magnetic field corresponding to the above attenua-
tion changes.

Additional experiments with nickel have been made in which the
applied magnetic Geld is directed along the axis of the ultrasonic
beam. The result of these observations is that qualitatively the
variations of attenuation with magnetic field follows the same
pattern as that just described with the applied magnetic field
perpendicular to the ultrasonic beam. In the latter case it does not
make any appreciable difference what angular position the applied
magnetic field has around the beam axis.

The effect of the magnetic Geld in orienting the magnetic mo-
ments appears to be directly coupled to the lattice in such a way
that attenuation of the ultrasonic energy is reduced when a
saturation field is applied. It may be that the large change ob-
served is a change in the scattering of the ultrasonic radiation by
the lattice which is affected by the magnetic domain orientations,
hence by the applied magnetic field. It may also be that there are
magnetic losses caused by induced currents within the domains—
currents which might arise from the passage of a Inechanical
wave through a magnetostrictive medium. The remaining attenua-
tion value at saturation is probably caused by the absorption of
energy by the lattice because of work done on it. The ultrasonic
waves were compressional, and the wavelength in the nickel
varied from approximately 0.1 cm at 5 mc to 0.01 cm at 50 mega-
cycles. The magnetic domain size in nickel falls within this range
of wavelengths. Anisotropy properties of single crystals are being
investigated by this method.

*The work described here was supported by the Research Corporation
of New York and by the Once of Air Research.

I Ultrasonic attenuation is measured by a pulsed system using micro-
second pulses with a 300 rep. rate. The attenuation values are free of any
effects of boundary conditions or beam spreading, and are characteristic
only of the material. Details of such measurements are described in a
report entitled "On the measurement of ultrasonic attenuation in solids"
by R. L. Roderick and R. Truell (to be published).
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' 'N a recent note, ' attention was called to the fact that the
~ ~ capture of a polarized neutron when followed by the emission
of a single gamma-quantum leads to certain polarization effects
in the final nucleus as well as in the emitted radiation. A special
simple example was discussed, while the treatment of more com-
plicated cases and the question of the design of a gamma-ray
analyzer was left to a more detailed paper.

This transfer of polarization has considerable influence, also,
in such cases in which the transition to the final state is carried
out in two (or more) steps. One can here expect the occurrence of
very significant changes in the theory of correlation. This may
perhaps best be illustrated if we apply the statistical interpreta-
tions of a general group-theoretical result3 concerning correlation
effects to the present case.

The absence of interference effects between the transition
amplitudes to and from the intermediate state of the final nucleus
was ascribeds to the fact that the projection of the angular mo-
mentum on the direction of propagation of the emitted quantum
is a good quantum number provided that spatial degeneracy
allows resolution of the angular momentum along any direction,
and in particular, along the wave vector of an emitted particle.
This condition no longer obtains if the initial state is formed
through capture of a polarized neutron. Depending upon the angu-
lar momentum of the original nucleus, the initial state of the final
nucleus is totally or partially polarized. The description of the
process of emission is no longer invariant under rotation around
the direction of propagation, since a preferred direction is estab-
lished through the axis of polarization. Simple relations are again
encountered if, e.g., the direction of emission of the quantum
coincides with the axis of polarization of the incident neutron.

A quantitative discussion is reserved for a later publication.

i O. Halpern, Phys. Rev. 82, 753 (1951).
s B. A. Lippmann, Phys. Rev. 81, 162 (1951).
s S. P. Lloyd, Phys. Rev. 80, 118 {1950).
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~OI.DBERGERI considered as a model for the inelastic
interaction of 90-Mev neutrons with a heavy nucleus (Pb)

the generation of an internal nucleonic cascade in a zero tempera-
ture Fermi gas of nucleons. The Monte Carlo method was em-
ployed to treat the cascades which were developed in accordance
with free nucleon-nucleon scattering cross sections (appropriately
reduced by the Pauli exclusion principle).

An experimental check of Goldberger's' evaluation by Hadley
and York' was interpreted to be at best only in partial qualita-
tive agreement. The discrepancies may have been due to the
failure of the model at these low energies for which pick-up effects,
multiple nucleon interactions, and refraction effects could be
important. The use of erroneous cross sections (p —p, e—n) and
some approximations in the calculations also are at least partially
responsible for the discrepancy.

To check the model at higher energies (~400 Mev), the nuclear
interactions induced by 350- to 400-Mev protons' in P-sensitive
nuclear emulsions were compared to the model predictions. This
technique is particularly well suited for this study, because all
charged particles from the individual nuclear events are visible,
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GOLDBERGER MODEL
CALCULATIONS—NORMAUZED EXPERIMENTAL
PROD STAR DATA
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FIG. 1. A Goldberger model work diagram, Cross section of nucleus of
mass number 100, using for the radius R =1,4XAi)(10-» cm. Thermal
excitation =66 Mev.

and hence a detailed comparison with the calculations can be
made. About 80 percent of the inelastic events in emulsions occur
in Ag —Br nuclei of average mass number 100, and hence the
calculations were performed for A = 100.

