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The Relativistic Theory of Electro-Magneto-Ionic Waves

V. A. BAILEv
School of Physics, University of Sydney, Sydney, Accstralie

(Received February 19, 1951)

The relativistic equations governing an ionized gas pervaded by
static electric and magnetic fields and the corresponding equations
for small perturbations, are derived. The equations for plane per-
turbations are then obtained and several important cases are
developed in detail. Frequency bands in which growing wave-
modes occur are also determined.

By means of certain rules of transformation the theory is also
used to study the plane waves which can occur in interpenetrating
double streams of electrons. The results obtained are formally
similar to those obtained for waves in an ionized gas.

In the absence of static magnetic Gelds and with the eGects of
collisions neglected it is found that, in either an ionized gas or in
interpenetrating double streams of electrons, certain waves propa-
gated obliquely to the drift motions may both grow and possess
Poynting Quxes; these Quxes are such that certain, initial dis-

turbances can lead to the escape of amplified electromagnetic
energy from an ionized medium.

The exchange of momentum and energy, between the streams
of electrons and ions and the growing waves, is discussed by means
of the momentum-energy tensors of the charged particles and of
the electromagnetic field.

The results of the relativistic theory are then used to discuss
brieQy the problem of the origin of cosmic noise and of "isolated
bursts" and "outbursts" of solar noise. It is concluded that both
theory and observation lend support to the hypothesis suggested
previously that a notable part of cosmic noise and strong solar
noise originates as electro-magneto-ionic waves in magnetized
ionized regions. It would then follow that such regions occur in our
Galaxy and in the Great Nebula in Andromeda. It is suggested
that all "point sources" of cosmic noise be examined for at least
transient traces of the Zeeman effect and an excess of elliptically
polarized noise.

I. INTRODUCTION

N the original publications' ' on plane waves in an
- - ionized gas pervaded by static electric and magnetic
6elds the equations of motion of the electrons and
positive ions were taken in their classical, nonrela-
tivistic forms. The resulting nonrelativistic theory was
found to offer a simple explanation of the spontaneous
generation of strong high frequency noise in discharge
tubes subjected to magnetic 6elds and in sunspots.

In order to examine the generation of solar noise
under the conditions envisaged by Giovanelli, in which

the electrons attain drift velocities approaching that of
light, it became necessary to develop the theory in a
relativistic form. ' 4 The need for this development is
reinforced by the fact, independently pointed out by
7Valker, 4 that in the absence of magnetic 6elds and
electron temperatures the nonrelativistic theory may
incorrectly lead to certain wave ampli6cation.

In the present paper this development is carried out
in d.etail for an ionized gas in which the effects of
gradients of partial pressures are neglected. This covers
many 6elds of application. The relativistic consideration
of the effects of partial pressure gradients is not straight-
forward and for this reason will be postponed. to another
occasion.

In order to make the theory also easily available for
the discussion of plane waves in interpenetrating double
streams of electrons the ratio of the static (or mean)
densities Xand X' of the electrons and ions, respectively,
is taken as having any value.

The principal symbols used are de6ned in the fol-

lowing Table of Notation.
' V. A. Bailey, J. and Proc. Roy. Soc. N. S. %. 82, 107 (1948).
~ V. A. Bailey, Australian J. Sci. Res. Al, 351 (1948).' U. A. Bailey, Phys. Rev. 78, 428 (1950).
4 V. A. Bailey, Phys. Rev. 77, 418 (1950);L. R. %a1ker, Phys.

Rev. 76, 1721 (1949).

TABLE OP NOTATION

=(1-V'/")-~, P'=(1- V"/")-~.
charge on an electron= —4.80&(10 'P esu.
total electromagnetic Geld tensor.
variable part of the electromagnetic field tensor.
static magnetic field.
= e/mpc, k'= —e/mp'c.
four-vector of wave number and wave frequency.
=co/ic.
collision frequencies of an electron and positive ion,

respectively.
rest masses of an electron and positive ion, respec-

tively.
number-densities, in their proper frames, of the elec-

trons and positive ions, respectively.
variable parts of these number-densities.
=m p/4m¹'.
=4~¹'/mp.
=p 'U l or Vip+a) or co—VgL.
= —lg —auV/c'.
four-vector of total current-density and charge

density.
variable part of S;.
=N'/S.
velocity four-vectors of electrons and ions, respec-

tively.
variable parts of U; and U, respectively.
the components of electron drift velocity.
drift velocities of electrons and ions, respectively.
four-vectors defined under (9).
=p R —pp~ —ip rpR.
=PR(~+Pp') —ipr&.
=c'l;l; or c'(lP+/P) —aP or c'I.'—H.
angular wave frequency.
angular gyro-frequency vectors of an electron and ion,

respectively i.e., H( —e/pmpe) and H( —e/p'mp'c).
indices running through the values 1, 2, 3, 4.
d indices the summation convention is understood.

ymbols indicate static, or mean, values.

p
e
p"
f~
H
k
l'
l4

vp, rp

mp, mp

x, g'

n, n'
P
PO

R
S
S;

IIs) Ns

Vg, V2, V3

V, V'

W;, 8'
X
F
z

i, j, k

For repeate
Bars over s
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The theory is based on the following laws of physics:

I. Maxwell's laws of the electromagnetic 6eld.
II. The conservation of electrons and of positive ions.
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BF4&/Bx; = (4&r/c) S;, (A)

BF&4/Bx~+ BF4;/Bx&+ BF &/Bxp 0. —— (8)

From these equations we easily deduce the equation,

BS,/Bx;=0, (c)
and Eq. (2) given below. But (C) expresses the con-
servation of electric charge which is also a consequence
of the conservation laws under II. In order to avoid
this redundancy we have adopted the Eqs. (1) to (4)
as a joint formulation of the laws under I and II which

is sufhcient for our present purposes. For the study of
problems involving initially prescribed conditions or
boundary conditions it may be necessary to have
recourse also to Eqs. (A) and (3).

