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Bipolar Expansion of Coulombic Potentials*
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The calculation classically or quantum mechanically of the coulombic interaction between two charge
distributions is greatly simpli6ed by use of the bipolar expansion:

1 z B„,,~ ~(ri, r2, R)P„~ ~(cos81)P,~ ~(cos82) exppim(yam —pi)j.
&12 221, say, m,

Here (ri, 81, @1}are the spherical coordinates at a point referred to the center of the 6rst charge distribution,
and (r2, 8g, P2) are the spherical coordinates of another point referred to the center of the second distribution;
R is the separation between the centers; xi~ is the distance between the two points; P ~ ~(cos8) are the
associated Legendre polynomials; the B„,, „,~ ~(r&, r2, R) are expansion coefBcients given in this paper.
There are four functional forms for these coefficients, depending on the ratios of ri, r~, and R. Three of these
have been given recently by Carlson and Rushbrooke. For quantum-mechanical problems involving over-
lapping charge distributions, the fourth case, Irr —r2I ~&A ~&r r+r ,2must be considered as well. Here the
coefhcients have a more complicated form. The solution is expressed as an integral, and a number of the
coeKcients are tabulated. The expansion permits a simple evaluation of the two center coulombic integrals
arising in a large variety of quantum-mechanical problems.

~ 'HE problem of calculating the coulombic inter-
actions between two charge distributions in either

classical or quantum mechanics can often be simpli6ed
by using an expansion of 1/rts in terms of products of
surface harmonics in the two coordinate systems char-
acteristic of the two distributions. Here r12 is the
distance between a point in distribution 1 and a point
in distribution 2. Let a be an origin located in 1; b be
an origin in 2; E be the distance between u and b; ei be
the internal angle that a radius vector to a point in 1

makes with the line ab; 82 be the internal angle that a
radius vector to a point in 2 makes with the line ab;
let pl and p2 be the angles which the projections of the
radius vector make with an axis perpendicular to ub.

Figure 1 shows the geometry. The convenient expan-
sion is, then,

1/r»- g B„,, „,~-t(r„rs; R)P.,~-~(cos82)
nl, tran, m

t~t(cos82) expfi222(ps p&)]. —(1)

Recently Carlson and Rushbrooke' have considereo
this problem. They obtained expressions for
B„,„,~ ~(rr, r2, R) provided that R)rr+r2, r2)R+rr,
or r&&E+r2. The 6rst condition always applies if the
charge distributions do not overlap. However, for over-
lapping charge distributions such as occur in quantum-
mechanical problems it is also necessary to consider
another region, ~rr —rs~ &~R&rt+rs, which seems to
have escaped the attention of Carlson and Rushbrooke.
The expressions for the 8's are much more dificult to
obtain for this region and are the principal subject of
attention in the present paper.

An arbitrary charge distribution, p(1; xr, yr, st), can
be expressed as the sum of an infinite series of radial
functions times surface harmonics:

p(1; xt, yt, zr) = P P p„,„,(1;r,)
nt ~0 ttt1 ~ -tt, t

XP, ~ '~(cos8t) exp(imtgr), (3)

and a second charge distribution, p(2; xs, ys, s2). can be
expressed in the form

P(2;xs ys, ss)= E E P.. .(2;rs)
(2) ex~0 ma= -emP tN(x) —( 1)m(] g2)mf2Ldm/orxmjP (g)

XP„,~- ~(cos82) exp(i2222$2) (4).

Here n& and n2 go from zero to in6nity and m goes from
—n& to e&, where n& is the lesser of n1 and n2. The
P„(cos8) are the associated Legendre polynomials
de6ned by'

I

I

I

xl

Fio. 1. Coordinates for the bipolar expansion. r12 is the distance
between points 1 and 2.

