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The equations of motion of quantum electrodynamics are set
up in the interaction representation, using a formalism due to
Gupta, A new representation, called the intermediate representa-
tion, is defined by constructing explicitly a unitary operator S(t),
which transforms the state-vector of the interaction representation
into the state-vector of the new representation. The intermediate
representation is intermediate in behavior between the interaction
and Heisenberg representations. In it the low frequency changes
in the state of a system are represented by changes in the Wate-
vector, as in the interaction representation, while the high
frequency fluctuations are represented by the time-variation of
the Geld operators, as in the Heisenberg representation.

The program of this and a forthcoming paper is to prove that
the intermediate representation provides a complete and diver-
gence-free formulation of quantum electrodynamics, with a
divergence-free Schrodinger equation which describes accurately
the behavior of any physical system. In this paper the mathe-

matical technique is developed which will enable the divergences
to be eliminated from the Schrodinger equation. For simplicity,
the technique is explained by applying it first to the analysis of
the electromagnetic potential operators. The greater part of the
paper is occupied with a proof that any fourier component of an
electromagnetic potential operator in the intermediate represen-
tation is divergence-free after renormalizations have been con-
sistently carried out. The cancellation of the dI.vergences by
appropriate compensating terms arising from S(t) is an extremely
intricate process, the success of which could not be foreseen
without carrying through the calculations in detail.

In a final section, it is explained how Heisenberg operators
are to be regarded as a special limiting case of intermediate
representation operators. It follows from the preceding analysis,
that averages over finite space-time regions of Heisenberg field
operators in quantum electrodynamics are divergence-free after
renormalization.

I. INTRODUCTION

1
~)NE aim of this paper is to carry through in detail

the renormalization program for Heisenberg
operators in quantum electrodynamics, as promised in
an earlier paper. ' Since that paper was written, the
scope of the whole investigation has been widened by
considering instead of Heisenberg operators a more
general class of operators, intermediate representation
operators, of which the Heisenberg operators are a
special limiting case. The physical meaning and purpose
of the intermediate representation have been described
in a separate publication, in a qualitative way. The
second aim of the present paper is to give an exact
mathematical definition of the intermediate represen-
tation, and to show how a renormalization program
can be consistently carried out in it. The greater part
of the paper will be occupied with the proof that
averages of certain intermediate representation opera-
tors over 6nite space-time regions are divergence-free
after renormalization. At the end will be a discussion
of the way in which Heisenberg operators can be
obtained as limiting forms of intermediate representa-
tion operators, and this will complete the proof of the
6niteness of Heisenberg operators. The second main
step in the program described in RM, the proof that
the Schrodinger equation in the intermediate represen-
tation is divergence-free, is left for later publication.

II. THE GUPTA FORMALISM

differs from the usual formulation in the treatment of
charge-renormalization. The Gupta formulation de-
scribes charge-renormalization from the beginning as a
renormalization of the unit in which the electromagnetic
6eld is measured, and not as a renormalization of the
coupling constant e. In conforming correctly to the
physical interpretation and logical structure of the
theory, the point of view of Gupta has substantial
advantages; it is therefore not surprising to 6nd that
the use of the Gupta formalism is also demanded in
order to make the renormalization of intermediate
representation operators mathematically manageable.

The idea of Gupta is to distinguish at the outset
between the unrenormalized 6elds F„,*, which appear
in the field equations of electrodynamics in the Heisen-
berg representation, and the renormalized 6elds F„„,
which are physically observable. Here, as always,
heavy type is used for Heisenberg operators. The F„„
are defined by

F„.=sF„„¹,e=(e/e, ), (1)

where e is the unrenormalized electronic charge and ej
the renormalized charge. The de6nitions of e and e~

have been given elsewhere. '
The complete lagrangian density in quantum electro-

dynamics may be written, with the usual notations, as

L'= ,'F„.*F„.¹ g(—8A—„¹/Bx„)'+—L
+ieA„¹gy„g+8rle'QQ (2).

The starting point of the analysis is a formulation Here I& is the lagrangian for a free Dirac 6eld with
of quantum electrodynamics due to Gupta, ' which the observed electronic rest-mass. The second term jn

i F. J. Dyson, Phys. Rev. 82, 428 (1951},referred to hereafter paper before publication; he is also greatly indebted to Mr.
as HO.I (Heisenberg Operators. I.). Abdus Salam, who first informed him that Gupta's formalism

F. J. Dyson, Proc. Roy. Soc. (London) A207, 395 (1951), existed and would be effective in overcoming some serious diK-
referred to hereafter as RM (RenormaEzation Method}. culties which had arisen in the analysis.'S. N. Gupta, Proc. Phys. Soc. (London) A64, 426 (1951}. 'F. J. Dyson, Phys. Rev. 75, 486 and 1736 (1949). These
The author wishes to thank Dr. Gupta for letting him see this papers v6ll be referred to as I and II.
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H, =H, (t) = )tHr(x)dsx,

Hr(x) =H, (x)+H, (x)+H„(*),

H, (x) = ieiA„(x)|t(x—)y„if(x),

H, (x) = bmc'P(x) f(x)—,

(10)

(12)

(13)

H„(x)= ——,'fP„.(x)P„„(x)—-', 8'f'P„,(x)P„(x). (14)
~ Following E. Fermi, Revs. Modern Phys. 4, 87 (1932). See

also G. Wentsel, Eisfshrssg is die Qsasteslheerie der Wetlesfetder
(F. Deuticke, Mien, 1943), p. 112.' J. Schwinger, Phys. Rev. 74, 1439 (1948).' It may appear at 6rst sight paradoxical that the operators
A„~ and A„should both satisfy the same canonical commutation
relations, since they di6er essentially by a factor not equal to
unity. The commutation relations between the A„and their
derivatives (8AI,/8I) are not the same as the corresponding
commutators of A„*with (8A„*j~&t). The solution of the paradox
is that the momenta conjugate to A„~ and A„ in the two formalisms
are different functions of the thae-derivatives.

L* is zero according to the supplementary condition;
it is inserted in order to obtain independent dynamical
equations for the potentials A„~, without changing the
physical content of the theory. ' Gupta proposes to use
instead of L~ the lagrangian

L=Lp+Lg, (3)

Ls= —
e F..F„——,'(&A„/&x„)'+L,D, (4)

I.i hei——A„gy„&+tirsc'dtdi+ ,'fF„-.F„., (5)

f= 1 —tt '-'. (6)

Note that L is not exactly equal to L* expressed in

terms of renormalized fields and potentials. The inserted
term, the second term in Lp, difFers by a numerical
factor from the second term in L*. The difFerence in
the inserted term, while not afFecting the physical
consequences of the formalism, causes a substantial
difFerence in the mathematical details of calculations
carried out with the two lagrangians.

In the usual treatment of electrodynamics, ' the
interaction representation is set up as follows. The
interaction representation potentials A „,P are operators
satisfying field equations derived, from the free-field

lagrangian I.s. The operators A„s and Q are related to
A„and iver by a contact transformation

A *=(S*) 'A Ss Q=(S*) 'QS*, (7)

because both sets of operators satisfy the same canonical
commutation relations. An equation of motion for S*
is derived, by means of which S~ can be expressed
explicitly in terms of interaction representation oper-
ators.

In the Gupta formalism the interaction representa-
tion is introduced by finding a unitary operator 5
directly relating the renormalized potentials A„ to the
free-field potentials A„, thus

A„=S 'AP, dt=S 'QS. (8)

The equation of motion for S is found to be

ik(aS/at) =HiS,

III. THE INTERMEDIATE REPRESENTATION

Let g(a) be a function of the real variable a, defined
for a&0, with the following properties:

g(a) = l G(I') e
—' dl'

where G(I') is a function of the real variable I', the
integral Je"~G(I') ~dF being Gnite, so that Eq. (16) is
uniformly convergent for alt. u&0:

g(0)= ~t G(F)dr=1,
0

g'(0) = —c FG(F)d F =0,
0

g(a)~0 as u~ ~.

(18)

(19)

The convergence (19) is supposed suKciently rapid, so
that all integrations in which g(o) appears as a factor
will be convergent at in6nity. The function G(I') is
allowed to have singularities at most of a simple
8-function character at a set of discrete values of I'.

Let the interaction H (x) =H'(x, ei) given by Eq.
(11) be written explicitly as a function of the true
electronic charge ei. According to Eq. (104) of II,
(Qe/m) is a power series in ei, with coeflicients which
are divergent integrals formally independent of t.~. Also,

f= P(e —eis)/ce), gsf = f(es —eis)s/eseis] (20)

may be written as power series of the same kind, in
virtue of Eq. (105) of II. Let x' be any space-time
point with time-coordinate t' not later than t, the
time-coordinate of x. Then the operator H, ', a function
of the two points x' and x, is defined by

H, (x, x') = H (x', eig(t —t'))
—Hg, +Hg, +Hg„, (21)

Equation (9) can be formally integrated, and then Eq.
(8) gives the series expansions of renormalized Heisen-
berg operators directly in terms of interaction repre-
sentation operators. Thus, one obtains

n. ~1 f|
A„(x)= Q (

—
l ~

dxi ~
dx.. ~l dx.~ &hcJ

Xr Hr(x„), t [H (xi), A„(x)] . .]]. (15)

The extra term (14) in the interaction hamiltonian
compensates exactly all charge-renormalization efFects
produced by the radiation interaction (12).Accordingly,
the operator (15) will be found to be divergence-free as
it stands, without any further renormalization of the
unit of potential. Just for this reason, the Gupta
formalism is the appropriate one to use for a proof of
finiteness of Heisenberg operators.
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H „= i—erg(& &—')A „PqA (x'),

H„= 8g—mc'ff(x'),

(22)

(23)

S,= P A,[c,g(i t'—)]', (25)

(26)

e,'=[1—fg] '. (27)

Up to this point, H, '(x, x') is identical, apart from
notations, with the H, (t, t') described in RM. However,
as was already remarked in RM, the correct definition

of H, (x, x') contains additional terms

H, (x, x') =Hg'(x, x')+HO, (x, x')+H, b(x, x'), (28)

where H„ is of the form of a transient photon self-

energy appearing only while g(I—t') is varying. The
precise definitions of H, and H, b are

1 d (g'
H,.= ———

}
—

(&
—r')j, }2c'. dt & g

')

(g—
}
—(t—f) }f, A;A, (x'), (29)
g

i g'
H„=——(~-i)j, A, (x) }

—}A,(x').
c g EBxi

In Fqs. (29) and (30) the index j is summed over the

values 1, 2, 3 only.
The intermediate representation is set up by con-

structing the operator U(t, t ), which satisfies the initial

condition,
U(f, —~)=I,

and the difFerential equation for t'&t,

(31)

ih(BU(t) t')/Bt') = )~Hg(x, x')d, x' U(t, t'). (32)

Let 4'(t) be the state-vector of the interaction repre-
sentation. Then the state-vector of the intermediate
representation is 4(t), where

+(~)= S(~)C'(~) (33)
and

H, „= 4f—gF„„F„„(x') 29—,'fg'F„4F„4(x') (2. 4)

Writing explicitly the expansions of the coeKcients,

X[11~exp( —it&AE,/5)] [II„exp(—iE„AE„/h)]

=A~[11 II ' ' ll ]exp[ zI(AE + ' +~E )/h] (37)

where J is an absolutely convergent integral over the
variables (t—t~), , (t—t„), and is independent of i.
Since hE is just the energy difFerence between initial
and final states in a transition efFected by the operator
II, Eq. (37) may be written

exp[iHof/k]}A JIly ''II } exp['iHof/fi]. (38)

Since S(t) is a sum of terms (38), it is of the form (36)
as required. It is important that this argument fails
completely in the limiting case g(t —t') =1, when S(t)
becomes the transformation function leading from the
interaction to the Heisenberg representation. In that
case the integrals J diverge whenever real energy-
conserving processes are occurring, and S(t) depends on
t in a much more complicated way than is indicated
by Eq. (36).

