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Fic. 1. intensity KIs altitude curves obtained with 7.5 cm and 18.0 cm
Pb interposed in the counter train. The asterisks represent points obtained
in a B-29 aircraft and atop Mt. Evans (see reference 3).

Erratum: Resistivity and Hall Constant
of Semiconductors
f Phys. Rev. 82, 109 (1951)]

CARL N. KLAHR
8'estinghouse Research Laboratories, Bast Pittsburgh, Pennsyleania

' "N a recent letter with the above title several misprints oc-
- ~ curred. The denominator in Eq. (2) should be squared. The
Rnec value for y=&=0 should be 3151'/S12, in agreement with
the value computed for this special case by Johnson and Lark-
Horovitz. ' The symbol e should be used only for the electron or
hole energy; other e's should really be &'s to be consistent with the
notation of Fig. 1.

2 V. A. Johnson and K. Lark-Horovitz, Purdue University Semiconductor
Research, Sixth Quarterly Report, Signal Corps Project 112B-1 (un-
published), p. 6.

those for larger thicknesses only by applying the customary but
nevertheless unsatisfactory normalization procedure to the data
obtained by others. A direct measurement was subsequently un-
dertaken, and a detailed investigation of the factors involved in
the standardization between two different counter trains was
conducted. '

The results are plotted in Fig. 1. Details regarding the quad-
ruple-coincidence counter-train utilized in these experiments,
ground counting rates, etc. , are given in reference 3 under the
designation Apparatus B.The dashed curve represents the average
of data obtained with a different counter train designated Ap-
paratus A. The normalization of the data is accomplished by the
application of the geometrical factors @g/pg {Table V, reference 3)
to the counting rates obtained with Apparatus A. Direct veri-
6cation of the validity of this normalization was obtained by
simultaneous operation of the two instruments at sea level, at
mountain altitude, and in 8-29 aircraft. the appropriate value of

p in a cos&8 zenith angle distribution law was determined as a
function of altitude from experimental data. '

VAereas the earlier comparison based upon the usual arbi-
trary normalization at sea level had indicated an absorption in
18 cm of Pb amounting to 40 percent near the "top of the at.-
mosphere, " the present results show that actually 29 percent of
the primary particles are stopped in the sense defined above. A
comparison of our data with those of Schein and Allen on the
basis of a reasonable normalization procedure' is not inconsistent
with this conclusion.

It is interest. ing to note the relative e8ects of (a) the 120 g/cm'
Pb shield interposed in the counter train at the ceiling altitude
and (b) an equivalent mass of superposed atmosphere, alter-
natively added to the initial 85 g/cm' of interposed Pb. The de-
crease in the observed particle intensity in case (a} is practically
the same as that in case {b).This is indeed a striking consequence
of a conspiracy of circumstances. Both meson decay and energy-
loss considerations make the equivalent atmospheric path a con-
siderably more eR'ective stopping layer. On the other hand, owing
to the multiple production of secondaries, geometrical considera-
tions favor the air path from the point of view of the enhancement
of the detectable particle intensity. Penetrating secondaries pro-
duced within a narrow cone by an incident primary particle are
not detected individually in case {a), whereas they can be re-
corded in case {b).Furthermore, charged secondaries arising from
neutral nucleons, which of course constitute a significant frac-
tion of the primary cosmic-ray particles, cannot actuate the
counter train in case (a), whereas they are observable in case (b).
It is remarkable that in such a complex situation, the various
competing processes provide almost exact compensation.

*Assisted by the joint program of the ONR and AEC.
I M. A. Pomerantz, Phys. Rev. 75, 69 (1949).
2 M. A. Pomerantz, Phys. Rev. 77, 830 (1950), and subsequent as yet

unpublished results.' M. A. Pomerantz, Phys. Rev. 75, 1721 (1949).' M. A. Pomerantz, Phys. Rev. 75, 1335 (1949).

50-

40-
0
30-

20 =

32

E&3~4)
-E2O

E,

10— ~Koo

0 I I I I I I I I I I

.I .2 .3 4.5 6 .7 .8 .9 l.0
E

Flc. 1. Energy levels for n =1.Levels are labeled with the
quantum numbers l, m of the undistorted nucleus.

Energy Levels of a Spheroidal Nuclear Well
SARAH GRANGER AND R. D. SPENCE

Department of Physics, Michigan Slate College, East Lansing, Michigan
(Received May 31, 1951)

ECENTLY Rainwater' has proposed a nuclear model in
which the odd nucleon moves in a potential well of uni-

form depth and oblate spheroidal shape. It is proposed that such
a model may explain certain large quadrupole moments. Using
a perturbation method Feenberg and Hamrnack' have calculated
the displacement of the nuclear energy levels produced by small
spheroidal distortions of the potential well.

In the present note we present the results of calculations of
somewhat larger distortions than those contemplated by Feen-
berg and Hammack. Although we have used the proper spheroidal
wave functions, our calculation fails to be completely rigorous
because we have used the boundary conditions of an in6nitely
deep well. The results of the calculations are shown in Figs. 1
and 2, where we plot the energy in the dimensionless units (kao)&

against the eccentricity e. Here k is the wave number and ao is
the radius of the undistorted well ~ The eccentricity ~ is here de-
fined as e=(a' —b')&/a, where a and b are the semi-axes of the
spheroid. One should note that this differs from the quantity
e=(a—b)/ao de6ned by Rainwater. The curves are labeled with
the quantum numbers l, m belonging to the undistorted nucleus.
For e&0.1 the results agree with the perturbation calculations of
Feenberg and Hammack.