Here p00 determines the net charge in the distribution;
pi, 1, pi, o, pi, ~ determine its dipole moment; p2,

p2, 1, p2, 0, p2, 1, p2, 2 determine its quadrupole moment;
etc. The electrostatic energy of interaction between
the two charge distributions is

i 12 Lp(1 xt yl sl) p(2 x2 y2 22)/rlsjdrldrs. (~)J
*This work was carried out under a contract between the

United States Navy Bureau of Ordnance and the University of
%isconsin.

' The factor (—1) is not included by all authors. Our formula
hold if either definition is used consistently.

s 'B. C. Carlson and G. S. Rushbrooke, Proc. Cambridge Phil.
Soc. 46, 626 (1950).
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FIG. 2. Interacting dipoles.

Substituting Eqs. (1), (3), and (4) into Eq. (5) and
making use of the orthogonality relations between the
spherical harmonics, it follows after integrating over
the angles that

Ugo= Q
«=o os-o ~ = —N& (2n, +1)(2no+1)

(ng+ ~m!, )!(no+ ~m~)!
X

(ng )m—
[ )!(no [m—

[ )!

8„,„," (rg, r, ; R)p„,„(1;rg)
"o o

coefBcients, it follows that

p-,-,(1;ri)=E-, D'""(TSi)-, -p.;, '(1;r~) (9)

p„, ,(2; ro) =P, D&"»(TSo)~, ~,p„, , '(2; ro). (10)

Substituting Eqs. (9) and (10) into Eq. (6) gives V»
as a function of the orientations, TSj and TS2, of the
two charge distributions.

In quantum mechanics, the charge distributions only
involve the first few spherical harmonics and, therefore,
expansions of the form of Eq. (6) greatly simplify the
work required in the evaluation of the coulombic inte-
grals. As a matter of fact, most of the coulombic
integrals are easy to evaluate once the B's are known.
It is therefore worthwhile to evaluate the B's once and
for all and thereby simplify a great many quantum-
mechanical problems. The expansion, Eq. (1), can also
be used to good advantage to determine the interaction
between two discrete charge distributions. For example,
the energy of interaction between two real dipoles as
shown in Fig. 2 is given by the equation,

B2nI+1, 2ng+1
/mt

The problem of evaluating V» is thus considerably
reduced by the introduction of the bipolar expansion.

The charge distributions are usually expressed with
respect to principal axes located within the charge
distribution and oriented so as to diagonalize some
tensor property of the system. Thus,

&1j l2
X

(

—
) —,R

) Po„,~g~ "~(cos8g)Po„,„g~~~(cos8o)i2'2' )
Xexp[im(@o P~)]—(11).

Xp„,„(2;ro)rg'ro'dr, dr, (6).
V(o ——4egeo Q

os=0 «=0 m = —(2m&+1)

00 tl1

p(1'» y~ s~)= 2 Z p, , '(I'r~)
nI =0 ml'= -nI

)&P„,~ "~'~(cos8~') exp(im~'p~'), (7)

where 8&' and @~' are the angles that the point in
question makes with the principal axes. Similarly, a
second charge distribution would be expressed in terms
of its principal axes:

00 n2

p(2;x„y., so)= Q Q p.. . '(2;ro)
~~ =0 ~2'- —~~

)&P„,~ "&'~(cos8&') exp(imo $Q ) (8).

At distances, R, large compared with /~ and l2, the
Ilo«+1, one+1 (fl/2, 4/2, R) vary as R I So that
the lead term, corresponding to e~=n2=0, is just the
energy of interaction between two ideal dipoles.

THE FUNCTION B„,, „,~ ~(ri, r2, R)

There are four sets of functional forms of the B„,„,~ ~,

corresponding to the four regions shown in Fig. 3:

I. R)rq+ro, II. ~rq —ro~ ~&R&r~+ro,
(12)

III. rg)R+rj, IV. rg&R+rg.

But by simple group theory, the radial functions

p„,„,'(1; r&) can be related to the p, ,(1; r~) of the
previous example, Eq. (3), and the p„, , '(2; r&) can be
related to the p„, ,(2; ro) of Eq. (4). Let S~ and So be
the rotations which turn the two principal axes systems
respectively into coincidence with a fixed laboratory
reference frame. Then let T be a rotation which turns
the Z axis of the laboratory frame into an orientation
parallel to the line passing from the origin of the Grst
distribution to the origin of the second. Then TS~ and
T52 respectively turn the principal axes of the two
distributions into the orientations of Fig. 1. Then if
D'"'(R) „are the standard rotational representation