The effects of collisions between charged particles of
opposite signs are here neglected.

II. THE FUNDAMENTAL EQUATIONS

The fundamental equations of the electromagnetic
field F;;and of conservation and motion of the two kinds
of charged particles involved are as follows:

III. Maxwell's laws of the transfer. of momentum in
mixtures of diBerent kinds of particles.

Kith regard to I there is a choice in the formulation:
We may introduce auxiliary quantities like the vector
and scalar potentials (as in the earlier publications), or
we may do without them. The choice may be deter-
mined by the purpose in hand or merely by considera-
tions of convenience. In the present paper these poten-
tials are not used and the laws of the electromagnetic
6eld are taken in the form

S,=e(NU,—N'U ),

vpS",= kI';, U, ,

vp'5 =k'F;, U, ',

U;U;= —c'-,

UU = —c'.

(1 o)

(5.0)

(6.0)

(7.0)

(8.0)

The equations for suKciently small perturbations are
therefore as follows:—

s; =e(Nu;+ U;u N'u U—N'), —

4&r $Bs; Bs&')

c EBx; 8x;)

The indices i, j run through the values 1, 2, 3, 4.
Since U;W;=0 the fourth equation in (5) follows from
the first three and (7). It may therefore be omitted or
regarded as an alternative to (7). Similarly the fourth
equation in (6) may be omitted or regarded as an alter-
native to (8). Thus the system (1) to (8) contains
twenty independent equations in the twenty variables
S;, X, S', U;, U, F;;.

Denoting the static values (or mean values in time)
by means of bars over the symbols, and the perturba-
tions by means of lower case letters we set

N=N+n, U;= U,+u;,
iV'=N'+n', U, '= U +u, ', ~ (10)

S,=8;+s,, F;i F;,+f,;——.
The equations for the static, uniform state are

S;=e(NU, —N'U ),

44r
t

BS; BS;)

c &Bx; Bx;i

B(N U;)/Bx; =0,

B(N'U )/Bx, =0,

U,BU;/Bx,+vpW, = kF;&U, ,

U, 'BU /Bx,+vp'W =k'F;&U/,

U;U;= —c'

U U = —c'

where, in a frame of reference at rest in the gas,

U&Bn/Bx, +NBu, /Bx, =0,

U Bu'/Bx, +N'Bu&'/Bx, =0,

(3.1)

(4 1)

U, Bu;/Bx&+vpw, = kF;,u, +kU,f... (5.1)

U&'Bu&'/Bx&+vp'w''= k'F'&u&'+k'U&'f&&, (6 1)
(3)

(4)

where

(6)

(7.1)U,m, =0,

(8.1)UN =0,

w, = ( i/c)(Uu—4+ U4u;),

w =(—i/c)(U u4'+U4'u, ')
(7)

for i = 1, 2, 3, 4.
These equations may be used to study plane or

cylindrical. waves.

W;= (—i/c)(UgU4, UpU4, UpU4, c'+ U4'),
9

W, '= ( i/c) (Ul'—U4', Up'U4'& Up'U4'i c'+ U4"). I

The introduction of the term vpW; in (5) to represent,
in relativistic form, the rate of loss of momentum
through collisions with gas molecules is justified by the
discussion in Appendix I.

' Kith the summation convention for repeated indices.

III. PLANE PERTURBATIONS

We now consider perturbations of the form,

|k=2 exp(il, x,),

l, = (lg& lg& lpi l4), (l4= pp/ic)

is the four-vector of wave number and frequency, and
A is a constant.
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%e may therefore now make the following sub-
stitutions in our equations:

8/8x;=i/& , . P'= —Z/c',
where

By symmetry Eq. (6.2) must yield similarly

P'R'u, /~U—u,+B,/pup o(P——'Y'u

A—/pup' P—'Zv p'U u4'/c)+iZ&;, ~/, (20)

s; = eN
(

u;— /,uy (
—eN'( u — l,uR' ') E P'R'

Hence from (2.2) we obtain

( Z ) (/ U; l Uq-
jf„=/,u, /,u, . (—' '

.—)/„u„
&4siceNI

where
o =N'/N.

8=c'/;l;.
On setting also

Ul;=PR, U l;=P'R',
where

P=(1—V'/cP)-', P'=(1—V"/~)-',

Eqs. (2.1) to (6.1) become

Zf,,=4nic(/, s;. l,s;)—,

pRn+N/;u, =0,

p'R'I'+N'lu, ' =0,

PRu, ivp—w;= ik(F,,—u, +U,f;;),
p'R'u ivp'w—= ik'(—F;,u +U f;,)

From (1.1), (3.2) and (4.2) we now obtain

(12)

(13)
P' = —1/4s cek'N'= m p' /4s N'e'= 1/pp"

Y'= P'R'(Z+ Pp") iP—'v p'Z

A =(l,c'+p'R'U )/p'R',
(21)

as=0, (22)

where As is the determinant of the eighth order formed

by the coefEcients of (S '). This is also the equation of
dispersion. When it is satisfied the velocity components
are proportional to the cofactors of any row of 68.

The 6eld components f;; and the density variations

(15) u, u' are then given by (15), (3.2), and (4.2) respec-
tively.