The electromagnetic potentials in the intermediate
representation are given by

A„,(x) =S '(&)A„(x)S(t), (39)

and other intermediate representation operators are
defined similarly. As in HO. I, averages of such operators
over finite space-time regions are the primary object
of study. These averages are linear superpositions of
fourier-transformed operators such as

the P representing a chronological product as defined
in I, and the fourfold integrals dx„extending over the
whole of space-time previous to the time t. Note that
the operator factors in H, (x, x ) refer to the point x„
and not to the point x, so that the chronological
ordering is with respect to x .

The meaning of S(t) has been explained in some
detail in RM. A formal proof will now be given of the
statement made there that

S(t) = exp[iHot/k]S exp[ iHo—t/5], (36)

where Ho is the hamiltonian of the noninteracting fields
and S is a time-independent operator. Imagine each
operator H, (x, x ) to be expanded as a sum of products
II of particle emission and absorption operators multi-
plied by appropriate exponential factors representing
plane waves in the variable x . Then S(t) is a sum of
terms each having a structure similar to

S(I)= U(~ ~) (34)

IIy Fqs. (31) snd (32), S(t) has the formal expansion

1 f—i)"
S(i)= g —

(
—}, dx, . . .

,

~ dx.
=0 n!! Ac )
XF(Hg(x, x,), H, (x, x2), , Hg(x, x )), (35)

A„,(p) =(2m)-') A„,(x) exp( ip x)dx. (40)—
The main program of the present paper is to prove that
A„,(p) is free of divergences. This will be accomplished
in Secs. IV—X. A similar analysis can be applied to the
matter-field operator f,(p) or to the current-operator
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j„,(P), leading to results which are discussed in Sec. XI.
It is found that p, (p) is a divergence-free expression
multiplied by a constant divergent renormalization
factor. In general, j„,(P) does not have a similar prop-
erty; only in the limit, as the intermediate representa-
tion tends to the Heisenberg representation, does j„,(P)
become divergence-free after renormalization.

Eq. (30), then one has

Z'= Q'ei"'(g'(t- t'))(g(t- t'))"' 'I''(x'), (47)

and if from Eq. (29),

Z, = Q,e,- [g"(t—t,)g(t —t,)+ (m, —2) (g'(t t—,))']
X (g(t —t;)) ' 'Y;(x;). (48)

IV. GRAPHICAL REPRESENTATION OF OPERATORS .Y=gm; (49)
Let A„,(p) be expanded into its normal constituents

according to the rules given in Sec. II of HO. I. As in
Sec. IV of HO. I, let M be the coefficient in the expansion
multiplying a particular normal product

-~(4-(pi) . A(p') . A~(p). A.(p~)) (41)

The objective of Secs. IV—V is to obtain an expression
for M in terms of integrals in momentum-space, making
use of the results summarized in Sec. VIII of HO. I.

By the definitions (35), (39), and (40), one has

1 ~ 1~4~'* t"
A„,(p)= Q —

~

—~, ! e ' '*dx
(2s-)4 =o n!!1'tc]

dxr ) dx„Sp& (42)

S,=+8(x—x4)8(x,—xp) 8(x. 4
—x.)

X[H,(x, x.), [ [H, (x, x4), A, (x)] . ]], (43)

the summation in Eq. (43) being over the (n!) permu-
tations of the points x~, , x„. Each of the factors
H, (x, x;) in Eq. (43) is a sum of a great variety of
terms, according to Eqs. (21)—(30). By a "term" here
is meant either Eq. (22), or a single term of a particular
order in e~ chosen from one of the inhnite series occur-
ring in Eqs. (23), (24), (29), and (30). With this
meaning of the word "term, " let S, be split up into
parts

be the degree of Sz in e~. Then, one obtains

Sz= QzePIIoSr, (50)

Here Er is a product of factors I';0 and F,0' arising from
the differentiations in Eqs. (47) and (48). If no terms
of the form (47) or (48) occur in Sz, then one has Er= 1.
The last factor in Eq. (52) is

Fr ——exp[A (x—x )+ .+A (x—x„)], (53)

arising from the exponential factors in Eq. (16). As in
Sec. IV of HO. I, each F,.0 is regarded as the fourth
component of a vector

r, =(o, o, o, r,,), (54)

and each A.; is a sum of m; vectors F, arising from the
ns; factors g, g', g" in Z;.

Summarizing the results of the analysis so far,

Sr=+8(x—xi) 8(x. i—x.)
X[&.(x.), [ [I'&(x&), A„(x)] ]], (51)

where Qz is the product of the Q;, and II, is the product
of functions g, g', g" occurring in Eqs. (46), (47), and
(48).

Let the factors in II, be expanded by means of the
integrs, l representation (16). Then, one obtains

00
~

QQ

G(rro)drip' ' '

J
G(rn'o)drnro&rFr (52)

S,=gz Sz, 1 ~ (o)"
A-(p)=—2 (

—
) EQ ~ I,

(2s.)4 ~-p (hc) z
(55)

Sz= E8(x x4) 8(x i—x )

X[Z.(x, *.), [ [Z (x, * ), A„(*)] ]]. (45)

For each i, Z;(x, x4) is a single term derived from

H, (x, x;). The summation in Eq. (44) is over the
possible ways of choosing one Z, for every i. The
summation in Eq. (45) is over the (n!) permutations
of the indices 1, . -, n, the permutation being applied
simultaneously to the indices of the Z; and of the x;.

Each Z, consists of an operator V, referring to the
point x;, multiplied by a coeKcient which contains e~

raised to a certain power m;. If Z; is taken from Eqs.
(22), (23), or (24), then one has

Z, =Q.[e g(t-t.)]"I'.(x,), (46)

where Q; is a numerical coefficient. If Z, is taken from

Jz= !t G(r&p)drip' ' ' !f G(r,vo)drv, ErI„(I4, P), (56)
0 0

~ oo

I„(A, p)= —
I dx I dx& ~ dx„e '" *FrSr (57)'.

8 QQ —QO —00

This I„(A, p) is of precisely the same form as the
I„(r,P) defined in Sec. IV of HO. I, bearing in mind the
remarks at the end of Sec. III of HO. I. There is only
the important difference that the exponential damping
factors (53) now appear naturally instead of being
arbitrarily inserted. The results of HO. I are now
directly applicable to the evaluation of A„,(p).

The normal constituents of the multiple commutator
SI will be enumerated by means of Feyn~an graphs 6
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M(G) = jl G(1'xo)«io

X)l G(I'~0)&I'~0FrM(G, ~)
Q

(59)

with (m+1) vertices x, x~, , m„.These graphs are
slightly di6erent from those which were used in HO.I
and in earlier papers for two reasons. First, only a
single operator A„acts at the point x, and therefore
only a single photon line is incident at the vertex x of
G. Second, the operators F; may be of six distinct
forms, namely,

A„Py„P, PP, F„„F„„,F„4F„4, A;A, , A4 divA, . (58)

The first two of these forms for F'; occurred also in

earlier calculations. The corresponding vertices x; in G
were, respectively, vertices with two electron lines and
one photon line incident, and vertices with only two
electron lines incident. Now, whenever I"; has one of
the last four forms (58), the corresponding vertex x, is

of a new type, having two photon lines and no electron
line incident.

The coeScient M is a sum of contributions Mz from
the various terms in the sum (55). Es,ch Ms is a sum

of contributions M'(G) from the various graphs which

represent possible factor pairings of Sy and which have
the correct external lines to give rise to normal con-
stituents with the operator factor (41). Each M'(G) is
further subdivided into contributions M(G) with a
particular association of each factor in (41) to one

external line of G, so that each external line represents
a particle carrying a certain definite momentum p„.

In order to evaluate M(G) by the methods of HO. I,
it is not necessary to enumerate all the doubled graphs
G~ derived from G. It is necessary only to choose
arbitrarily one doubled graph, which will remain fixed

throughout the subsequent discussion; the results are
independent of which doubled graph is chosen. There-
fore, the notation G~ may now be dropped, and G will

denote either the original Feynman graph or the chosen

doubled graph derived from it. The doubled lines in G
form a "tree, "which is connected and simply connected.
Regarding the vertex x as the "root" of the tree, a
unique "up" direction is fixed in every doubled line,

name1y, the direction pointing away from x. Every
line of G has, independently of the doubling, an inherent
direction which is supposed to be marked in it by an
arrow. For each doubled line Pj, there is defined the
index gj which takes the value +1 according as the
arrow in Xj points down or up. Further, for each Xj
there is defined the vector 6j, which is the sum of the
A; corresponding to all the vertices x; on that part of
the tree which is "above" 'Aj. This definition of 8,
corresponds to Eq. (40) of HO. I.

V. MOMENTUM-SPACE INTEGRALS

By Eq. (56), M(G) may be written in the form,

M (G)=A~I dk„+, "~ dk, C(k„„,

where A is a numerical coefIIcient and the integration
is over the (k—n) independent 4-vectors k„+~, . , kb,
one corresponding to each undoubled internal line of G.
The function 4 is a product of factors contributed by
the various vertices and lines of G individually. An
undoubled internal electron line contributes a factor

(k,„y„—im) '.

An undoubled internal photon line contributes a factor

(k 2)—1

A doubled electron line A, contributes a factor

(li.v.—im) '

(63)

where /j is a certain linear combination of the vectors
k, and the external momenta p„appearing in (41); in
the notations of Sec. V of HO. I, we have

l; = —g, (q,+u, ).
A doubled photon line Xj contributes a factor

(65)

(66)

Each external line contributes a certain constant spinor
or polarization vector. Each vertex at which the first
type of interaction (58) is operating contributes a
factor y„. All the factors so far enumerated occur
exactly as described in the S-matrix analysis II.
Finally, each vertex x; at which the third or the sixth
type of interaction (58) is operating contributes a
factor

(V'~-~ C-e) or (&.4V~
—~t 4V.), (67)

respectively, where q is the momentum vector belonging
to both of the photon lines incident at x;. In the
following section it will be shown that the correct
treatment of any graphs involving the fourth interaction
(58) is to omit them entirely in the cs,lculation of
M~(G). Therefore, C is a product of factors (62), (63),

The rules for expressing M(G, A) as a momentum-space
integral will now be formulated. Consider the corre-
sponding coeScient M~(G), which is obtained from
M(G, A) by replacing the factors Fr5r in Eq. (57) by
a chronological product

P(Yr(xg), , F'.(x.), A„(x)) (60)

simply. This M~(G) is a coefficient of the kind which
arises in the evaluation of the S-matrix; it can immedi-
ately be expressed as a momentum-space integral by
following the rules given in II. Certain complications,
which arise from the presence of time-derivatives in the
third and fourth of the operators (58), are here tempo-
rarily ignored and will be discussed in the following
section. The form of the integral representation of
M~(G) is
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where X is a 6ctitious photon mass. Second, each vector
l, in (64) and (66) is changed to

(69)

Third, if x; is a vertex at which the third or the sixth

type of interaction (58) is operating, then the two
photon lines incident at x; both carry the same mo-
mentum Il, and the vertex gives rise to a factor (67) in

M~(G). The factor (67) is now to be written

(q qbp 'qpq )» (b~ —b~) (7O)

where q' is the momentum vector carried by one of the
two lines and q" is carried by the other. Actually, it is
true that q'=q"=q; but it is necessary to distinguish
formally between q' and q" in order to specify the third
change to be made in Eq. (61) as follows. If ti' belongs
to a doubled line P; so that q'=/;, then q' is to be
replaced in Eq. (70) by Jl); if Ii' belongs to an undoubled
line or to an external line, then q' is left unchanged;
and similarly for q".