R

FK'. 3. The four regions of definition of the B's. I: E&rI+r..
II:!rl—ro! ~&R&~rq+ro. III: ro&R+r&. IV: rq&R+ro
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Region IV

PEG/ON

REGION W
Xy& n& —ly n—2Rnl —nm (~&) yg&)

(i &~2). (15)

In Region lI, the J3,, „, (r&, r2, R) are dificult to
obtain. They have the functional form

RXGrOa gP

FIG. 4. Alternate description of the four regions. I: R&r1+r2.
II:!rx—r2! &It &rg+r2 III: r2)R.+rg IV: r.g)E+rm.

The geometrical significance of the four regions is
showIl in Flg. 4.

If the two charge distributions do not overlap, only
region I need be considered. Here

Region I
8„,, „,'™(rg,r„R)

( 1)n2+[m[(~ +~ )!
y n&y nnR —n&—nm —1 (13)

(e,+ Iml)!(n,+ Iml)!

For overlapping charge distributions it is necessary to
consider the other three regions as well. In regions III
and IV, the 8's are still simple. '

Region III

Region II

1 2(tl I+S2+1)
8„,, „,'m'(r~, r2., R) = P A„,, „,~m~(i,j)

Xy&& nl &y f n2 &Rnl+n2 & 7+& (]6)

The coefficients A„,, „,™and D„, „,I l for n~ and n2=0,
1, 2, and 3 together with all of the appropriate values
of m are given in Table I. The functions for which
n&&n2 are not given, for they may be determined at
once by permuting n& and n2 according to the formula

Iml (y y R) ( 1)nl+nnfl Iml(y y ~ R) (]7)

For other values of n~ and n2 (not given in Table I),
the coefficients may be evaluated by the methods
discussed in the appendix.

Substituting Eqs. (13), (14), (15), and (16) into Eq.
(6), the energy of interaction between two charge
distributions may be written in the form:

V V I+V II+V III+ V Iv

Xy nlr —nn —1Rnm —ng (+ )+ )

=0 (n2(n, ).
where the Vy2 Vy2 Vyg"', and V~~' are the contri-

(14) butions of the various regions:

00 00 f/' 16m'( 1)nm+~ m~ —(n,+s,)!
1'u'= Z. Z

n& =0 nrs=o m = n&(2m&+1)—(2N2+ I)(m& I ml ) '(e2
I ml )!R'+"'+"'

R R—r2

p„, (2&rq)r2"'+'dr2 I p„,m(1; rq)rq«+'drq, (19)
Jp 0

p„,, „(1;r, )rg' "'+'dr, —

2(n I+ng —1)
1
m l (f j)Rng+nn+l —~—j

~,j=0 ~ r2+R

p„, „(1;rg)rg' "'+'drg+ I p„, „(2;r2)r2' "'+'dr,
~R r2 —R

'o n& 16s (sy+ I
m

I )!(Ngy I ml )!l'n"= 2
« =o n~ =o m = «(2n, +1)—(2N2+ 1)(Iq

—
I
m

I )!(+2 I
m

I
)!D

R R+f'g

p„,, (2; r2)r2' n'+'dr2

0 "R—~,
(20)

' Carlson and Rushbrooke (reference 2) do not express the solution in this form, but Eqs. {14)and {15)follow from their results.
An alternate derivation is given in the appendix.
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16+(—1)"~+"~(n,+ ImI)!l'»"'= E bing
—nI

~.-o»-o ~ -.-, (2n, +1)(2ng+1) (n, —I mI)!(e2—n))!

p
00 pry —R

~
~

p„,, (2; rm)rm "'+'drs ' p„,, (1;r~)rq"'+ dry, (21)
R

16m'(ng+ ImI)!R"'-"'
l'»"= 2

ni=o m=o m -es(2ng+1)(2np+1)(np —ImI)!(ni —nm)!