A two-dimensional circular geometry (R=1.4A&X10 " cm)
was employed for the nucleus. The true three-dimensional loca-
tion of the 6rst interaction was preserved by dividing the two-
dimensional circle into segments which when rotated present equal
normal ring area to the incident nucleon (see Fig. 1). Equal
numbers of nucleons were then considered incident upon each
segment.

The individual properties of protons and neutrons were re-
placed by an average nucleon gas with a maximum kinetic energy
of 22 Mev in a nuclear barrier (including coulomb) of 35 Mev.
The average mean free path inside the nucleus as a function of
energy was determined from published experimental e—p and

p —p cross-section measurements, and the assumption 0„„=g~„.
The Monte Carlo calculations follow the general Goldberger
technique, and a typical calculation is illustrated in Fig. 1. Of 90
incident nucleons only 60 produced inelastic events.

For a comparison with the experimental results the ejected
nucleons were grouped into the energy intervals designated' as
gray (&100 Mev}, sparse black (30 to 100 Mev), and black
((30 Mev}. The calculated two-dimensional angular distribu-

TAaLL I, Comparison of experimental and calculated mean prong numbers.

A. Gray and sparse black prongs
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FIG. 2. A comparison of the Goldberger model angular distributions
with the experimental proton star data.

tions are compared with the experimental projected angular dis-
tributions in Fig. 2. The agreement is clearly reasonable within
statistics and experimental errors in the values of prong energies.

An analysis of the calculations revealed that a reasonable esti-
mate of the fraction of ejected nucleons which are protons is ~.

The comparison of experimental and predicted mean prong
numbers is made in Table I. The thermal excitation is calculated
from the conservation-of-energy equation. The average value is
50 Mev and the maximum value about 200 Mev illustrating that
the knock-ons carry away most of the incident energy.

The value of 35 Mev per black prong' was used to estimate the
mean evaporation black prong number in Table I. This gave the
correct (within the errors) total mean prong number as well as a
percentage (28+7 percent) of knock-on black prongs which agrees
with the experimental determination of at least 25 percent.

Table II is a comparison of the distribution of events with vari-
ous numbers of gray protons (&100 Mev) and fast protons (&30
Mev). The agreement is clearly reasonable for this rather sensitive

TABLE II. Comparison of experimental and calculated distribution of
gray ( &100 Mev) and fast ( &30 Mev) proton events.

Calculated mean
No. of protons

Experimental mean
No. of protons

Gray (&100 Mev)

0.6 &0.12

0.42 +0.04

B. Black prongs

Sparse black
(30-100 Me v)

0.42+0.1

0.35 +0.04

No. of gray
protons

A. Gray proton events

% of events
calculated

46 ~11
48 &21

% of events
experimental

57 &4

40 &4

2.5 W1

Calculated mean No. of directly
ejected protons

Estimated mean No. of evapora-
tion prongs

Estimated mean No. of visible
black prongs

Experimental mean No. of
black prongs

Black prongs (&30 Mev)

0.58 &0.12

1.5 &0.2

2.1 ~0.4

2.5 &0.2

No. of fast
protons

B. Fast proton events

% of events
calculated

30~7
48 &8

21W7

% of events
experimental

35 &3

54 &4

9 ~2
1.7 &0.7
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test of the cascade nature of the process. A detailed report to be
published shortly will show that all the results of the 400-Mev
proton interactions can be satisfactorily explained by the model.

A similar investigation at 150 Mev is now in progress.
The authors wish to thank Mr. Leon Landowitz and Mr.

Jack Leitner for their excellent work on the Monte Carlo calcu-
lations.

*This project was jointly supported by the ONR and AEC.
I M. L. Goldberger, Phys. Rev. 74. 1269 (1948).
g J. Hadley and F. York, Phys. Rev. 80, 345 (1950).
3 Bernardini, Booth, and I.indenbaum, Phys. Rev. 80, 905 (1950).
4 Bernardini, Cortini, and Manfredini, Phys. Rev. 79, 952 {1950).

or together with (9)
S"8'=1; S 8 =1. (12r, a)

Relations (12) and (9) then imply (I). Equation (10) integrated
between —~ and a finite time t gives in conjunction with (11)

S =U (t)U(t) (13r)
S.= U (t) U.(t), (13a)

which may be taken as the defining equations for S" and S even
if the limits U"(+ ~), U (—~) do not properly exist. '