It is convenient to write

(71)

Then the integral M(G, A) becomes

M(G) A)=A)" dk.+, )I dk)Cg(k„~)) ~
) kb)) (72)

where 4 ~ is a product containing a factor

(E,„y„—im) ' (73)

for every internal electron line of 6, doubled or un-

doubled, and a factor

(E '+X')—" (74)

for every internal photon line. Also, Cg contains factors

(F.„E.b p
—R„pE, ),

(b Q, p bpQ„), —
(75)

arising from vertices at which two internal photon
lines are incident. The integration in .Eq. (72) is defined

in the following way. First, the integral is to be evalu-
ated as a Feynman integral, like Kq. (61), with the
quantities (lh;) treated as real numbers and the masses

(64), (66), (67), apart from numerical coeKcients. The
integration in Kq. (61) is to be taken in the usual
Feynman sense, i.e., to each of the factors in the
denominator of C is added a small negative imaginary
term —ie, which is made to tend to zero after the
integration is performed.

The integral representation for M(G, A) is obtained
from Eq. (61) by making the following three changes.
First, the factors (63) and (66) are changed to

(k.'+ X')—', (l)P+ 9) (6g)

m and A, treated as positive and very large. The result
is an analytic function E of es, ), and the A;. Then,
while m and X are kept large and positive, the A; are
continuously varied from imaginary to positive real
values; next, while the A; are kept real and positive,
m and X are decreased through real values continuously
from their 6ctitious large values to the physical value
of m and the value X=O. During these successive
variations the function E remains analytic, and the
analytic continuation of E obtained in this way defines
M(G, A) for the values of m and A, which are physically
of interest.

To summarize the results of this section, the coefli-
cient M is a sum of terms M(G) given by Eq. (59),
where M(G, A) is an integral of the form (72). To
evaluate M'(G), A) the analytic continuation method of
HO.I is in general required, but it should be remarked
that in practice the process of analytic continuation is
usually triviaL The evaluation of Eq. (72), treated as
a Feynman integral, can be carried out by using the
well-known methods of Feynman, ' leading to an explicit
analytic formula. The analytic continuation then
consists merely in substituting the physical values of
m and the I'; into this analytic formula.

VI. DISCUSSION OF DEMVATIVE INTERACTIONS

The Gupta formalism introduces into the interaction
tagrangian the term

Ti= ,'fF„.(x)F„„(x),-
containing time-derivatives of the potentials. This term
appears in the i'nteraction hamiltonian together with a
supplementary term Tm, given by Eq. (14). T2 is the
familiar "noj:mal-dependent" term which always ap-
pears in the interaction hamiltonian in theories with
interactions involving derivatives. ' It is well-known"
that when the S-matrix is calculated in such theories,
the eGects of T2 are always exactly cancelled by certain
singular expressions arising from the higher order
eGects of T~. In fact, the correct procedure in calcu-
lating the S-matrix is to ignore T2 entirely, at the same
time using the simple rules of Feynman to represent
the sects of T~ as integrals in momentum-space, since
these rules omit just the singular expressions arising
from T~. Gupta' has pointed out that such a procedure
can easily be justi6ed in the case of his formalism.

It is generally true that an exactly similar procedure
is correct for the calculation of Heisenberg operators
or of intermediate representation operators by the
methods of HO. I, in all theories with derivative inter-
actions. This will now be demonstrated for the special
case of the Gupta formalism.

8 R. P. Feynman, Phys. Rev. 76, 769 (1949), Appendix.
9 S. Tomonaga and S. Kanesawa, Prog. Theor. Phys. 3, 1 and

101 (2948).
'0 P. T. Matthews, Phys. Rev. 76, 684 (2949).
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By Eq. (27), the interaction (24) may be written

where

Hg„=Hg +Hg„
&2-= 4—frF*&(x')Fv(x')

a,.= ,'f4,—F„-4(x')F„4(x'),

f .={J./(1 —f.)j.

(79)

(80)

(81)

The term H, involves only the space-derivatives of
the potentials, and gives rise to no singular expressions.
Therefore, only H„need be further discussed. Consider
the evaluation of any coefficient M(G, A) derived from
a graph G containing a vertex xi at which H„ is oper-
ating. Let X; and ) k be the two photon lines incident
at x~. If the ends of 'A; and X~ remote from x~ are
vertices at which the interactions H„,H, , H, , or H, q

are operating, then the operator H„(xi) introduces into
M(G, A) only the ffrst time-derivatives of D-functions.
Just as in the calculation of the S-matrix, these first
derivatives give rise to no singular expressions. Singular
expressions will be obtained only when a line X; joins
two vertices xi, x2 at both of which H„ is operating.

In order to determine the nature of the singular
expressions, it is necessary to return temporarily to the
analysis in Sec. IV of HO. I, where M(G, A) is expressed
as a sum of contributions M(Gr, A) from all the doubled
graphs Gy derived from G. Suppose first that G~ is a
doubled graph in which X; is an undoubled line. Then
X, contributes to M(Gz, A) a factor

= F„4(xi)F„4(x2)b(xi —x2). (87)

The exponential factor has disappeared from Eq. (87);
the 8 denotes an ordinary 4-dimensional 8-function. In
virtue of Eq. (87), the singular contribution to M(Gz, A)
from the line X, is equal to a multiple of M(Gz', A),
where Gz' is the doubled graph obtained from G& by
removing X; and replacing x& and x2 by a single vertex
at which H„ is operating. The G~ derived in this
way is a correctly constructed doubled graph when X,.

is doubled in Gq, whereas if X, were not doubled, GT'

would not be simply connected and would not be
admissable.

It is clear from the preceding analysis that the
singular contribution to M(G, A), obtained when two
operators H,.occur at adjacent vertices of G, is always
a multiple of M(G', A.), where G' is the graph obtained
from G by collapsing the two vertices into one. It can
be proved by a more detailed calculation that the
effect of these singular contributions from M(G, h.) is
accurately reproduced, if M(G', A.) is calculated with
the coefficient f4„appearing in H„acc rodi ngto Eq.
(80), changed to the new value

M(Gz, A) is obtained if one replaces F(X,) by the
difference between (84) and (85), which after an
integration by parts is

F,(li,) =F„4(xi)F„4(x2)exp(A,"(xi—x2))

X L(4l/~x14)e(xi x2) jL(~/~x14)D(xi x2)j (86)

D(xi x2) or D (xl x2). (82) 4 f4'—
The derivatives at x~ and x2 operate directly on the
factor (82), introducing a second time-derivative of
(82); but, since no 8-function or 4-function is associated
with (82), the second time-derivative can be represented
by a momentum-space integral of the usual simple form,
and no singular term is left over. The singular expres-
sions are obtained only when X, is a doubled line.

Suppose now that X; is doubled, and write down
explicitly the factors in M(G&, A.) arising from the
vertices x~, x2 and the line ),. These factors are, accord-
ing to (44) of HO. I,

F(X;)=F„4(xi)F„4(x2)e(xi—x2) exp(h, ~ (xi—x2))

X{{b„.(8/Bx24) 54 (8/Bx—i„)}{b„p(8/Bx24)

b4s(8/8x2, )}b pD—(xi x2)j. (83)—
The part of F(X,) containing second time-derivatives is

F„4(xi)F„4(x2)8—(xi x2) exp(A,"(xi——x2))

X L(82/8x142)D(xi —x2)j. (84)

The usual momentum space integral formula for
M(Gr, A) is obtained if one replaces (84) in F(li,) by

F 4(xi)F 4(x2) exp(A,"(xi—x2))

X(8'/Bx14')(e(xi —x2)D(xi —x2))j. (85)

Therefore, the addition3, 1 singular contribution to

40 4g 4g
'

g~ (90)

according to Eq. (81).
The change of f4, to fr in Eq. (80) is equivalent to

simply omitting the term F„4F„4in Eqs. (24) and (58).
Therefore, the conclusion of this discussion of derivative
interactions is to justify the rules which were formulated
in Sec. V for the evaluation of M(G). In fact, the
formulas (67) and (75), (76) were obtained just by

However, it may happen that G' itself still contains two
adjacent vertices at which H„operates, which will give
rise to further singular contributions. To avoid this
complication, it is best to consider from the beginning
the possibility that G contains a string of r vertices
xi, , x„, joined by (r—1) photon lines, the interaction
H„operating at each vertex of the string. Such a
string of vertices, if G~ is any doubled graph in which
all the (r—1) photon lines are doubled, will make a
singular contribution to M(Gr, A) with the factor

F„4(xi)F„4(x„)b(xi—x2)' ' ''5(xp —1 x,) (89)

analogous to Eq. (87). Arguing in this way, one ffnds
that all singular contributions to M(G, &) will be
correctly allowed for if the nonsingular terms are
written down in the usual way, with the coefficient f4,
in H„changed to
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translating the term F„„F„„in (24) into a momentum-
space integral, ignoring all singular contributions and
at the same time the term in F„4F'„4.

VII. GENERAL SURVEY OF DIVERGENCES

All the divergences which can arise in the present
theory make their appearance in momentum-space
integrals of the form (72). The integrals (72) are derived
from Eq. (61) by the replacements described in Sec. V,
replacements which change neither the general form of
the integrals nor their convergence or divergence at
large momenta. The integrals (61) are of the kind
already discussed in the analysis of the S-matrix. The
introduction of new vertices at which the interactions
(24), (29), (30) operate does not introduce any new
types of divergent integral. Therefore, the possible
divergences in the present theory are precisely the
same as those which were studied in the theory of the
5-matrix developed in II.

Although the divergences are all of a kind which is
already familiar from the 5-matrix analysis, it is not at
all to be expected at 6rst sight that the methods of
isolating and removing the divergences, which were
adequate for making the S-matrix finite, will prove
adequate also here. First, the divergent integrals now
involve a multitude of parameters A;, whereas before
they depended upon at most two 4-vector parameters.
Second, and more important, the relativistic invariance
of the S-matrix, which was of decisive importance for
the unambiguous separation of renormalization eBects,
is altogether lacking in the present calculations. How-
ever, in spite of these two serious obstacles, it is found
that the elimination of divergences can be carried out
for intermediate representation operators, in a way
which is consistent and unambiguous. This is possible
because of the close formal similarity between the
integrais (72) and (61). Although Eq. (72) is not an
invariant quantity, its lack of invariance lies only in
the fact that the vectors I'; are of the special form (54).
Considered as a function of the vectors I';, Eq. (72) is
a formally covariant expression; and therefore the
method of separating divergent parts from covariant
integrals can still be applied to it. In this way the lack
of real invariance in Eq. (72) turns out to be unim-
portant. The treatment of divergences in Eq. (72) is
more complicated in detail than the treatment of the
5-matrix because of the greater number of parameters,
but no essentially new problems are encountered.

The divergences in a particular M(G, A) are associ-
ated with local features of the graph G, just as in the
5-matrix. There are logarithmic divergences arising
from vertex parts in G, linear divergences arising from
electron self-energy parts, and quadratic divergences
arising from photon self-energy parts. It is easy to
verify that Furry's theorem" applies to integrals of the
form (72). Also, the factors in Eq. (72) corresponding

"%.H. Furry, Phys. Rev. 51, 125 (1937).$ee $ec. IV of II.

to "scattering of light by light" processes" give rise
only to logarithmic divergences which cancel identically
after the contributions from diGerent 6 are added
together. Therefore, the real divergences which have to
be isolated and removed from M(G, A) are limited to
the three types already mentioned.