~ l p„,, (2; r2)rm"'+ drs p, , (1; rq)rq "'+'dry. (22)
~0

(—1)"&+ ~ "~(n,+ns)!
l'~2= Z

gl+n1+ngnt =0 ns=o m = -n&

where
XQ-, , -(1)Q-..-(2), (25)

-,. -(1)=
(2ng+ 1)(ng—ImI)!

I'
X p, , (1;rg)rg"'+'dry, (24)

40

If the first charge distribution is confined to a radius
of /~, and the second charge distribution is confined to
a radius of /2, then if R is larger than lq+lm so that the
charge distributions do not overlap, only V»' is diferent
from zero and the energy of interaction has the form:

sion. ' Letting (r~, 8&, y&) and (r2', 82', qg') be the
spherical coordinates of the two points (with respect to
origin a, as shown in Fig. 1) we have

(n I
m—I)!

P i i(cos8i)P„'"'(cos82')r„.-o --. (n+ImI)!

Xexp[im(@2' @&)—5 . (26)
n+1

Here r& is the lesser of r2' and r~ and r& is the greater of
the two. The P„(cos8) are the associated Legendre
polynomials as defined by Eq. (2). The Neumann
expansion converges provided that r~2/0. Introducing
the new origin, b, and new coordinates (r2, 82, y~= ym')

previously described, we may apply three identities
given by Hobson

Q..-(2)=
(2nm+1)(n~ —ImI)!

P„~ ~(cos8q')

(r ~) a+1

(—1)~ "~+"(n+ 0)!
p kg —n—k—1

~-i-i (f+ ImI)!(n—ImI)!

XP„i i(cos8,) (R&r,), (27)

XJ p„,, (2; rm)r2"'+dr2. (25)
0

In this way the energy of interaction is related to the
moments of the charge distributions. Equation (18) is
then, the generalization which applies to the over-

lapping charge distributions which are most common in
quantum mechanics.

The authors wish to acknowledge the assistance of
Gene Haugh, Marjorie Leikvold, Alice Epstein, Ruth
Straus, Dorothy Smith, and Dorothy Campbell in
evaluating the integrals for Region II. The derivation
presented in the Appendix was shortened considerably
by an observation of R. McKelvey. This work was
made possible by the financial assistance of the Navy
Bureau of Ordnance.

APPENDIX. EVALUATION OF THE EXPANSION
COEFFICIENTS

The reciprocal of the distance r~g between two points
can be expressed by the weH-known Neumann expan-

P„~"~(cos82') ~ (—1)"+"(k—
I mI)!

~
—k—

leak

—n

(rm') "+' &-~ (k—n)!(n—
I ml )!

XPg~ "~(cos82) (R&rm), (28)

(n+ ImI)!
(rs') "P„~"~(cos82') = Q

«-i~i (k+ ImI)!(n —k)!

Xrm~R" "Pq~ ~(cos82). (29)

Observing the inequalities, we see that these equations
apply respectively in Region I (rm'&r~ and R&rm),
Region III (rm'&r~ and R&r~), and Region IV (r~'&r~).
On substituting into Eq. (26), we obtain the expansions
given by Eqs. (1), (13), (14), and (15).

For Region II the coef5cients may be given in terms
of an integral. Equating r~2 ' from the Neumann

4See, for example, Eyring, Walter, and Kimball, Queetuns
Chemistry Qohn Wiley and Sons, Inc. , New York, 1944), Ap-
pendix V.

~ E. W. Hobson, Theory of Spherical and E/lipsoidal IIaneoeics
(Cambridge University Press, London, 1931),Sec. 89.
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TABLE I. Expansion coefBcients with indices ~&3 for Region II.
!Irl r2I &~&~«i+r~).