Alternatively we may proceed as follows. From (7.1)
and (8.1) we obtain

B,= (l; U,' U&—P'R'U~)/PR.
(2.2)

It should be noted that in the third term in (18) the
factor vpU; can be replaced by an expression free from

(4 2) vp by using the relation (5.0) and the definition (9).
For a medium which on the average is initially

(5.2) neutral we have N' N, i.e., o =1.
The six equations in (18) and (20) which correspond

to i=i, 2, 3, together with Eqs. (7.1) and (8.1) con-
stitute a system (S„P) of eight homogeneous linear
equations in the eight velocity components u;, u . The
condition necessary for (S ') to possess a nonzero
solution is

A; = (/;c'+PRU;)/PR,

B =(l;U, U,' PRU )/P'R'. — (17)

Then substituting for U;f;;, from this last result, in

(5.2) and using (9.1) to eliminate m; we obtain after
some reduction

PYu; A, /pup —PZv p U,u—4/c iZ&,,u;—
=o(PRu,' l;U,u +B /pup')—, (18)

where

P= 1/4PrcekN =Pup/4vNe'= 1/PpP,

qb;;= —I'kI/;;,

Y=PR(Z+P p') iPv pZ. —
(19)

On multiplying both sides by U, , summing over j and

using (7.1), (7.0), and (13) we obtain

(Z/4viceN) U,f;;= PRu;+—A;/pup

o(l;U,u PRu— B /pu p—'), —

66=0, (25)

where d 6 is a determinant of the sixth order.
Equation (25) corresponds to Eq. (19) given in the

earlier publication' which was found to be of degree 12
in the quantities l; after removing irrelevant factors.
We may therefore expect Eq. (25) to be of degree 12
after removal of such factors. This is confirmed by the
discussion, in Sec. VI below, of the important case in
whjch the drift velocities, the static magnetic field and
the direction of propagation are all parallel.

A detailed comparison of the results of the present
theory with those of the earlier nonrelativistic theory~
is in general not easy to make. But in the special case
treated in Sec. VI the equations are in substantial

u4 ic '(V——gug+Vpup+Vpu ), p (23)

up'=ic '(Vg'ug'+ V '
pu+pVp'up') (24)

and so we can eliminate u4, u4' from (18) and (20).
This yields a system (S„)of six equations in uq, up, up,

N~', u2', N3' from which the equation of dispersion can
be derived in the form,
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agreement with the corresponding equations previously
given.

Another check on the theory is provided by Eq. (44)
given below, which is the form assumed by the disper-
sion equation when the motions of the positive ions are
neglected. Equation (44) agrees exactly with that ob-
tained previously' by means of a Lorentz transforma-
tion.

The present theory can also be used for the study of
plane waves in interpenetrating double streams of elec-
trons in a vacuum, with mean densities X, X', if the
following changes are made.

(1) In all the formulas down to (21) inclusive, except
as indicated under (2) below, we replace the symbols
shown in the first row of the table (26) by the symbols
in the second row

flip y k
y

S y X j S p 0$

mp, k, —S, —/', —e', —o.
(26)

(2) In the first line of (21) the expression 2848'/428K'e"

is replaced by zlo/42''8'.
(3) We set vs=vs'=0.

IV. APPROXIMATION WHEN THE MOTIONS
OF POSITIVE IONS ARE NEGLECTED

We will here consider the case when the ionic mass
~'—&~. Then in the foregoing theory we take I"—+~
and so by (20) 24,'=0.

Accordingly (18) reduces to

PYN; —A,Lsgs —iZ4L1;,24; —PZvoU, +4/c= 0. (27)

On multiplying by PRl;, summing over i and dividing
through by Z we obtain

421N1+ 422gs+ 488N8 =Oi

P1241+P2242+ P3N3

%1241+vsz42+ T8243=0i

where

csl= XS+zR408) 422= X4+zP RS08)

(38)

(39)

(40)

ns= —iP'R(S02+l201),

pl po'c'lsS/pR——+iZp '0,, —
(41)

Ps= Y Po'c'4'/PR—, Ps= izPQ„—
yl = iZP '—02, ys iZP0—1—, ys ——Y,

By (33) and (32) we have

L1ILI14N4+L4ILI4lgz= ILI14RM4/V= —PvopR N4/ zc. (37)

Hence (28) expands into

PX( Szsl+l212) zpR[L2$21N1+ (L1ILI12+L4ILI42)gs

+ ( Ll IL1I3+ L2 Il23+L4$48)gs+L2$24244 j=0.

This equation has for its coe%cients polynomials of
lower degree than those of the equation under (27) which
corresponds to i= 1 and it will therefore be taken in
place of the latter.

On taking in turn i = 2 and 3 in (27) and using (34)
we also obtain

PYgz+ (lsc'/pR) (Szsl lsgs)—
—zZ(llls 1841+4LIssgs+ ILI24N4) = Oq

PYN8 zZ($31—241+ lfl32242+ $34844) =0.

On eliminating Q4 @24 $34 from the last three equa-
tions, by means of (31) and (33), they reduce to the
following:

where
X=P'R Po' iP'voR— — (29) Z= (csLls+22L) —482

PXL8N8 iPRL, ill;,24; —PvopsR2244/c—=O, (28) where
= (—c/Proc)H=P Po (assi $31| $12),

(42)

The equation of dispersion is therefore

~=cslD1+ 482D2+ 483Ds ——0,

Dl ——Y' poscslssY/pR 2—'p'012—

This may be taken as an alternative to one of the equa-
tions under (27).

We will now take the axis Ox in the direction of elec- ~her~
tron drift and Os perpendicular to the direction of
propagation„ i.e., vie take

(43)

U2= U3=0, l3=0.

Then from (23), (13), (5.0), and (1'7) we obtain

244= N,iV/c,

R= VL1+co,

(31)

(32)

Ds Z'0102 iZY—p '03 ——p—o'c'L2YS/pR—,

Ds Z'0301+—iZQ1ps'c'lsS/——R
+i YZp '02 iZp 202poscslss/R-.