The vertices of 6 at which the interaction H„.
operates will be called "ordinary" vertices. Irreducible
proper and improper vertex parts and self-energy parts
are de6ned as in II. The irreducible vertex parts are
identically the same as for the S-matrix, consisting
always of a network of ordinary vertices only. Also,
the irreducible electron self-energy parts are the same
as before, either consisting of ordinary vertices, or
consisting of a single vertex at which H„operates. The
irreducible photon self-energy parts are the same as
before, consisting of ordinary vertices, except that now
a new photon self-energy part is added consisting of a
single vertex at which either H, „,H, , or H, y operates.
Vertex and self-energy parts, in which all the vertices
are ordinary, will themselves be called "ordinary. "
Thus, all irreducible vertex and self-energy parts, with
the exception of the single-vertex self-energy parts, are
ordinary. %hen x; is an ordinary vertex, the index nz;
defined by Eq. (46) is unity, and the vector A, associated
with x; reduces to a single I';.

In the following three sections, it will be proved that
all the divergences arising from ordinary irreducible
vertex and self-energy parts are canceled identically by
counter-terms arising from H„,H, „,H„, H, ~ operating
at the single-vertex self-energy parts. The arguments
will apply verbatim not only to ordinary irreducible
parts, but also to all ordinary proper reducible vertex
and self-energy parts, assuming that the divergences
arising from sources interior to these parts have been
canceled out previously. By application of the cancel-
lation first to irreducible parts, and then in succession
to more and more complicated reducible parts, all the
divergences arising from ordinary vertex and self-
energy parts will ultimately be canceled by the contri-
butions from the single-vertex parts. Used in this way,
the methods of the following three sections are sufhcient
to eliminate all the divergences from the theory.

It is one of the great advantages of the Gupta
formalism that all mass and charge renormalization
e6'ects are canceled automatically whenever they appear
in the course of the calculations. This is in contrast to
the method used in II. There, the mass renormalization
terms were removed by an automatic cancellation; but
the charge renormalization eGects were handled by a
much more complicated procedure, being retained
through the calculations and. 6nally collected into the
coefBcients Z~, Z2, Z3, which renormalized the charge
explicitly according to Eq. (86) of II. The Gupta
formalism works from the beginning with the renormal-
ized charge e~, and makes unnecessary the elaborate

& $ee $ec. QI of II.
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discussion in Sec. VII of II which justi6es the step-by-
step removal of divergences arising from reducible
graphs. The program of successive removal of diver-
gences is now justi6ed simply by the fact that each
divergence from an ordinary self-energy part appears
at every stage of the calculations accompanied by a
compensating term from a single-vertex part.

The Gupta formalism would not have simpli6ed the
renormalization problem so greatly, if %ard" had not
previously proved that in the 5-matrix the renormal-
ization coe%cients Z~ and Z2 are equal and exactly
compensate each other, so that true charge renormal-
ization arises only from Z3. In consequence of Nard's
work, Gupta needed to introduce an explicit counter-
term onjy for the charge-renormalization effects pro-
duced by photon self-energy parts. The spurious
charge-renormalization eGects from vertex parts and
electron self-energy parts cancel each other out. In the
following sections, it will be proved that this cancella-
tion of divergences without counterterms continues to
be valid for intermediate representation operators. In
the proof, Ward's identity plays an essential part.

VIII. REMOVAL OF DIVERGENCES ARISING FROM
PHOTON SELF-ENERGY PARTS

Let 8' be an ordinary proper photon self-energy part,
irreducible or reducible. Let 6 be a graph in which 8'
occurs, 3f(G) and M(G, A) the coeKcients derived
from G as explained in Secs. IV—V. If 8" is reducible,
it is supposed that these coefBcients have been freed of
all divergences arising from internal pieces of 8', the
internal divergences having been canceled out at an
earlier stage of the calculation, as described in Sec. VII.
Let X& and X& be the two photon b'nes adjacent to 8'
in G. Since the special vertex x cannot lie inside W, at
least one of the two lines, say, ) &, must be internal and
doubled. Then 'A2 may be either doubled, or internal
and undoubled, or external. Let x~ and x2 be the vertices
at which X~ and ) 2 meet lV. The line-doubling in 6'

can always be arranged so that a continuous path P of
doubled lines runs from x~ to x2 within S'. %ithout
loss of generality, it will be assumed that the "down"
direction runs from x2 along E to x~, then along X~ and
other doubled lines outside 8' to x. Also, the direction
of the arrows is chosen in Xg towards x2, and in X~

away from x&. Then by Eq. (69), the line X& introduces
into the integrand of Eq. (72) a factor (74) with

Rg I+ihg——

If X2 is an internal line, there is also a factor (74) in
the integrand of Eq. (72) with

R,=/+za, . (92)

Here, we have 62——0 if ) 2 is undoubled. If X2 is external,
we have 6~=0 by de6nition and / is the momentum
carried by the particle corresponding to X2. In all

~ J. C. Ward, Phys. Rev. 78, 182 (,1,950).

cases, we have

a,—a,= r,+r,+ +r., (93)

where F~, , F~ are the F-vectors associated with the
d vertices of 8'.

Now consider the product D~ of all factors in the
integrand of Eq (7.2) associated with the lines and
vertices of 8'. Apart from fundamental constants, II~
depends only upon the following quantities: I'&, , F&,
(l+ih2), and the momentum variables k,~ correspond-
ing to undoubled lines in S".The variables k,~ do not
appear in any factors of Eq. (72) except Ils . Also, Iis
is a second-rank tensor with two suKxes a, P, derived
from the Dirac matrices y, yp operating at the vertices
x~ and x2. Thus, the integral

(94)

appears as a factor in Eq. (72), and depends only on
the parameters written explicitly in Eq. (94).

The integrals (72) and (94) are to be evaluated as
Feynman integrals before any process of analytic
continuation is applied to them. While Eq. (94) is in
the form of a Feynman integral, the method of Sec. VI
of II can be used in order to separate it into a convergent
part and a divergent part, the divergent part having a
very simple form determined by considerations of
covariance. The divergence of Eq. (94) is at most
quadratic, and divergences arising from integration
over subsets of the variables k ~ are supposed already
compensated. Therefore, we obtain

jw —I w+I w

Ips' dk, ~{IIs—=(IIs)0—X'(8/BX')(IIw)p

(95)

p(l„+ih2„)(8/—Bl„)+Fg„(8/Br)„)+

+Fg„(8/Br g„)j(IIw) 0

gDl„+—id „)(l.+id. 2„)(8'/81„8i.)

+2(l„+ihm„)Fr,(8'/81„Br',)+
+ rg„rg„(8'/Brg„Brg„)+

+2rg„r2.(8'/Brg„BF .)+ i(lip)o{, (96)

this I~~ being an absolutely convergent integral. The
notation (Ils )0 means that the parameters X', (I+id 2),
I'~, ~ ~, Fq, but not the variables k ~, are all to be put
equal to zero in II~ and its derivatives, after carrying
out the difFerentiations. The divergent subtracted term
I~~ is of the form:

ID T~p+X T~p +Tap)I(lp+»2')+QF Tllpll Fill

+T-~"(4+»2.)(I +»2 )+Z. T-s.:(4+»2.)r"
+Z~ Z~ T~s~~"'rn r» (97)
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Ig&~ 8p/A+A'——X'+Bq'+Q, B,q I',

+Q, Q. BrNFr'FI]+B'qaqp+Q, IBr'qaF p

+B qpI -ll+Z. Z B- F„.F„p, (100)
with

q = l+i 62+iT'2. (101)

In order to simplify Eq. (100), it is necessary to group
the self-energy parts 8' into mutually exclusive classes
C and to add together the integrals I~ derived from 8'
belonging to a given C. Let Ic be the sum of these I~.
The deanition of the classes C is as follows. Given a
particular lV, the vertex x2 belongs to a closed loop I.
of r electron lines in IV; the C to which 5' belongs is
the class of self-energy parts obtained from 8' by
moving x2 to each of the (r—1) possible positions which

x2 can occupy on I, leaving the order of the other
vertices on I unchanged. If G is any graph containing
8', then Gc is defined to be the class of graphs obtained

by substituting for 8" in 6 the various members of C.
Clearly, all graphs of Gc contribute together to every
coeiTicient M to which G contributes. Therefore, it is
convenient to consider the sums M(G&) formed by
adding together the M(G) derived from graphs G in Gc.
The removal of divergences will be performed for the
sum M(Gc) as a unit; it is unnecessary t~ cancel
divergences in each iV(G) separately. Since the factors
of Eq. (72), other than IIs, arise only from the part of
G outside W, the function M(Gc) is formed from M(G)
by replacing I~ by Ic.

Consider the sum

The factors in II~ arising from the vertex x~ and the
two adjacent electron lines X;, X; are

$(l;„+ig;A,„)y„—™]'ypt(l&„+lrlh, „)y„—™j', (103)

where
I;—I,= l, g,h, —g;Ag= 62+ F2, (104)

Eq. (104) being a consequence of the structure of W.

Here the T p, T p„, etc. , are dimensionless numerical
tensors whose components depend only on the shape of
tV, multiplied by such powers of the fundamental units,
II,, c, and m, as are required to give the correct dimen-
sions to I~. Since there exist no numerical tensors of
third rank, the terms in Eq. (97) linear in l„and F,„
vanish identically. The only possible form for a numer-
ical tensor of second rank is

TrxP =A 8rsP~

where A is a scalar. The fourth-rank tensors in Eq. (97)
must each be of the form:

T p„„=Bb pb„„+B'b „bp„+B"5 „bp„, (99)

where B, B', and B" are scalars. When Eqs. (98) and

(99) are substituted into Eq. (97), the result may be
written

q I ~=E.~—E. (106)

where E;~ is the expression obtained by omitting from
I~ the factors arising from the line );and the vertex x2.
Let the vertices of the closed loop I.be in order x2, x,
xg, .

, x&. Consider the self-energy part TV', belonging
to C, in which x2 stands between x, and xq instead of
between x& and x,. Let the two electron lines adjoining
x2 in W' be XI„)~. Then, we have

w' E w' Ew' (107)

in analogy with Eq. (106). But it is easily veriGed that
the factors in the integrand of E;~ are identical with
those of EI,~', apart from possible differences of notation
arising from a diBerent choice of doubled lines in lV
and IV'. The value of E;~, evaluated as a Feynman
integral, depends only on 8' and is independent of the
way in which the doubled lines have been chosen.
Therefore, E,~ and E&~' are identical. Similarly, when

Eq. (106) is summed over all the W in C, each term
E„~appears exactly twice, once with positive and once
with negative sign. This leads to the identity

qpI pc 0 (108)

The above proof of Eq. (108) is not altogether
rigorous, since it involves some rearrangements of
divergent integrals. The physical significance of Eq.
(108) is to express the conservation of the charges and
currents occurring as a result of the polarization of the
vacuum by an applied Geld. Mathematically, Eq. (108)
is the direct generalization to intermediate representa-
tion operators of the identity

(8/Bx„)G„„(x)= 0 (109)

expressing the same conservation principle in the
Schwinger theory. " Schwinger's proofs of Eq. (109)
have given rise to much discussion;" they are non-

rigorous from a strict mathematical point of view, but
there seems to be no doubt that Eq. (109) is to be
accepted as a correct equation, expressing a formal

property which the theory must possess in order to be
physically consistent. The dubious features in the proof
of Eq. (108) are similar to those which occurred in
Schwinger's work. Therefore, it is reasonable to accept
Eq. (108) as formally correct, just as Eq. (109) is

accepted, without here enquiring more deeply into the
mathematical difBculties of the proof.