8„,„, (r, r; E}
2 (n1+ng+ 1 )

L~»» (~, j}/D». ,"jr&'-»-'r2&' "~-'~"1+"~-'-&"
i, j=o

The summation extends over all entries in the table.

tn 0
nl 3
Ã$ 3

Dn te2~ 10240

TABLE I.—(Continued).

1 2 3
3 3 3
3 3 3

49152 245760 2949120

A~,~~ (i, g)

m
nl
n2

L4,a,~

—1
2—1
0
Q
0
Q

0
0
0

0
0
1

16

3
0-6
0
3
0
0

-8
0-8
0
0

0
1
1

16

2
0
9
8
0—1
0

—9
0
9
0

8—16
0

1
1
1

64

0
0
2

32

Ae, e~ (i, g}

1
0—9

16—9
1
0

—9
18—9
0

16
16
0

—5
0
5
0
5—5
0

16
0
0

16
0

-15
-10—15

0

0
1
2

256

-25
0

60
0

-3Q
-20

15

180—60
60—180

—256
0

384

1
1
2

512

-5
0

20
0-30

20-5

60
-60
-60

60

—128
0

-128

0
0
3

256

35
0

-28
0—14

-28
35

-128
0
0
0—128

140
84
84

140

0 0 520
2 -2450
4 4900
6 -7350
7 $120
8 0

10 -1470
12 980
14 —250

2 0 —2450
2 5880
4 —4410
6 0
8 4410

10 -5880
12 2450

4 0 4900
2 —4410
4 Q
6 -2940
8 14700

10 —12250

131—735
1715

-2695
2048—735
539

-343
75

-735
2058—1617
588

-1617
2058

-735

1715
-1617

294
1078—5145
3675

20
-147

490
-1225

1024
0

-245
98-15

—147
588—735

0
735—588
147

490—735
0

-490
1470—73$

6 0 —7350 —2695 —1225
2 0 588 0
4 -2940 1078 —490
6 —19600 6860 —1960
8 61250 -18375 3675

5—49
245

-1225
2048

-1225
245
-49

5

-49
294

-735
980—735
294
-49
245

-735
490
490

-735
245

-1225
980
490
980

-1225

-1
0
0

—1
0

—9—9
0

—1
0

90—60
-270

20
60

90
60
90

—20—20

-70
-84
-70

28
28

7 0 5120
7 —102400

2048 1024
30720 —6144

0
735

1470
3675

8 0 0 —735
2 4410 -1617
4 14700 -5145
6 61250 -18375

2048
2048

—1225—735—735—1225

m
n1
n2

Dn, »g

0
2
2

256

1 2
2 2
2 2

1536 12288

0
1
3

256

1
1
3

1024

Ae,», (~, p)

0 1 2
2 2 2
3 3 3

3072 12288 49152

10 0 —1470
2 -5880
4 -12250

12 0 980
2 2450

14 0 —250

539
2058
3675

-343
-735

-245
-588
-735

98
147

75 —15

245
294
245

-49—49

0
2
4
5
6
8

10
12

0
2

6
8

10

—19
75—150

128—50
25

0

75—100
50—100
75
0

—9
50—150

128
0—25
6
0

50
-100

0
100

-50
0

—3
2S—150

256

25—3
0

25
-100

150—100
25
0

21—42
14
0
0

21—14
0

—210
84
0—84

210
0

7
-21

14
0

14—21
7
0

—105
84
42
84—105
0

189
-630

735
0

-420
315

-294
105

—1050
1470—420

-420
1470

-1050

49
-210

315
0

-140
-105

126—35

—350
630—140
140

-630
3$0

7
-42
10S

0
-140

105—42
7

—70
210

-140—140
210—70

*This table was checked in three ways: putting (r&, r&, R)
=(1, 1; 2), (1, 2;1), and (2, 1; 1) we obtained values for the 8's
in agreement with those given by Eqs. (13), (14}, and (15),
respectively.