On substituting for D~, D2, D3, expanding 6 in powers
of l2 and using the relation

and so

where

As lsc'/pR, As ——0, ——

l@QIs= —SQy+ l2Q2~

S=—ll —V/4o'. c

(34)

(35)

(36)

PvoU1= zcIL114I 0 VIl 21+zcIt 24& 0 V4L 81+zcIL 34I (33) p'S'+ Lss= c—'(Z+ p'R')

we find after reduction and division by S that (43)
simpliies to

X[Y —(P2012+022+ 032)Z'1
—[ps(S02+L201)'+c—2(Z+psR')0 jZc'p 2=0 (44)
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where
ul ——D1E, us D2E, us= DsE, (46)

E=C exp(illx+ilsy+is&t) (47)

and C is an arbitrary number; but in certain cases like
that in which

l2=0, Q2 ——Q3——0,

it may be more convenient to derive these components
directly from Eqs. (38)—(40).

The components of actual velocity are evidently
»IP& us/P~ us/P

V. PROPAGATION ALONG THE AXIS Ox

It is easily verified that (44) can also be expressed in
the form:

XF'—(P'012+ D22+Qss)PRZF

+(P'SQ1—lsD2)'Zc'ps' ——0. (45)

Equations (45)s and. (44) agree exactly with Eqs.
(1a)' and (2a), respectively, given in Appendix I of the
earlier publication, ' when in these we set ~=0.

When (44) or (45) is satisfied the velocity com-
ponents are in general given by the formulas,

(32), (36), and (42):

z= —v,v+,
S=LV1'/V' csV'—/c',

P=(1 V-"/c') '
g = c21.2

(53)

Therefore X and V may retain the forms in (29) and
(19) by which they were first defined.

Further we have the transformations,

Ql = (Ql' Vl'+ Qs' Vs')/ V',

Q2= (—Ql'Vs'+ Qs'Vl')/V',

Q3= Q3'.

ul= (ul'Vl'+us'Vs')/V',

us= ( ul'V—s'+ us'V 1')/ V',

IN3=N3 .

(54)

(55)

Then (38)—(40) transform into three simila, r equations
with the primed symbols a', P', p', u' replacing n, P, p,
u, respectively, where

In the original nonrelativistic form' ' of the theory
with negligible ionic motions, the axis Ox was taken
along the direction of propagation, i.e., the small per-
turbations considered all had the form:

1 (csiV1 122V2 )/V

as'= (cs,V2'+cssV1')/V',

Pl = (P1V1 P2V2 )/V 1

/0,'3 = Ot'3)

(56)

A exp(iieet —2Lx). (48)
Ps'= (Pl Vs'+ P2V 1')/ V', Ps Psy

The corresponding relativistic form of the theory may
be derived directly from the results given here in Sec.
III by taking

4= 13=0, U3=0,

etc.

On substituting in (56) the expressions for al, css, as,
Pl, Ps, Ps, etc., given in (41), using the transformations
(49) to (55), rationalizing all expressions and dropping
all the primes we thus obtain

But a simpler method of derivation is to transform the
equations of Sec. IV by referring them to a new system
of axes E' obtained from the old system E by a right-
handed rotation about the axis Os through an angle e
such that

tan8= ls/ll.

Since (47) transforms into (48) we have

lI= —I cosH, lg= —I sm8)

where
I.' = lls+ l22,

and so

Vll ———Vl'L, Vls ——Vs'L, 0= Vs', V= V', (51)

where

&lu1+ cssus+ lssus =0,

Plul+ P2u2+ Psus

Vlui+ usus+ Ysus

csl = XSlc'+—iP'R'V2Qs,

as = XcdVs+ iP'RQ, (S,c' LV,2), —

css = 2P'R((s V—201+Sic'Qs),

Pi= vs(PRv ps'L—s,c')+2Rz—v,Q„

Ps= V1PR& poscsLV2'+iRZV, Q„—

Ps= iP'RZ(V—1Q1+ V2Q, ),

(57)

(58)

V'= (Vl'2+ Vs'2) &. (52)

Tl 2PZLD2(1 Vl /cl )+Q1V1V2/c 1)

ys=iPZ(Q1(1 V22/) cs—+Q2V1 /Vs]c,s

%e now obtain the following transformations from

'Equation {45}or {1a}was also given in Phys. Rev. 77, 419
{1950). R= ld —V1L, Sl——L—(o Vl/. cs (59)
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Similarly we can transform the equations of disper-
sion (44) and (45), respectively, into

X[Y'—O'Z' —P'c '(VgQ&+ VpQp)'Z'$

—[p'(QpS&c+ Qiop V /pc)'+ (Z+ p'R') Qp']Zpo'= 0 (60)

Lastly, from (23) and (24) we have

Q4=zc 't/'Qp) Q4'=zc 'V'Qy'. (69)

With &e help of formulas (62) to (69), Eqs. (18) and
(20) for i=1 now reduce to

Xu&/ P' R= pP p—'u, '/P"R' (70)

XY'—[Q'+P'c '(V~O~+ VpOp)'3PRZY

+[Ol(Slc ~Vp /c) OpRV2/C jp Zpo'= 0. (61)
X'u&'/p"R'= —o 'p p" ug/p'R, (71)

U f p/V I Up' ——Up' ——0, U4' ip'c——, (62)
~23= &, j"3i=~u=0,

lg —— l., lg ——lp—=0, 14=(o/ic

Then by (12), (13), (17), and (21) we have

Z= col.' coo R= pp
——Vl., R'= co—V'I., (63)

Ag —— Pc'S/R, —A, =do=0,
Bg' Pc'S'/R', ——Bp' ——Bp'= 0,

A,'= —P' 'S'/R', A '=A, '=0,
(64)

Bg P'c'S/R, ——Bp=Bp=0,

S=l.—poV/c' S'=I. ppV'/c'—
Qext from (9), (5.0), and (6.0) we obtain

E,4——vppV/kic= vp'p'V'/b'ic, Fp4= Fp4 0. (65)——
This shows that the static electric 6eld is also parallel

to Ox and, when pp, pp are not zero, also gives a relation
between the drift velocities of the electrons and positive
ions. Also by (19), (21), and (16) we now have

VI. LONGITUDINAL AND TRANSVERSE WAVES

As a further check and for its own sake we shall now
consider the special case of the theory of Sec. III in
which the drift velocities and the magnetic 6eld Iare all
parallel to the direction of propagation. For con-
venience Ox will be taken parallel to this common
drrectron.