The grouping together of self-energy parts into
classes C, by moving the vertex x2 round a closed loop,

'4 J. Sehwinger, Phys. Rev. 76, 790 (1949), Eq. (A.16) in the
Appendix.

"See, for example, W. Pauli and F. Villars, Revs. Modern
Phys. 21, 434 (1949).

By Eq. (101), the sum (102) will be obtained if one
replaces the factors (103) in I~ by

L(l,„+iq,h, „)y„—imj '—[(l,„+lg,A;„)y„—imj —'. (105)

Therefore, one obtains
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can be extended by allowing both the vertices x~ and x2

to move independently round the loops on which they
respectively lie. It will be supposed henceforth that the
classes C are enlarged in this way. Then Eq. (108) will

still be valid, and in addition the identity

wil1. hold, with
q'I p~ ——0

q'= 3+ihg —iF g.

(110)

I.et I~ be divided into its finite and divergent parts Ip~,
Inc by summing Eq. (95) with respect to W. IDc is

formally the sum of all terms of degrees 0, 1, 2 in a
power-series expansion of I in the variables X, (l+ih2),
r~, , r~, and the identities (108), (110) are homo-

geneous in these variables. Therefore, Eqs. (108), (110)
hold not only for I~ but also for the parts I& and I&~
separately. Since I&c satisffes Eq. (108) identically,
the coefficients when IDc is written in the form (100)
are mostly zero; in fact, we may write

A=A'=0, B+B'=0, B„+B„'=0,B„"=B„,=B„,'=0.

The condition A=O states that the self-energy of the
photon is zero, as in the Schwinger theory. Therefore,
we have

ID =B(9'& p &Vp)+—2 B (V'r.&-p V-r p)
—(112)

When we apply Eq. (110) to Eq. (112), Inc reduces

finally to the compact form:

In =B(0 9 P p
—0 & ) (113)

depending on the single scalar coeKcient B. %hen X

and all the I', are put equal to zero, Eq. (113) agrees
with the form in which charge-renormalization eBects
appear in the calculation of the 5-matrix. Therefore,
B is to be identified with a certain contribution to the
coeKcient Z3 of charge-renormalization defined in II.

I.et I" be the sum of all I~ derived from ordinary
proper photon self-energy parts W with d vertices.
The divergent part of I" is

By Eqs. (30) and (47), the contribution from II,b is

IbP= iB—g(r; lp I'—,pl ). (118)

In Eqs. (117) and (118), not only the factor arising in
Kq. (72) from Wo is included, but also the factor
contributed by Wo to the product Eq, which appears
in M(G) according to Eq. (59). As explained in Sec. IV,
the vectors F~, , F~ are all associated with the single
vertex Wo,' I', and F, in Eqs. (117) and (118) are any
two of these vectors chosen arbitrarily. Since M(G, A)
involves r~, ~, rp only in the combination (r~+
+I'd), the value of Eq. (59) is independent of the choice
of I', and F;. In particular, Kqs. (117) and (118) may
be replaced by the expressions,

=B~(& p ~ A4)[F20(rio+F2o+ +rpo)
—r„r„+(r„—r„)a„], (119)

I;= iB,[r—,.ip r„l.+—I (r, r,)~.—p] (120)

Adding together Eqs. (114), (116), (119), and (120),
one finds

ID +ID~=In"/I +I~~+Ig =0. (12l)

Now consider the codhcient M defined at the
beginning of Sec. IV. It is a sum of contributions M(G)
from various G. Suppose that G is any graph which
contains the ordinary proper photon self-energy part
W consisting of d vertices. Contributions to M will also
be obtained from all graphs 6' in which W is replaced,
either by any other ordinary proper photon self-energy
part with d vertices, or by the single-vertex part t'Vo

at which the terms of order ej" in H,„, H„, and H, g

are supposed to operate. The M(G') derived from all
these graphs, as defined by Eqs. (59) and (72), will
differ from M(G) only by the substitution of Iw' or I0"
for Iw; the factors in M(G) derived from all parts of
G outside W are retained unaltered in M(G'). Let Mq
be the sum of all the M(G') including M(G). Then, M
is obtained from M(G) by writing in place of I~

In"= B(C V'&-—p C-Cp')— (114) I~+I P=I P (122)

where Bq is defined as a coeKcient in the expansion,

f= 1—Z3 ——Q Bgegd, (115)

and is therefore identical with the B~ appearing in Eq.
(26). Associated with I~ there is an expression I04

which describes the effects of the terms of degree e&" in

H, ~, H„, H, q, operating at a single-vertex photon
self-energy part Wo. By Kqs. (26) and (75), (76), the
contribution to Io" from H,„is

I~"= [B(lp+ihg) (l+ih2)b p

—(l+iAg) (l+ilt„)p] (116).
By Eqs. (29) and (48), the contribution from Hgo is

I:=B,[(d—2)r,,r, ,+r, 2](b.p —b.,b„). (117)

by Eq. (121) this IeP is simply the absolutely con-
vergent integral separated from I" according to Kq.
(96). That is to say, in Mq all the divergences arising
from the photon self-energy parts W have been elimi-
nated. Since this elimination of divergences proceeds
independently for self-energy parts situated at all
possible places in 6, the coefficient M finally involves
the integrals I~ only in the convergent combinations
Ip". Therefore, M is free of divergences arising from
photon self-energy parts. Since M is any coefficient in
the expansion of A„,(p), the absence of photon self-
energy and vacuum polarization divergences in A„,(p)
is now proved.

In conclusion, some explanation should be made of
the role of the analytic continuation process in the
above arguments. The M(G, A) were deffned in Sec. V
as the analytic continuation of certain Feynman inte-
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grals, originally defined for large values of m and A, and
imaginary values of I';0, into the region of real I';0 and
small m and li. The proof that the M(G, A) are analytic
functions of this kind was given in HO. I, but the proof
of analyticity is certainly invalid a,nd meaningless
when the M(G, 5) are divergent integrals. Here is a
defect in the argument, which must be remedied as
follows. The proof of analyticity will apply correctly
to the convergent part of an integral defined by the
subtraction procedure (96), provided that the sub-

tracted divergent terms are manifestly and formally
analytic functions of m, X, and the I';0. Now in Eq. (96)
the subtracted terms are formally analytic; they are
quadratic functions of ) and the I';0, and they can
depend on m only as a constant power m" because m is
the only other parameter involved in them with the
dimensions of a mass. Therefore, the convergent parts
of all the integrals M(G, A) are correctly defined by the
analytic continuation method. Since eventually only
the convergent parts of the integrals appear in 3„,(p),
the use of analytic continuation in the analysis of the
coeKcients M is fully justified.

Iv= tII,dk: Iw= rr dk. w
v a p

w' a (123)

where the k v or k ~ are the momentum variables
arising from undoubled lines in V or W. In M(G) the

IX. SEPARATION OF DIVERGENCES ARISING FROM
ELECTRON SELF-ENERGY PARTS AND

VERTEX PARTS

In this section the divergences from electron self-

energy parts and from vertex parts will be treated
together. Let V be an ordinary proper vertex part,
irreducible or reducible, with (0+1) vertices. Let W
be an ordinary proper electron self-energy part with d

vertices. Let G be a graph in which either V or 8'
occurs; let M(G) and M(G, A) be the coeKcients
derived from G. As before, it is supposed that diver-
gences a,rising from internal parts of V or H~ have
already been canceled.

Let 'A~ and X2 be the two electron lines adjacent to
V or 5" in G, meeting V or H~ at the vertices x~, x~,

with the arrow running in X& towards x2 and in ) & away
from x&. Let X3 be the photon line adjacent to V at the
vertex x3. The line-doubling in G can be arranged so
that x~ a,nd x2 are connected in W or V by a continuous
path I' of doubled electron lines. Also, x3 is connected
in V to I' by a continuous path of doubled lines; but
it is no longer possible to arrange that X& is necessarily
doubled. The "down" direction may lead out of W to
x through either Xi or P 2, and out of V through either
Xi, X2, or X3. The factors arising from V or W in M(G)
will in general depend strongly upon which of these
alternative routes the down direction takes. Let IIv or
II~ be the product of the factors in the integrand of
Eq. (72) arising from V or W. Let

Iv = Iaf,v+IP, v, (125)

IFt,v=) dk, '{11i—(Ily), {, (126)

this I«v being absolutely convergent. The subtracted
term (II&)& is obtained from II& by substituting for
(8&, R2, I'i, , ra+i, X) the SpeCial ValueS (t, I, 0,
0, bio), where t is an arbitrary 4-vector satisfying

(127)

and ) 0 is an arbitrary 6xed positive mass. The divergent
ID&v, being a vector Dirac matrix depending only on t,
must be of the form,

Iniv Ly„+By„(t——y im)+B'(t y—im)y„—
+C(t y, im)y„(tap—p im), (128)—

where L, 8, 8', C are scalar constants independent of t
after Eq. (127) is used. Now the di8erence between the
I&&v defined with two diferent vectors t is an absolutely
convergent integral. Therefore, the coeKcients 8, 8', C
are 6nite, and only J is divergent. Let IDv be defined by

and write
I v=Ly„,

Iv —IDv+I~v

(129)

(130)

Then IJv is finite and independent of t, and is by
de6nition the 6nite part of Iv. The above de6nition
of Ipv in two stages is similar to the two-stage definition
of h„, in Sec. VI of II. Note, however, that L in (129)
is still a function of Xo. It is necessary to retain a
non-zero Xo in L in order to avoid introducing a spurious
infrared divergence into Ipv.

Although Iv depends on the route along which the
"down" direction runs out of V, the Iri&v does not.
Theref'ore, L depends only on the shape of V and is
independent of the situation in which V appears in G.
%hen Xo——0, the constant L becomes the contribution
from V to the vertex-renormalization constant Z~

integral (123) appears as a factor, since the variables
k,v, k ~ occur only in IIv, II~.

Consider now the parameters upon which I can
depend. These are indicated by

(124)

Here p is a vector suSx arising from the operator y„
at the vertex x3. Not shown explicitly in Eq. (124) is
the fact that Iv is also a Dirac matrix, with two spinor
indices which combine with the factors in M(G) arising
from ) & and X2. The vectors R&, R2 are given by Eq.
(69) if Xi and X2 are internal lines; if X& or I~2 is external,
the corresponding R& or R2 is simply the momentum
carried by X& or X2. The vectors I'&, , I'&+& are those
associated with the vertices of V. In addition to the

parameters already mentioned, I depends on m and X.
Since Iv is only logarithmically divergent,
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Ie=Ipe+In,

where IF" is convergent and

ID"=Lgy„.

(131)

(132)

Here, L~ is de6ned as a coefficient in the expansion,

de6ned in Sec. VII of II. When Xo/0, the constant L
is a contribution to the corresponding coefficient Z~(XO),
which appears in the calculation of the 5-matrix of
quantum electrodynamics when a neutral vector 6eld of
mass Xo replaces the maxwell held. Let 6 be any graph
in which V occurs, so that M(G) contains I" as a
factor. In M, together with M(G), there appear all the
M(G') from graphs G' obtained from G by replacing V

by any other ordinary proper vertex part with (d+1)
vertices. The sum of these M(G') is denoted by Md.