A somewhat better insight into the nature of these relations is
gained by connecting U"(t), U (t) with another special solution
of (4):

U'(t) = 1—— Ct' (t—t')H(t') U'(t')
2 ~ (14}

Here
8=S-. (2)

A Note on the U Operator*
MAURICE NEUMAN

Brookhaeen Nalgona/ Laboratory, Upton, Long Island, New York
(Received June 8, 1951)

'T is usually assumed that the operator U(t) transforming the
- ~ state vector from the interaction to the Heisenberg repre-
sentation satisfies the relation

U(t) = U '(t), {1)
where the dash denotes the hermitian adjoint. One then infers
from Eq. (1) that

where ~(x) denotes the signum function of x. The operator U'(t)
may be used to construct the Cayley representation of S.~ Its
essential properties,

U'(t)U'(t)=U'( )U'( )=U'( — )U'( — ) (15)

f dt'H(t') U (t') =f dt'U (t')H(t') (16)

readily follow from the integration of the identity

.a'—LU'( )—irU'( )—ij= U'( )H( )—H( )U'( ) (1&}
aT

and its product with e(t —r) between the limits —~ and +~.
The relations we are interested in are obtained from

S=limU(t). {3) .at—LU'(r) —1jLU(r) —1g= U'(r)H(r) H(r) U(r) — (18)
aT

It is the purpose of this note to show that Eq. (2) is implied by
the formal structure of the theory; statement (1), however is not.
Its use amounts to an additional assumption. The failure of {1)
need not be related to convergence or renormalization difhculties

We consider the operator equation

iaW(t)/at =H(t)m (t) (4}

and its hermitian adjoint

iaN'/at= —g{t)H(t). (5)

H(t) is assumed to be hermitian. Two physically interesting
implicit solutions of (4) are

U"(t) =EU'(t) j 'U'( )
U (t)=EU'(t)3 'U'( )

(20r)

{20a)

when this is integrated over the interval {—~, t) for U(t) = U"(t}
and (+~, t) for U(t) = U {t).

With the aid of (16) we then get'

U'(t) U"(t) = U'( ) (19r)

(19a)

A sufhcient condition for the unitarity of U(t) is now seen to be
the existence of fU'(t) j ' in the sense of a right inverse. In that
case

(6r)
andt

U (t) =1—' dt'H(t') U {t')

U.(t}=1—i dt'H(t') U.(t'). (6a)
~ +co

The solution U"(t} is to be identified with the U(t) mentioned in
the introduction, but the symbol U(t) without a superscript will

henceforth refer to both U'(t) and U (t}.The corresponding solu-
tions of (5) are the hermitian adjoints of (63. An identity:

i—I U(r) —1j[U(r}—1j=U{r)H(r) —H{r)U(r) (7)
aT

constructed from (4) and {5), is now integrated between —~
and t for U"(t} and between +~ and t for U (t). This operation
yields directly

U(t) U(t) =1 (8)

and in the limit as t% ~,
8 5~=1; 8 S.- i. (9r, a)

Equations 8 and 9 are not su{Bcient to insure (1) or (2}.State-
ment (2) can, however, be deduced from another identity. We
integrate

.ai—pU~{T)—1jI U.{r}—1j=U'{T)H(T}—H(r) U4{r) (10)ar

between the limits —~ and +~. This leads to an expression

8 =s- (11)

U"(t) U'(t) = LU'(t) 3 'U'(") U'(")EU'(t) 7'
=LU'(t)7 'U'(t) U'(t)LU'(t) j '
=1.

{21)

The transition from the second to the third member of '{21) in-
volved the use of

U'( )U'( )=U'( )U'( ) (22)

which is an immediate consequence of (16). The reciprocal of
U'(t) will exist in general only in the limit t—+~ ~ when the opera-
tor ifU'(t} —ij becomes hermitian on account of (16). In this
limit (20) leads to the Cayley representations of S' and S as
given in reference 2. A unitary U(t) can however always be
expressed in the form

U"(t)=U'(t)l U'( )j ' (23r)

U (t)=U'(t)EU'( )j ' (23a)

since the reciprocal of U'(~ }is known to exist on account of (16).
The hermiticity of ir U'{t)—ig, even though sufhcient, is by

no means necessary to insure the unitarity of U(t). To see this
we assume that ifU'(t) —ig is anti-hermitian and show that in
this case too U(t) is a unitary operator. Starting from (15) we have

U'( )U'( )= U'(t) U'(t) = U"(t) U'(t) U'(t) U"(t)
=~"(t)U'( )U'( )U'(t)
= U"(t) U'(t) U (t}U (t) U'(t) U"(t) (24)

=~'( 3U(t)U {t}U'( )