Accordingly we have now

U, =PV, Up ——Up ——0, U4 iPc——,

X=P'R' Po' —iP'vo—R,

X'= P"R"—Pp"—iP"vp'R'
t (7)

Yup iZPQu—p= pPp'PRup',

Yu p+iZPQu p aPo'PR——up',

Y'up'+iZp'O'u '= a 'pp"p'R'up,

Y'u ipZp'O'up'=cr 'pp"p'R'up.

(74)

(75)

(76)

(77)

Fquations (74) to (77) specify purely transverse
waves. For small drift velocities they agree with the
equations for the same case derived from the earlier
nonrelativistic theory. '

On eliminating Q2' and Q3' from them we obtain

Equations (70) and (71) specify purely longitudinal
waves. Their equation of dispersion is

XX'—po'po" ——0,

i.e., the following quartic in L:
(R' ivoR)—(R" i vp'R—') P' 'P—p'P(R' ivoR)—

—P 'Ppo(R" —ppv'R') =0. (73)

Thus there are four longitudinal wave modes.
For small drift velocities Eqs. (70), (71), and (73)

agree with Eqs. (14), (15),and (28) of the earlier non-
relativistic theory. ' Equation (73) also then corresponds
to a differential equation given previously by Schumann. ~

When vo= vo'=0, Eq. (73) is equivalent to Eq. (137)
discussed below in Sec. VIII. From that discussion it
follows that with negligible collisions the noise fre-
quency-band for purely longitudinal waves is given by
(142).

Similarly on taking in succession the values 2 and
3 for i in Eqs. (18) and (20) we obtain

(78)

(79)

GQ2= zbQ3)

GQ3= —zbQ2)

Pk= —aP'k',

Qpp=PPQ=P'oP'O', Qpg=ggo=0,

$,4 —— PvpPV/ic= oP'vp'—P'V'/ic,

Qg4= $34= 0)

(66)

(67)

where
—eH —eH

)
0'=

PPgpc P S1p C
u' —b'=0.

i.e.,
a=&„b, (u=1, 2), where k„=(—1)" '. (81)are the gyro-frequencies of an electron and ion, respec-

tively. ' W. 0. St:humann, Z. Physik 121, 7 (1942).

a =Z '(YY' Pp'Pp"PP'RR') —ZPP'QQ', t—
(80)

b =PQY' P'O'Y—
From (78) and (79) we obtain the equation of dis-

(68)
persion,
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Then (78), (74) and (75) yield

N2=k ~us, u2 =k„~me,

which relations enable us to deduce from (15) that

h2= k„ih3.

(82)

The roots I~, 1.2 are complex when

Iel & I~I &(e'+p')'. (90)

With co taken always positive we shall now adopt the
following labels for the two sets of waves:

These formulas show that the transverse waves
consist of two sets of circularly polarized waves with

opposite senses of polarization. Also Eq. (83) is the
same as Eq. (19) in the earlier publication' which
discusses the same special case but neglects the motions
of the positive ions.

From (81) and (80) we obtain the following quartic
in I. for the equation of dispersion of each set of these
circular waves:

Z(R k„Q—imp—) (R'+k„Q' iso—')+po"R'(R kQ—iuo—)

+p02R(R'+k„Q' ivo—') =0 (8.4)

Thus there are eight circular wave modes.
For small drift velocities (84) agrees with Eq. (31)

given previously. ' When vo ——vo' ——0, its four roots may
be studied conveniently by means of the graphical
methods published jointly with Roberts. ' But when the
drift velocities are not too large the following procedure
also allows us to 6nd approximately the bands of
frequency within which two of the roots are fully
complex numbers arid so lead to growing waves.

For simplicity we shall here limit ourselves to con-
ditions in which

Zi waves when k„(Q—Q') )0;
E2 waves when k„(Q—Q') &0.

(91)

Then from (90) and (87) it follows that Li, L2 are
conjugate complex roots of (84) when the frequency lies
within the bands indicated under (92):

With Ei waves when
~

Q~ &re&a&i, (band Bi);
Wltll E2 waves when

~

Q'
~
& ru &w2, (band B2);

where

(92)

Mi, Cd2=2Lf(Q+Q')+4(pg'+po")}&&~Q —Q'~ j. (93)

We may therefore conclude that circular electro-
magnetic noise-waves of the types E~ and E2 may arise
within the respective frequency bands Bj and 82.'

On comparing this result with the corresponding one
in the earlier discussion' of circular waves, which
neglected the motions of the positive ions, we 6nd that
it diBers only in setting the lower edge of the band 82
at ~Q'~ instead of zero.

As a concrete example we consider a discharge in
helium with po/2~= 100Mc/sec and Q/2u =600 Mc/sec.
Then the band Bi lies between 600 and 616.2 Mc/sec and
the band B2 lies between 16.3 Mc/sec and 70 kc/sec.