Md is obtained from M(G) when I» is replaced by a
certain sum I".This Id will depend not only on d but
also on the way in which the "down" direction leads
out of V in G. However, in all cases one obtains

vectors (I+irt»»62, r„,re), must be of the form:

Ing~=X+ Y(t y —im)

+Q r„„[E"y„+B"(t.y —im) y„

+B"'y„(t y. im)+—C"(t y im)y—„(tete im) j-

+(I„+i»ts A2„t„)[—Z'y„+B'(t y —™)y„

+B"y„(t,y —im)

+C'(t y im) y—„(teye im) )—. (139)

Suppose temporarily that t is an arbitrary vector, not
necessarily satisfying Eq. (127). Then, the coefficients
X, Y, E", etc. , in Kq. (139) are scalar functions of P
Let X', I" be the derivatives of X and Y with respect
to P. From the identity,

~fdk.~(a/at„ ) (11~),
= Yy„+2X't„+2Y't„(t y im), (14—0)

Zi(xo) =1—p Lee, ',
d=2 there follow the relations:

133

and is independent of the situation of V.
Next consider I~. If the down direction leaves 5'

along X~, then ) ~ is a doubled line and g~=+1. In the
opposite case, ) 2 is doubled and g2

———1. Let g~=+ 1
in the first case and g~= —1 in the second. In both
cases, the vectors R~, R~ according to Eq. (69) are
given by

E'= Y+2 imX'= Y+im(B'+B"). (141)

Now, t being restricted to satisfy Eq. (127), the coeffi-
cients X, F, etc. , become constants depending only on
m and Xo. Let I&~ be de6ned by

In~ X++——, E'r„„y„+E'[(1„+i»tshg„)y„—im], (142)

and write

with
Rj = l+i»tg Ag, R2 1+igw6——2, js' I w+I w

Integrals such as

(143)

Here, I"y ' ' ' I'g are the vectors associated with the
vertices of W. The parameters upon which I~ depends
are indicated by

Jl dk. ~(a/ar, „)(IIs), (144)

Note, however, that I~ is not the same function of
these parameters in the two cases g~=&1. Also, I~
is a Dirac matrix.

Since I~ is linearly divergent, one obtains

I~=I,~+I (137)

I»~~= )"d4~I liw —(IIw) ~

[r,„(a/ar—,„)+ +r,„(a/. ar,„)

+(4+inw~2. —4)(a/at. )3(11~)~I, (»g)

this I»&~ being absolutely convergent. Here (Ils)& is
obtained by substituting for (1+irt~h2, r~, . , re, X),
in II~ and in the derivatives of II~ after differentiation,
the special values (t, 0, , 0, X0). The divergent In&~,
being a scalar Dirac matrix depending linearly on the

are only logarithmically divergent, and the difference
between two integrals (144) constructed with two
different vectors t is convergent. From this it follows
that the coeKcients B",B"', C", B', B",C' in Eq. (139)
are all finite. Comparing Eq. (143) with Eq. (137),
Kq. (142) with Kq. (139), and using Eq. (141), one
deduces that II~ is 6nite. Being independent of t,
Ip~ is by definition the finite part of I~.This de6nition
is similar to the two-stage definition of g, in Sec. VI
of II, The Xo-dependent coefljl.cients X, E", and E' are,
however, retained in Eq. (143) in order to avoid infra-
red divergences.

I~, like I~, depends on the route along which the
down direction runs out of 8'. The coeKcients X and
E, like L in Eq. (129), are independent of this direction
and depend only on the shape of lV. When ho=0, the
coefEcient E' becomes the contribution of 8' to the
electron-line renormalization constant Z2 de6ned in
Sec. VII of II. When Xo/0, the coeflj.cient E' is a
contribution to the corresponding coefficient Z2(1%0)
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(1/2 pr) A (Xp) = iZp(Xp) bm(Xp) (145)

appearing in the 5-matrix with a neutral meson Geld of
mass )0. %hen X0=0, the eoefBcient X becomes the
contribution of W to the electron self-energy denoted
by (1/2pr)A = iZp5xp in Kqs. (72) and (94) of II. When
)0/0, the coeKcient X is a contribution to the self-
energy

JdI J d+J dI (150)

~here Jpd is convergent and

Joe'=iKem+Ee[(1„+iZ„)y„im—5 . (151)

proper electron self-energy part with d vertices. The
sum of the M(G') is denoted by Me, and Md is obtained
from M(G) when I~ is replaced by a sum

Note that the vector (l+iZ) depends only on the part
of G outside W, and is the same for all O'. In Kq. (151),
Ed and Ed are coeScients in the expansions,

bm(Xp)
Zp() p) = Q Eeeg', (152)

(153)Zp(Xp) =1+P Eee,',

in accordance with Eqs. (93) and (94) of II."They are
independent of G and of the situation of W in G.

There will also be a contribution to M from the
graph Go obtained from 6 by replacing 8' by a single-
vertex electron self-energy part 8'0, at which the term
of degree e~d in the ia.teraction B„ is supposed to
operate. The addition to J"' from 8'0 is

Jo"=—iA~, (154)

Ae being the coeKcient appearing in Eq. (25). Note
that this does not precisely cancel the term ICd in Eq.
(151). The sum J" of integrals I~, from proper self-
energy parts with d vertices and from Wo, is

J"=J '+J "

Jn' im(Ee Ae)+——Ee[(l„+—iE„)y„im$. (156)—

By Nard's identity, "which holds for neutral vector
meson Gelds as well as for the ordinary maxwell Geld,
the renormalization factors Z&(Xp) and Z&(Xp) in Eqs.
(133) and (153) are equal. Therefore, one obtains

I~*(L+iqpyhp, Fg, , Fe)

=I~(l+iqrrAg, —Fg, ,
—Fe)s, (146)

of an electron in a neutral meson Geld of mass Xo.

However, in Eq. (142) the coefficients E', , Ee will
in general depend on the down direction in 8". It is
necessary to use a special symmetrization procedure,
explained in the following paragraph, to eliminate these
coefBcients.

Consider the electron self-energy part 8'*, obtained
by reversing the direction of all arrows in 8' and at the
same time reversing the direction "down" in the path
I' of doubled lines joining x& to x&. If G is any graph
in which W occurs, there exists a graph G* obtained
from G by substituting W* for lV. To pass from G to
G*, it is necessary only to perform a reflection" of 8'
which interchanges the two ends x~ and x2. The factors
in II~ are of three kinds, arising from undoubled lines,
doubled lines not in P, and lines in I', respectively.
Factors from undoubled lines appear unchanged in
IIg *. Factors from doubled lines not in I' appear in
IIs* with a vector (q+iq4) changed to (q iq&), —
where q is a certain linear combination of the k ~,
and 6 is the sum of a certain subset of (F~, . , Fz).
Factors from lines in I' appear in II~~ with a vector
{f+q+pcs {hp+6)) changed to (I+q+iq~(D~ 5)), —
the sign of q~ being unchanged because both the down
direction in I' and the direction of arrows are reversed.
Also, the order of all factors in Dirac matrix products
is reversed in passing from II~ to IIq*. Therefore,
we have

E= pgw(&x+~p). (149)

The dependence of I~~ on the down direction in 8'
has now disappeared.

Let G be any graph in which 8' occurs, and G' a
graph obtained from G by replacing 8' by any ordinary

where the suffix E denotes the reversal of the order of
factors. By Eq. (142), the divergent part of I~* is

In~* X Q, E"F„„y„—— —
+E'tL(l„+its ~&„)y„im5 (147—).

Now G and 6* always contribute together to any
coefFicient M. Therefore, the value of M is unchanged
if one replaces every I~ by the symmetrized expression
p'(I~+I~*). Instead of Eq. (142), the symmetrized
I~~ has the simple form,

I ~=X+Zo$(t„+pZ„)~„im], (14S)—
with

(157)

To summarize the results of the analysis so far, all the
remaining divergences of the theory are comprised in
Eqs. (132) and (156), arising, respectively, from proper
vertex parts and from proper electron self-energy parts.
The divergent coefficients are deffned by Eqs. (25),
(133), (152), and (153). It remains only to show in the
next section how Eqs. (132) and (156) cancel each other
exactly in the calculation of M. The physical reason
for the cancellation is that these terms are not true
renormalization e8ects but only "wave function re-
normalization terms" of a kind which are familiar in
elementary perturbation theory. In the present paper,
thanks to the complex denominators which never

'~ The factors 2x which appeared in II are now dropped because
all the integrals Jj/1(G, A} are expressed in terms of the functions
2a.DJ, 2~S&. The inconvenient factors 2~ arose originally from
Eqs. (44} and (45} of II.
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vanish or become indeterminate, the treatment of such
wave function renormalization effects is free from the
de.culties and ambiguities which arose in earlier
discussions. '~

where

H, (x) = P1 —Z2 '(X()71.n(x),

H„= (1—Z20
—'(Xo) jLD (x'),

(158)

I.g) (x)= —he

jaggy„(8P/Bx„)

—(~4/». )vA ]+~At, (159)

(160)

(161)

The additional interactions H«and ( H«) are-
treated in just the same way as the other terms in H, .
Thus, the possible graphs G giving contributions M'(G)
to M are made more numerous by allowing two new

types of vertex to appear, which will be called P-
vertices and Ã-vertices. Both P- and X-vertices may
be inserted in all possible combinations in all the
electron lines of every graph. At each P- or X-vertex
there are two electron lines and no photon line incident.
At each P-vertex one term, of a particular order ej in
the series expansion of the interaction II«, is supposed
to operate; at each X-vertex one term in the series
expansion of ( H«). —

"For example, J. Schminger, Phys. Rev. 76, /90 (1949),
especially p. 795; and Sec. VII of II, Kq. {99).The best published
treatment is that of R. Karplus and N. M. Kroll, Phys. Rev.
77, 536 {j.949), p. 542.

X. REMOVAL OF REMAINING DIVERGENCES

In this section the divergences (132) and (156) are
to be removed. The strategy of the removal is as
follows. A supplementary interaction II, is introduced,
which plays the same role for the electron-positron field
as the supplementary interaction P„of the Gupta
formalism played for the electromagnetic field. H„was
a real interaction which was introduced into the
lagrangian of quantum electrodynamics to take account
of the renormalization of electromagnetic fields. But
there is no actual renormalization of the electron-
positron field, in consequence of Ward s identity, which
is essentially a statement of the law of conservation of
charge in radiative processes. Therefore, H, is not a
real interaction, but must be introduced artihcially into
the formalism. This is done by adding to the hamiltonian
Hr given by Kq. (11) a term (H, H,). To t—he inter-
action (28) there is added a corresponding term
(H« H«). The —de6nitions of H, and H«are

Every P- and 1V-vertex is a single-vertex electron
self-energy part which may be denoted by 8'. The two
lines adjacent to W will carry momentum vectors E~
and 82 given by Kqs. (134) and (135). Let G be any
graph in which W appears. They by Eq. (159) the
factor contributed by W to M(G) is for a P-vertex

Ip~= Cgf(l„+iZ„)y„imj, —

and for an S-vertex

(162)

I~~ C=gnl—„+iZ„)y„im—] (163)

d =Ay+ +A. Ap=0 (165)

Then, M(G) is obtained from M(GO) by making two
alterations. First, an extra 6, is added to the vectors 6
in the denominators of all factors in M(GO) correspond-

ing to doubled lines of Go on the route from y to x.
Second, additional factors are inserted in M(GO),

Strictly speaking, the time-derivatives in Eq. (159) will
introduce singular terms in addition to Eqs. (162) and
(163), similar to the singular terms discussed in Sec. VI.
But the singular terms produced by B«and by
(—H«) are equal and opposite, and may therefore be
dropped without further argument.