In the future we hope to improve our calculations by using the
exact boundary conditions, and to examine the dependence of the
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Singular Potentials and the Theory of the
EBective Range

KEITH A. BRUEcKNER AND FRANcIs Low
The Institute for Advanced Study, Princeton, ¹m Jersey

(Received May 28, 1951)

&HE theory of the eRective range as developed by Schwinger'
and Bethe' has been applied successfully to the analysis of

low energy nucleon-nucleon scattering. In particular, f'or neutron-
proton scattering, the phase shift and energy are related by the
simple approximate expression,

k cotB= —1/a+ ~rpk', (1)
where a is the scattering length and rp is the eRective range. Since
the experimental results determine only the two parameters a and
rp, it is possible to determine only general properties of the nu-
cleon-nucleon potentials. It has been shown that for low energies
(less than 10 Mev} the depth and range of any nonsingular short
range potential such as the square, Yukawa, gaussian, or exponen-
tial wells can be adjusted to give satisfactory values for these
constants.

The singular potentials of meson theory, however, have not
been investigated for consistency with the eRective range concept.
Pseudoscalar meson theory, which gives qualitatively correct
descriptions of many other mesonic phenomena, predicts singular
nuclear forces. The nucleon-nucleon potentials given by this
theory have the property, at least in the weak and strong coupling
limits, that between the meson and nucleon Compton wave-
lengths the variation with the nucleon-nucleon separation is given

by e "'/r', and, for large r, by e "'/r, where p, is the meson mass.
Although we cannot rely in detail on the predictions of per-
turbation methods applied to pseudoscalar theory, it seems prob-
able that the singular nature of the forces is correct, at least for
distances larger than A/Mc where relativistic eRects are not pre-
dominant. We shall, therefore, investigate a potential having
only the general features of singularity inside the meson Compton
wavelength and g, Yqkawa tail outside in order to determine the

quadrupole moment on e. The authors wish to thank Dr. C.
Kikuchi for his interest; in the present work.

' J. Rainwater, Phys. Rev. 79, 432 (1950).
~ E. Feenberg and K. C. Hammack, Phys. Rev. 81, 285 (1951).

d u/dr'—-M(E~+ V)u, (4)

which goes asymptotically as exp( —ar), Ez is the magnitude of
the deuteron binding energy, and a =MEg. For potentials of
the form which we are considering, we cannot obtain closed solu-
tions of Eq. (4). We therefore have used a combination of approxi-
mation methods and numerical integration to obtain a solution.

We note that u(r} satisfies the integral equation,

u(r) =exp( —ar) — sinha(r' —r) /a V(r') u(r') d'r'.
r

We have calculated the first Born approximation to this expres-
sion )replacing u(r') by exp( —ar') j to give the amplitude, and the
second Born approximation for the first derivative. These approxi-
mations are valid down to 1.4(k/pc) for the strongest potentials
which we have considered. For smaller r, the integration was
carried out numerically, working directly with Eq. (4). Because
of the somewhat tedious nature of this work, we have investi-
gated only a very limited choice of the potential for r less than
h/Mc. The results for the eRective range are given in Table I.
We see that for attractive or zero forces and for 8 equal to zero or

TABLE I. E6ective range in units of 10 ~3 cm. V' is the potential
strength for r less than AiMc =0.21(10) ~' cm. The parameter B is defined
in Eq. (2).

V' =V(agric)
V' =0
VI +~

B 0

&0.80
&0.80

1.11

(0.80
0.80
1.38

possibility of fitting the binding energy and eRective range of the
neutron-proton triplet system.

We choose as an example,

V(r) = Vpt; ""PB/(pr)+1/Qr)'j for r greater than It/Mc, (2)

where 8 is zero or one, so that the 1/r' force predominates inside
the range of the forces. y, is taken to be the m--meson mass (275
electron masses} since it is dificult to see how the intrinsic range
(5/pc) of the potential can be greater than that determined by the
mass of the lightest strongly coupled particle, although it cer-
tainly may be less.

We shall allow an arbitrariness in the potential for distances
less than the nucleon Compton wavelength. Because the nucleons
are highly relativistic in this region, we can say nothing about the
forces without a solution of the relativistic two-body problem,
which has not yet been obtained; in fact, the concept of force
becomes fairly meaningless in this range. In addition, the exist-
ence of heavy mesons' or of the strongly coupled "V-particles"
of Anderson4 will aRect the interaction at small distances. We
therefore shall consider the eRects of modifications of the forces'
in this range; the three potential strengths for r less than 5/Mc
which we have investigated are given in column 1 of Table I.

As a further comment on the validity of the theory of the
effective range for relativistic problems in general, it can easily
be shown that the expression for the eRective range for the rela-
tivistic one-body problem at low energies is identical with the
nonrelativistic expression if the nonrelativistic solutions are re-
placed by the large components of the relativistic solutions. It
must be strongly emphasized that this result does not apply to
the two-body problem and only shows that nothing goes wrong
with the method in the one-body case. This is in keeping with the
spirit of our investigation, which is primarily an attempt to see if
one can rule out singular potentials on the basis of low energy
scattering experiments.

Calculation of the effective range. —The eRective range is given
by the expression, '

,'r 0 f /—exp——( 2ar) —u' jd'r, —

where u is the solution of the Schrodinger equation for the ground
state of the deuteron,