(85)%=X' and so= vo' ——0. VII. %'AVES IN INTERPENETRATING PARALLEL
DOUBLE STREAMS OF ELECTRONS

Under these conditions when we set V= V'=0
Eq. (84) reduces to the following quadratic:

(86)(c2L2 &2) (@2 g2)+ p'&~2 0

where

8= —',(Q+ Q'), y = a& —-,'k„(Q—Q'),
(87)

p2 p 2+.p
~2

Each of the roots Lo of (86) may be taken as a first
approximation to a root of (84) when p'W8'. Then a
second approximation is derived by means of Newton's
method. In this way we obtain two roots I.~, I.2 where

(88)L„I.2 a&ip, ——

k„- —p, 2mU p.'2n'V'—
+

2c' (co—k„Q) '- (co+k„Q') -" (94)

(95)p'

c ky' —8
(89) where

po' ——4irÃe'/mo, po" ——4m+'c2/mo,

X=p'R' —p,' X'= p"R"—p
" (96)

We shall here study the situation considered in Sec.
VI when the stream of positive ions is replaced by a
second stream of electrons and collisions are neglected.

The drift velocities are now independent of each
other. Also there is a net mean space charge which
prevents these velocities from being strict constants, but
for certain applications we may in a erst approximation
take them as such or alternatively assume that this
space charge is neutralized by inert heavy positive ions.

On applying the rules of transformation, given at the
end of Sec. III, to Kqs. (70) to (84) and using primed
symbols for quantities relating to the second stream of
electrons, we obtain the following results.

There are longitudinal waves, with the electron
velocities speci6ed by

Xui/p'R= po"ui'/p"R',

X'u, '/P "R'=P(Pui/P'R,

coW k„Q or —k„Q'.

' V. A. Bailey and J. A. Roberts, Australian J. Sci. Res. A2, 307
(1949).

and with the equation of dispersion,
R2Ri2 pl 2p i2R2 p

—2p 2RI2 0—
' It is noteworthy that 81 and B2 have the same widths.

(97)
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Q'=: Q=: Qo= eH/moc. — (102)

For V= V'=0 Eq. (101) reduces to the quadratic

(L'c'—co') (a&
—k Qo)+(u(pp'+ pp") =0

which has the two roots Lp~, Lp2.
On taking Lp~ and Lpm as first approximations to two

of the roots L&, Lq of (101) and using Newton's method
we obtain the following second approximations when
co/ k&Qp .

Lg, L2 ——n&ip, (103)

k Qo(po'V+po"V')

2c'(a) —k„QO) '

po +po —1 0

c N (cd—k~Qp)

Io J. R. Pierce, J. Appl. Phys. 19, 231 (1948).
"A. V. Hae8, Phys. Rev. I4, 1532 (1948).
~ L. S. Nergaard, R. C. A. Review 9, 585 (1948).

~ (104)

For low velocities (97) approximates to the equations
of dispersion given by Pierce" and HaeG. "

Equation (97) is formally equivalent to Eq. (137)
which is discussed below in Sec. VIII. It follows from
that discussion that (97) has a pair of complex roots
when, and only when, (142) is true. This supplies a
general criterion for amplification of longitudinal waves
in a double stream of electrons. It appears to be much
simpler than the criterion published by Nergaard. "

Besides the longitudinal waves there are also cir-
cularly polarized transverse waves with the electron
velocities specified by

YNg iZ—pQua ———po"pRN2',

YNg+iZpQN2= po 'p—RNg',

YN2 —$Zp Qlm = —
pp pRQ2,

Y'N3'+iZp'O'N2'= —pp'p'R'us,
where

Y=pR(Z+ po'), Y'= p'R'(Z+ po"), (99)

PQ= P'Q'= eH/mpc. — (100)

These waves divide into two sets with their equations
of dispersion given by

Z(R k„Q)(R' —k„Q')+ po—"R'(R kQ)—
+pp'R(R' —k Q') =0, (101)

where n= 1, 2 and k„=(—1)" '.
For small drift velocities (101) formally approximates

to Eq. (31) given previously' when the collision fre-
quencies are negligible.

A complete discussion of the roots of the quartic
(101) will not be given here. It will suffice to discuss
two of these roots, on the lines given near the end of
Sec. VI, when the drift velocities V, V' are small enough
to make

E~ waves when k„Qp&0;

E2 waves when k„Qp &0.
(105)

It then follows that circular electromagnetic waves
can be amplified when the frequency lies within the
bands indicated below:

With E~ waves when
~

Qo~ (co & ruq, (band B~);
(106)

With E~ waves when 0&co(&ug, (band 82);

where
cai, co2=s([QO'+4po'+4po"]~& ~QO~). (107)

We shall now show that for small enough drift
velocities and frequencies not near the electron gyro-
frequency, the following approximate equivalence holds
true between the present circular waves and those con-
sidered under Sec. VI:

The growing waves in a double stream of electrons
which correspond to a given magnetic field, a given
total charge-density Q and a given total electron current-
density J are approximately like the growing circular
waves in a single stream of electrons with the same mag-
netic field, charge density Q and current density J when
associated with an equal number of infinitely heavy
positive ions.

For the formulas (104) can be expressed in the forms,

4np4meJ
)

2mpc'(&g —k.Qp)
'

4seQ

c ma~(~ —k Qo)

~ (104.1)

Also with infinitely heavy ions the second term ig the
expression for n under (89) vanishes,

kapo'QV= k Qo4seJ/tno,

and in the expression for P we now have

P'/(g' 8') =4s eQ/m—pa)(ca k„Q0)—
Thus with infinitely heavy ions the formulas (89) also
assume the forms (104.1).

Furthermore, the statements (91)and (92) now reduce
to the statements (105) and (106), respectively, and
lastly (93) now reduces to a result equivalent to (107)."
This completes the proof of equivalence.

VIII. MAGNETIC FIELD ABSENT AND
COLLISIONS NEGLIGIBLE

In this section we consider the drift and vibratory
motions of both the electrons and the ions.

13For in (107) pp+p0'2 is proportional to the total electron
density.