Eventually, the P-vertices will cancel the divergences
(132), and the 1V-vertices will cancel Eq. (156). But
the cancellation is not immediate, and careful con-
sideration must be given to the reducible vertex parts
and self-energy parts which contribute to Eqs. (132)
and (156) only after the removal of their internal
divergences. It is convenient first of all to make an
intensive study of the eGects of P-vertices in isolation.
This study will occupy the following nine paragraphs.

Consider any graph Go without P-vertices. A class
C of graphs G may be derived by inserting any number
of P-vertices independently into each electron line of
GD. It is desired to 6nd the relation between M'(Go)
and the sum M(C) of the M(G) with G belonging to C.
Consider Grst the eBect of inserting P-vertices into a
single external line X~ of 60. Suppose that Xg is incident
at the vertex y of Go, and let g=&1 according as the
arrow in Xz points towards or away from y. I.et L be
the momentum carried by XE. Since / is the momentum
of a real particle whose spin-function appears as a
factor in Eq. (41), the Dirac equation,

(164)

holds whenever the left side of Kq. (164) operates
directly on Eq. (41). Let G be a typical graph derived
from Go by inserting into 'A~ the P-vertices yi, , y„,
in order reading inwards towards y. At each y; the
term of order e~d' in H« is operating. Let 4, be the
sum of d; vectors F; associated with y; according to
Eq. (53). Let
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namely,

F= [(t„+ipse„„)y„i—m) 'Ca,

Let
d=Pd, =mijn, (173)

X[(l»+ ', in—(D„»+6, j»))y» —™5
X[(t,+in&, i, ,)v, —im] '''
XC ~p[(t»+ peart(~p»+~i»))v» &m—]
X [(l»+irth g») y» im—] 'Cap

X [(t»+ ,'ig&,-») v» —™].(166)

The order of factors in Eq. (166) is as written when

g=+1, and is reversed when q= —i. Let F" denote
the product of the numerical factors Cd; in Eq. (166),
and let F' be the product of the remaining factors.

Let Q, F' denote the sum of the (j!) products
obtained by permuting A&, , A, in F'. In P& F'= F',
the last factor of Eq. (166) may be replaced, using

Eq. (164), by
[(', t»+ ,'-i re»-) y» p™—]. (167)

This combines with the previous factor to give (1/2)
simply. Next, in P& F' the third from last factor of
Eq. (166) becomes

[(2l»+ ', iqhp»-)y» 2 im—], (168)

and using Eq. (164) this may be replaced by

(169)

which combines with the previous factor to give (3/2)
simply. Continuing in this way, in P, F' the
(2r—2 j+2)th factor of Eq. (166) becomes

[(jl„+(j )igt!,;„)p—„—j im], — (170)

which may be replaced, using Eq. (164), by

(j p) [(I»+inst!—~») V» im]. —(»1)
This combines with the (2r—2j+1)th factor to give

(j——',) simply. Therefore, finally

135 2r —1
Fff (172)

222 2
= (r!)f„,

where 135 2k —1
Ic

~ » ~ ~ ~ fp 1. ——
246 2k

(173)

Suppose that n& of the d; are equal to 1, n2 are equal
to 2, and so on. Consider all the graphs G obtained by
inserting the P-vertices y&,

. , y„ into ) z with the
given set of indices di, , d„permuted in all possible
ways. Let QM(G) be the sum of the M(G) derived
from these graphs. In QM(G) there appears instead
of the factor F the expression,

PF= (ng!np!. )
—'F"P„F'

= [r!/(n)!np! )]f„C,"'Cp"p, . (174)

which is a pure number.

1++F.e,'[g(t —t')]'= Z„:(X,), (178)

in virtue of Eqs. (161) and (177). Incidentally, the
above derivation of Eq. (178), with the square root
appearing as the sum of a multinomial expansion,
indicates the lines along which a rigorous mathematical
derivation of the square-root renormalization factors in
Eq. (99) of II can be constructed.

Next consider the efFect of inserting P-vertices into
a single internal line X, of Go. Let the ends of ), be y
and z. The line-doubling in Go can always be arranged
so that X, is doubled. It is supposed that the down
direction in X, runs from z to y. Let

E,= l+ig (179)

be the vector appearing in the factor (73) contributed

by X, to M(Gp). Let G be a typical graph derived from

Go by inserting in 'A, the P-vertices y&,
~ ~ ~, y„, in order

reading from z to y. Let d;, A;, and 6; be defined for
each y, as before. Then M(G) is obtained from M(Gp)

by making two alterations. First, an extra 2 „ is inserted
in some factors of M(Gp) precisely as before. Second,
new factors are inserted in M(Gp), namely, those
obtained by replacing t in Eq. (166) by (t+iph) That.
is to say, the factor (73) in M(Gp) is replaced by

Fg=F"Fg',

Consider now all the graphs G obtained by inserting
any number of P-vertices with any indices d; into XE,
only the value of d being fixed. The sum +&M(G)
summed over all such G is obtained by inserting in
M(Gp) instead of Eq. (166) the numerical factor F&,
which is the coefFicient of e~" in the expansion,

~ [(nz+np+ )!/(n, !np! )]
Xf&„,+„,+...&(Cqeq) "'(CpeP) "' . (176)

By the multinomial theorem and Eq. (161), this
expansion is identically

1+QFge&e [1 Q——C—ee~e] &=Zp&(kp) (.177)

In every term of Pd M(G) there is, in addition to the
factor F, also the extra 6„ to be inserted into the
denominators of factors of M(Gp). This 6, is the sum
of d vectors I', , and is the same for all terms in Pe M(G).
Such an added 6, would be introduced into M(Gp), in
precisely the same way, if the interaction operating at
the vertex y of Gp were multiplied by [g(t—t')]~. Let
then M(G) be summed over all graphs G derived from
Go by inserting all combinations of P-vertices into ) 8,
the result being M(Gp, 7 e). To obtain M(G, , Xx) from
M(Gp), it is only necessary to multiply the interaction
operating at y in Go by the factor,
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Fg' ——[(l„+ig(h»+h, »))y» —im] '

X[(l»+irl(h»+sd „»+', 6, -g, »))y» —™]
X[(1»+4(~r +~&»))7» 'm]

X['(l„+ig (6„+-,'Dg„))y„—im]

X[(l„+i'd») y» —im] '. (180)

The order of factors in Ii~' is again to be reversed if
g= —1.

Let P„Fq' be de6ned as the sum of the products
obtained by permuting A», , A„ in Ii ~'. The following
identity, which is a generalization of Eq. (172), will be
proved by induction on r.

r

Q, Fg'= Qfif, «Q, [(l»+ig(D»+6;»))y» —™]', (18—1)

with f, given by Eq. (173).The summation P, is over
the (r!) permutations of the A;, on both sides of Eq.
(181). To prove Eq. (181) for any value of r, assume
it to hold for (r—1). Then we have

r—»

Using (181), we have for Eq. (185)

V =Zo[j'/(q 'q ' '')]L("—j)'/(p 'p "' )]
Xfj'„.[C&m+aiC2n+es. . .]

X[(l„+ig(h„+Aq„))y„i—m] ',— (187)

where hq is the sum of the A; corresponding to the
indices d, in Q. The part of QM(G) arising from a
particular term Q in the sum (187) will be denoted by
Mq(G).

Let d' be the sum of the d; in Q, d" the sum of the
d; not in Q, and d= d'+d". Let Mo(G) now be summed
over all graphs 6 obtained by inserting any number of
P-vertices into t, with any set of indices d», , d„,
and over all subsets Q of the d;, with G and Q being
restricted only by the condition that d' and d" are to
have fixed values. Let the double sum be denoted by
Pq Mo(G). The ho appearing in Eq. (187) is a sum of
d' vectors F,. Since these F; are equivalent integration
variables in M(G) according to Eq. (59), Do is effec-
tively only dependent on d' and is the same in all
terms of the sum PqM (oG). Therefore, hq will be
written instead of hq. To obtain PqMq(G) from
M(GO), the factor

Z&~'= Zff. i Z.[(4+-~n(~»+~"))V» im] '—
X[(1»+~ l(~»+ 2 ~ »+ 2 ~ L») )7»— is replaced by

[(1„+ipse»)y„—im] '

X[(l„+irl(h„+6;„))y„—im] —'. (182)

The middle fa,ctor in square brackets in Kq. (182),
when summed over permutations of the A, , is equivalent
to

[(2r—2j—1)/(2r —2j)][(l„+lg(A„+6,»))y» —im]

+[1/(2r 2j )][(l»+ig(D»—+Dr»)) p» im]. (183)—
Substituting Eq. (183) into Eq. (182) gives immediately
Eq. (181) with the help of the elementary identity"

.ff & =f' '——(184)
~-o (2r—2j)

This completes the proof of Eq. (181).
Let QM(G) denote as before the sum of the M(G)

derived from G obtained by inserting the P-vertices
y», , y, with the given set of indices d», , d„
permuted in all possible ways. In QM(G) there appears
instead of the factor F~ the expression

PFg= (mg!n2! ) 'F"Q„Fg'. (185)

Let Q denote any subset of the indices d;, containing q&

indices equal to 1, q& equal to 2, and so on. Thus,
0&q;& n; for each i. Let

p'=~' —q', i =Zq' r i =ZP' (186)—
"To prove Eq. {184),equate coeKcients of x" in the identity

{1—x) &(1—s)&=i.

F&'&"[(1»+lU(~»+~&'»))'Y» ™]' (188)

The numerical factor Fz z" is by Eq. (187) the coeffi-
cient of («')~'(«")"" in the expansion

E»1 Z»2 $91 $92 [(pl+ p2+ ) '/(pl!p2 )]
X[(qi+q2+ )!/(qi!q~ I )]f&„+„,+...&

Xf(q,+„+".) (Ge~') "(C2e~")"

X (C~e~")»'(C2«'")»' . , (189)

which is the multinomial expansion of

L1—ZC.(«')'] 'L1 —EC.(«")'] '

=Z ~p 0, e, ')Z2~(XO, «"). (190)

Let M(G0, X,) be the sum of the M(G) obtained from
all 6 derived from Go by inserting P-vertices in ), in
any way whatever. The same argument that was used
for M(G0, Xs) can be applied to M(GO, X,), starting
from Kqs. (188) and (190). The conclusion is the
following. To obtain M(GO, lI„) from M(GO), it is
necessary only to multiply the interactions operating
both at s and at y in Go by the same factor (178).

Returning finally to the class C of graphs obtained
by inserting P-vertices into all electron lines of GD, the
sum M(C) will be obtained as follows. Let an E-vertex
be defined as a vertex at which electron lines are
incident. At every E-vertex of Go there are incident
exactly two electron lines, internal or external, in each
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of which P-vertices may be independently inserted.
Therefore, M(C) is derived from M(GO) by multiplying
every interaction operating at every E-vertex of Go by
the factor

where Xg is a numerical coefficient depending on Xo,

which becomes formally identical with E& as Xo tends
to zero. Therefore, the contribution (154) to Je is
changed into

Z2, (Xe). (191) —iX~. (195)

This completes the discussion of the eBects of P-
vertices.

To summarize the results, it has been shown that all
the e6ects of P-vertices are exactly taken into account,
if the P-vertices themselves are dropped and the
interactions operating at all other E-vertices are
multiplied by (191).