expansion, Eq. (26), to that from the bipolar expansion,
Eq. (1); multiplying both sides of the equation by
P, ~ "~(cos8~)P, ~ "~(cos82) expLim($2 —@~)] and inte-
grating over the angles, it follows that

—XSQ
50

150—450
0

128
768

0

—150
0—150

300
0

128—512
0

—150
150
150—1$0

0

256
256

0

384
-512
—210

0
126
420

0

256
256

-210
-126
-126
-210

0

367$ 157$
-1260 -420
-630 210

-2940 1260
787$ -2625

52S
-420
-210
-420

525

0 -4608 -2048 -1024
0 0 0 0
0 —15360 5120 -1024

t 2m+1i ( —imi)! (m —in')!
B„„~"~(r» rm, 2)

2 i (Ã2+ ]m[)! (ng+ [tnt)!

P i~i(cos82')P„ i "~ (cos82)d(cos82) (30).
n&+1

10

—50—100—450
0

25
75

—9
0

0
100
300

0

—25
-50

0

—100—150
0

25
25
0

—3
0

0—84—140
0

21
42
0

70
84
70
0

—21—21
0

—$2$—1470
-2625

294
630

175
630
875

-126
-210

2100 700
1260 -420
2940 —1260

10500 -3500

700
420
420
700

-175
-210
-175

42
42

r2' &ri when —1(cos8~& —cosn,

rl'&rx when —cosa&cos82(1,
where

cosa= (R'+r22 rP)/(2rsR). —

(31)

(32)

(33)

Here r& is the lesser of ri and r2' as before. In the inte-
gration over cos82 we see that

0 0
This situation is shown in Fig. 5. Thus in Region II,
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Region II

p
—cosa (r ) Bl

P~, i i(cos82')P i "~(cos82)d(cos82)
& n1+1

&( & gr'
l& COS @(-CgS~

r =r, '

C0S 8~ = - c-yS ~

& n1

+ P„ i "~(cos8'2)
4 —rosa ~2

XP„,~ "~(cos8 )d(cos8 ) . (34) r(r '

cos~ ( c&s 8g +

Here
FIG. 5. Behavior of the ratio r1/r. ' in the integration over cos8..

cos8~'= (r2 cos8~+R)/rm',

r~' (R'+ rP+ 2——r2R cos8,)&. (36)

Ke have not discovered a convenient method of
evaluating the integrals of Eq. (34). The results given
in Table I were determined by direct integration of the
special cases. The Hobson expansions, Kqs. (27), (28),
and (29) are no help for this purpose.

Convergence of the sum over n2 follows from the fact
that a constantX (r&"/r&"+')P ~ ~(cos82') is a bounded
continuous function of cos82 for —1~&cos82&~1 and
therefore can be approximated by a series

P„,B„,„,~ "~P„,~ "~(cos82).

Convergence of the sum over nj follows from conver-
gence of the Neumann expansion.

The rule for permutlng sg and n2 in B„,„,~-~(r&, r2, R),
Eq. (17), can be derived in the following manner.
Reverse the Z axis of the second charge distribution

by de6ning 82*=x—82. Dehning the new functions

B...,~-~'(r&, r2,' R) by the expansion,

fy2 et~0
B...,~ "~"(r~, r, ; R)P„,~ "~(cos8,)

n2=0 m = —s(
XP„~"~(cos82*) expLim(g, —p,)j, (37)

it follows from symmetry that in Region II

B„,„,"'(r r, r„R)=B„,„," '(rm, rg, R).

But cos|!I2*=—cos82 and

P„,i"i(—cos8~) = (—1)"~+"P„,i "~(cos8~),

(3g)

so that comparing the expansions, Kqs. (1) and (37),
and using Eq. (38),

B« ~~~(rq& r2., R) = (—1)"'+~~~B„„~"~'(r~, r2, R) (39)

= (—1)"&+~"~B „~"~"(r2) rg, R) (40)

—( ])"a+a ~ I~I(r2, rz', R). (41)

This is proof of Eq. (17).