The roots L~, L2 are complex when

0 (cd —k&QD(d (po +pp

Ke may now always take & as positive and label the
two sets of waves as follows:
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Since Hb=0 and the sects of the collisions are
neglected we here use Eqs. (18) and (20) with all the
terms in p;;, vt) and v(l' omitted. Also for convenience
we now choose a frame of reference in which V' is
parallel to V.

For convenience we will introduce new symbols s, s',
t, t', S", X, X' defined as follows:

loup —P—R—s, louo' —— P'R—'s',
(108)

W = U;U = c'PP—'(1 VV—'/c') (109)

X=p'R' —p,' X'=p"R"—pp". (110)

The physical meanings of s and s' are provided by
Eqs. (3.2) and (4.2) which show that

s=n/g, s'= u'/g'.

The last set have the following equation of dispersion:

uu' —bb'=0,

i.e., by (117) and (119)

XX'(PP'Z+P+P')+X jX'
—W'c 'Z+2Wc 'PRP'R'=0. (125)

From (109) we have

W'/c'= 1+P'P" (V V—')'/c"

and so (125) reduces to

(XX' po'p—o")(Z+ po'+ po") =po'po"p'P"Q (126)

where

Q =Z(V —V')'/c' —(R—R')'+ (V'R —VR')'/c' (127.)
From (12) and (13) we obtain

Then (18) becomes

PYu,+ (l,c'+ PRU~) s

=ajPRu +l;t (l;W—PRU )s—'}. (112)

Z/c'= lP+ lop+ lo'+l, '
R= lgVg+loVo+loVo+14ic,

R'=lgVg'+loVo'+loVo'+lose.

(128)

On multiplying (112) by l;, summing over i
dividing through by Z we obtain

t =8's' —o 'c'I'Xs.

and
If 8 is the angle between the direction of phase

propagation and the common direction of the drift
(113) velocities and if

By symmetry (or from (20)) we have

t'= 8's—o.c'I"X's'. (114) then by (128)

L'= l '+l '+lop (129)

Again on multiplying (112) by U, ' and summing over
i we obtain

g= c212 M2

R= —LV cosa+a,
R'= —I.V' cos8+ ~.

i (130)
PYt' (PRW+ P—'R'c') s

= p'I P'R't+ —(P'R'W+ PRco)s'}. (115)

On substituting in (115) the expressions for l and l'
under (113) and (114) we obtain

R(as+ bs') =0

On using (130) we hand from (127) that

Q= L'(V—V')' sin'tt.

Hence the equation of dispersion (126) reduces to
the form,

(117) (XX —po po )(Z+pp +pp )
=p op 'opop'o(Vz —Vz')oLo (131)

where
a =P(WZ c'PRP'R'), —
b= —acoP'( PZX' +P"R")

By symmetry we must also have

R'(a's'+ b's) =0

a'= P'(WZ c'PRP'R'), —
b'= a'c'P(P'ZX+ /PRo). —

where V~, Vz
' are the components of the drift velocities

(118) transverse to the direction of propagation. This is an
irreducible sextic in I..

Another set of solutions of the simultaneous equations
(116) and (118) is given by

R=O,
R'=0,

and a set of waves for which

cs+bs'=0,
a's'+b's= 0.

(121)

(122)

(123)

(124)

When
nWO, n'/0 (120)

then (116) and (118) yield two waves with dispersion
equations,

s=o, s'=0,

n=o, n'=O.

Here we have, by (113) and (114),

t=o, t'=0,

and so by (112) and by symmetry we obtain

PYu, =~PRu,
P'Y'u,' = o 'P'R'u;.

(132)

(133)

(134)
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~+po'+ po" =0 (135)

%e thus 6nd that there are twelve diferent wave
modes; four corresponding to (121) and (122), two to
(135), and six corresponding to (131).Of these only the
last six include growing waves.

In the special case when propagation is along the
direction of drift motions (131)reduces to the equations,

&&'—po'po" =0, (131.1)

Hence the equation of dispersion for this set ls

PYP'Y' —PRP'R'= 0,

which is equivalent to another pair of equations like
(121) and (122) and the equation,

i.e., by (130),
p

—
2p 2 pi —2p I2

+ =1,
(V,L—a))' (V,'L—a&)'

(137)

where
Vy= V cosH, VI = V cosH, (138)

i.e., Vi, VI are the components of the drift velocities in
the direction of propagation.

AVhen we set

L= pop(vg -' V' —')z+ —'cy(vg '+Vg' ') (139)

Eq. (137) assumes the form,

g2
(140)

~+po'+ po"=0. (131 2) where

%e shall now consider the growing waves more fully.
These correspond to fully complex roots L of Eq. (131)
and to solutions of Eqs. (123) and (124).

For propagation in the direction of drift motions the
only fully complex roots are those which satisfy (131.1),
i.e., (73). The corresponding waves are purely longi-
tudinal and have no associated Poynting Qux.

For propagation perpendicular to the drift motions
we have from (130)

E=E = Gg

and. then (131) is found to yield only real or pure
imaginary roots, i.e., there are then no growing @aves.

For waves propagated oMique/y to the drift motions
it will be shown that all the non-real roots of (131)are
now fodly complex and that the corresponding growing
waves possess transverse magnetic vectors and therefore
also Poynting fluxes.

For any specified, numerical values of pp p, ', V, V'

and H the frequency-bands in which growing waves
can occur can be determined immediately from the
curve representing the equation (131) when the co-or-
dinates are taken as x= co, y= L. To draw this curve we

may conveniently use the graphical method published
previously' in which the given equation is expressed in
the form,

A =
i 2po V2'/~ p(vi —V2') i,

8=
I
2po'V2/pop'(Vi' Vi) I— (141)

Equation (140) is discussed in Appendix II. It is
there shown that when A and 8 are positive numbers
then (140) has two real and two complex roots or four
real roots according as

A &+8&~~2&.