There are three types of E-vertex in Go, namely,
ordinary vertices at which H„operates, S-vertices at
which II'„operates, and Ã-vertices. Consider first the
effect of the multiplying factor (191) at an ordinary
vertex y. By Eqs. (157) and (160), the term of order d
in (191) will precisely cancel the divergent term (132)
arising from the insertion of vertex parts with (4+1)
vertices into Go at y. The cancellation is to be made
step by step, first the term d=2 in (191) canceling the
term d=2 in Eq. (132), next the terms d=4 canceling,
and so on. In this way it is clear that each vertex part
is freed from its internal divergences before its own
contribution to Eq. (132) is canceled. Therefore, it was
correct to calculate Le in Eq. (132) assuming the
internal divergences to have been previously removed.

Next consider the eBect of the multiplying factor
(191) at an X-vertex. By Eq. (158), the interaction
operating at ~V-vertices is thereby changed into

L1—Z2, (ko)]Li)(x') = —Q Ed[e&g(t t')]"LD(x'). (—192)

I.et 8' be any ~V-vertex in Go at which the term of order
ei in Eq. (192) is operating. Then the factor contributed
by W to M(C) is

Set (t„+iZ„)—y„im], —(193)

which now replaces Eq. (163). The multiplying factor
(191) does not change the contribution (150) to M(C)
arising from ordinary proper electron self-energy parts
1V'; in fact, the effects of (191) were exactly used up in
canceling the internal vertex-part divergences from
each W' before Eq. (150) was calculated. The contri-
butions (150) and (193) are both correct after the
multiplication by (191), and are to be added together
as they stand in calculating M(C) Therefore, t.he term
in E& in Eq. (156) is precisely canceled by the contri-
bution from E-vertices.

Finally, consider the effect of (191) at an S-vertex.
By Eqs. (23), (25), and (152), the interaction at S-
vertices is changed into

Z2g(X p) 8gmc'PP—(x')

= —Q Xefeig(t t')]"mc'tP|P(x'—), (194)

The term (iKem) in Eq. (156) is, however, not changed

by the multiplication by (191), since this term arose
from ordinary self-energy parts in the same way as the
other term in Eq. (151) which was discussed previously.
The total etfect of the multiplication by (191) is thus
to replace Eq. (156) by

im(A. e—Xe). (196)

If, at the end of the calculation of M, the auxiliary
mass Xo is put equal to zero, then (196) vanishes.
Unfortunately, putting Xo equal to zero will introduce
infrared divergences into the convergent integrals Ip"
and Jy~. The best solution of this difhculty is to insert
a small photon mass ) 0 into the formalism from the
very beginning, so that the self-energy bm(Xe) appears
already in Eq. (13).Then, according to Eqs. (152) and
(194), Ke and Xe are equal, and (196) vanishes without
creating infrared divergences anywhere.

All the divergent terms (132) and (156) are now
eliminated from M. This completes the proof, which
has occupied Secs. IV—X, that the operator A„,(p) is
divergence-free.

XI. NOTE ON MATTER-FIELD OPERATORS

Hitherto, attention has been concentrated exclusively
on the electromagnetic potentials A„,(p). This was
done not because the A„,(p) are in themselves of any
special importance, but because they served as a
concrete example to illustrate the technique of carrying
through the renormalization program in the inter-
mediate representation. The methods which have been
developed in Secs. IV—X can be applied with only
minor changes to the analysis of any intermediate
representation operators. The most important applica-
tion of these methods will be to the hamiltonian
operator H'(t) of the intermediate representation,
defined in Eqs. (6) and (7) of RM. The detailed dis-
cussion of H'(t) will be published in a separate paper.
Here only the results of the renormalization program
applied to the matter-field operators f,(p),j„,(p) will
be described.

The graphs which contribute to the normal con-
stituents of f,(p) are similar to those contributing to
A„,(p), except that a single electron line, instead of a
single photon line, is incident at the special vertex x.
The whole analysis of Secs. IV to X applies unchanged to
P,(p), except that in Sec. X the vertex x appears as an
additional E-vertex at which the multiplying factor
(178) will occur. At x there are no vertex part diver-
gences to compensate Eq. (178). Moreover, at x the
two times t and t' in Eq. (178) are equal, and by Eq.
(17) the factor (178) reduces to the numerical constant
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Z2&(LI,O), which becomes Z2& when )ie is put equal to
zero. Hence, one obtains the result that the operator
iP, (P) is a divergence-free expression multiplied by the
renormalization factor Zi&. The same is true of iP, (P).

The graphs contributing to j„,(P) have the property
that two electron lines are incident at x. In this case
the analysis of Secs. IX—X applies without change, for
x behaves like an ordinary E-vertex at which vertex
part divergences cancel the multiplying factor (178).
However, the cancellation of Sec. VIII fails for the
divergences produced by a proper photon self-energy
part lV one of whose end-vertices is x. The divergence
(113) arising from W is not removed by any compen-
sating terms (116), (117), (118). In the intermediate
represents, tion operator j„,(p), the divergences (113)
occur in a rather complicated way. This operator is in
general not made finite by renormalization.

However, in the special case of the Heisenberg
representation, g(i) = 1 and all the I'; tend to zero. The
Heisenberg charge-current operator j„(x) is defined in

the Gupta formalism by

j„(x)= ieicili(x) y„ili(x) (197)

XII. THE TRANSITION TO HEISENBERG
OPERATORS. CONCLUDING REMARKS

The transition from the intermediate to the Heisen-

berg representation is to be made by letting the function

g(t)—+1. To define the limiting process precisely, it is
convenient to replace g(/) by g(t/T), where 2' is a
parameter, and then let T~~. The derivatives g' and
g" in Eqs. (29) and (30) tend uniformly to zero as

In j„(P), the divergence (113) arising from a photon
self-energy part 8' incident at x takes the form

Ii)c= cB(p'fi ——p p ) (198)

In A„(p), the photon line incident at x contributes a
factor (p') ', and the remaining factor is what remains
of L(1/c)j„(P)] after all the divergences (198) are re-
moved. Also, the divergences (198) in j„(P) multiply
an expression which is identical with L

—cA„(p)].
Therefore, altogether, using Eq. (26), one obtains

(1/c)j,(P) =P'A. (P)-LE2I" "](P'4 -P.P )A. (P)

= P'A. (P) f(P'4 -P.P )—A.(P) (»9)

This shows that j„(P) is divergence-free except for the
single constant f appearing in Eq. (199). The above
derivation of Eq. (199) confirms the consistency of the
renormalization method because Eq. (199) is identical
with the field-equation for A„obtained from the
lagrangian (3). When the supplementary condition

(P„A„(P)=0) is imposed, Eq. (199) becomes

(1/c)j.(P) =ZiP'A. (P), (200)

so that j„(P) is a divergence-free expression multiplied

by the constant Zi= (ei/e)'.

T +~—. The interaction H, (x, x') defined by Kq. (28)
tends uniformly to Pr(x') given by Eq. (11).Therefore,
the transformation operator (35) becomes in the limit
identical with Eq. (6) of HO. I, the operator leading
from the interaction representation to the Heisenberg
representation. Heisenberg operators are limiting cases
of intermediate representation operators; this is the
exact meaning of the remarks made in Sec. IV of
HO. I concerning the relation of Eq. (32) to Kq. (33).
The limiting process introduces no difhculties into the
formal separation and cancellation of divergences, since
all the divergent coeHScients are constants independent
of g(t). However, it is important to inquire, under
what conditions the convergent expressions remaining
after renormalization will tend to well-defined limits as
g(t)~1, independent of the precise way in which the
limiting process is performed. Only when such condi-
tions are satisfied will it be permissible to represent
Heisenberg operators by power-series in the interaction
hamiltonian, as it is done in HO. I.

When g(t) is a function which is equal to 1 at all
recent times t and tends to zero only in the remote
past, the intermediate representation operators are
equivalent to the Heisenberg operators defined for a
theory in which the charge ei rises adiabatically from
the value zero in the remote past to its actual value at
the present time. The power-series expansions of
Heisenberg operators in HO. I are by definition the
limits of the expansions of Heisenberg operators with
the adiabatically varying e&, supposing the limits to
exist as the rate of variation of ei is made infinitely
slow. The whole discussion of Heisenberg operators has
a meaning only when these limits exist. Physically
speaking, the limits will exist only if the actual state of
the system can be deduced from the state of the system
existing in the remote past before the adiabatic switch-
ing-on of e& was begun, independently of the details of
the switching-on process. That is to say, the state of
the system must be such that at some time in the past
only separate free particles existed; then, each free
particle can be considered to have been independently
formed from an equivalent "bare" particle when e& was
switched on. The switching-on process must be finished

before the separate free particles converge and interact
and give rise to the actual state of the system. The
state of the system in the remote past must be free
from any groups of particles bound together into stable
composite structures by the radiation interaction.

The definition of Heisenberg operators as limits of
intermediate representation operators, or the equivalent
definition by a limiting process involving the adiabatic
switching on of e&, will thus be meaningful only under
the following conditions. Tracing the history of the
system back into the past, the radiation interaction
must have operated only a finite number of times as a
true interaction between diferent particles; further

back than this, the system was in a dissociated state
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where the radiation interaction produced only the
self-fields of individual free particles.

From the last statement of the condition for the
validity of the limiting process there follows an inter-
esting consequence. In the power series expansions of
Heisenberg operators, after the cancellation of diver-
gences due to renormalization eftects, the terms of
order e~" represent the processes in which the radiation
interaction has operated as a true interaction n times
during the whole previous history of the system. If the
radiation interaction has operated in this way only a
finite number of times, then the terms of very high
order in e& will make a negligible contribution to the
operators. That is to say, the series expansions of
Heisenberg operators, after renormalization, will them-
selves be convergent power series. And conversely, if
the previous history of the system involves bound
states, so that the radiation interaction has operated
an infinite number of times, then the power series wiB
not converge.

The convergence of the power series after renormal-
ization has in no case yet been mathematically proved.
The above physical argument only makes it plausible
that, under the restricted conditions in which the
definition of the series expansions of Heisenberg oper-
ators by a limiting process is meaningful, the series
will always converge.

It needs to be stressed that the conditions under
which the series expansions of Heisenberg operators
can be defined are very restrictive. In almost all
physical situations, bound states of some kind are
involved either actually or virtually, and the expansions

are either meaningless or misleading. The same remarks
apply a fortiori to the series expansion of the S-matrix,
which requires the absence of bound states not only in
the past but also in the future. Just for this reason,
the intermediate representation extends the technique
of renormalization to a wide range of problems which
could not be satisfactorily treated before. '

In the power series expansions of intermediate
representation operators after renormalization, the
terms of order e~" represent processes in which the
radiation interaction has operated as a true interaction
n times during the finite interval of time in which g(t)
is appreciable. It is plausible, but not proved, that the
total probability of such processes will tend to zero
rapidly as e tends to infinity, in all circumstances,
whether bound states are involved in the system or not.
Thus, not only does the use of the intermediate repre-
sentation overcome the restrictions on the definability
of the series expansions of the 5-matrix and of Heisen-
berg operators, but also it may be hoped with some
confidence that intermediate representation operators
have power series expansions which are always con-
vergent after renormalization.

' Another method of treating radiation problems has recently
been published by E. C. G. Stueckelberg, Phys. Rev. 81, 130
(1951), which is similar in its basic idea to the intermediate
representation method. Both methods begin by replacing the
customary integration over an infinite time-interval by an inte-
gration over a finite time-interval. But the two methods are so
dissimilar in their subsequent development that a direct com-
parison between them is hardly possible. See also E. C. G.
Stueckelberg and T. A. Green, Helv. Phys. Acta 24, 153 (1951).~ A clear discussion of the limitations of the old series expansion
methods is given by B. Ferretti, Nuovo cimento 8, 108 (1951).