We thus conclude that L has a pair of (conjugate)
complex values when, and only when,

(p 'ppv2') t'p' 'pp'Vil

, /+i
Ev,—v, ') E v, —v, '&

For Vi ——c/10, V2' ———c/100, pp' ——p,/10, (142) yields
co (0.257pp.

This agrees well with the (co, L) curve given for this
case in Fig. 4 of the paper by Bailey and Roberts.

As shown in Appendix II the two real roots s can be
obtained by means of a simple geometrical procedure
and the two complex roots can then easily be derived
from the real ones. The complex roots Li are then given

by (139).
The roots L2 of Eq. (131.2) are complex when, and

only when,

f((ap, p) =0, «(po'+ po")' (143)

R'R"—p' 'p "R'—p 'p 'R"=0 (136)

where o=L/p2, and values of op2 corresponding to
selected real values of 0 are determined. In the present
instance this equation is a quadratic in cd and so pairs
of values of or and L are easily determined.

For a general discussion it is, however, necessary to
proceed by successive approximations such as the
following. "

%'hen Vp and Vp' are small, 6rst approximations to
the roots of (131)are given by the roots L& of the quartic
(131.1) and the roots Lo of the quadratic (131.2).

When developed in full by means of (110)Eq. (131.1)
becomes

and then they are given by

~oc
—1(p 2+p

i2 ~2) $ (144)

where
f(L)—=F(L)G(L)—hI.'=0,

F(I)—R2Ri2 Pi—2p &2R2 P
—2p 2Ri2

G(L) =L'—L22

h=P P Po'2P"pCo'(V V')'Sm28. —

(145)

(146)

Taking LI and L2 as erst approximations to the roots
of (131) we now proceed to determine the second ap-
proximations L'.

First we write (131) in the form,
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f(Lg) = hL—P

f(Lo) = hL—oo,

f'(L,)=F'(L,)G(L,)—2hLg,

f'(Lo) =F(Lo)G'(Lo) —2hLo.

Therefore the second approximations are

L~' ——Lg I1+hL3/F'(Lg)(Ljo —Lop) },
Lo'=Lo{1+h/2F(Lo) }.

(147)

Then eliminating s' by means of (123) yields

fr=A,;P
where

A;;=bV,;+oaV;,
f= si/kPbG

(157)

(158)

(159)

We will now choose Ox in the direction of propagation
and Os perpendicular to the drift motions. Then

/g= —L, /o= lo= 0, /4= (u/ic,

Vl qV1) V2 qV2) V3 V3
Since for oblique propagation h/0 it follows that in

the bands of frequencies specified by (142) and (143)
L~' and L2', respectively, have two fully complex values.

The imaginary part of L2' approximates to L2 and
the real part approximates to

—~ohLo Imf 1/F(L,) },

where q is some constant

Z= C2L2—aP )

E= a)—V1L,

8'= m —Vj'L,

(161)

1.e.)

where
(PZ+1)vp+ Vos= avo'+ aVp's', (148)

which is of the second. order of smallness in V and V'.
Ke thus see that wave noise can arise in the two

(overlapping) bands through propagation obliquely to
the drift motions, i.e., from small initial random per-
turbations in planes oblique to these motions.

We now proceed to determine the components f;; of
the 6eld of these waves and the resulting Poynting Qux.

From (112) we obtain

PV(/e; —/ms)+(/ U;—/, U,)PRs

=a[PR(l,pI„' /,e )+(l;U—,' l;U/)PRs'7—,

0, l1U2, 0,
—l U„0, 0,

lgU4 —/4Uj

—l4U2

0, 0, 0, 0
—/iU4+/4Ug, /4Uo, 0, 0

and V; I is expressed by a similar matrix.
Hence by (158)

A;;=A;3= A3, =0,
A 12— A 21=/1(bUo+aaU2 )

A/4 A4$ /f(bU4+aaU4') 4(bUJ—+aaUJ ),
A „=—A4o —— /4(bU—o+aaUo')

psg' = ls%g —lyons)

I I Ie;, =la; —lm;,

V" =l.U) —l U

~ (149)
h=(0, 0, Ago)$,

e= (iAq4, iAo4, 0)g.
1, (,6,)

It then follows from (157) that the components of
the electromagnetic Geld are given by

By symmetry we must also have

vo+ V;;s= o(P'Z+1)v; +aV;,'s'

From (150) and (148) we obtain

Pe" -oP e;;I

(150)

(151)

Gvo= —pp'V;;s+opp'V, s',

Gv; = pp"V, s'+o 'pp"—V;;s,

G= Z+po'+ po"

(152)

ikPGf;;= V—;;s aV, s'— (156)

Also in the notation of (149) Eq. (15) now becomes

[on using (108)7

ikPZfg=v;, +Ves —ave' aV, s'. (—155)—
On eliminating vg and v; by means of (152) and

(153) this yields

Thus the magnetic vector is transverse to the plane
containing the directions of the propagation and drift
motions and the electric vector lies in this plane. In
general the electric vector has components along and
transverse to the direction of propagation.

The mean Poynting vector (P) also lies in the same
plane and has the components,

(Pi) = (c/8v) Re(ifo4fu*), (Po) = (c/8or) Re(—ifqof~o*),

o

1.e.)

(P~&= (~/8~) Re(L) lb//V+aaP'V'I'»n'81 pl', (163)

(Po)= [(c'/8or) (Ll' Re f(bP+aaP')(bPV+aaP'V')*} sin8

—(a&/Sor)Re(L) 1
bPV+aaP'V'1' sin8 cos871$1'. (164)

Since L is a root of the irreducible sextic (131) the
quartic polynomials,

bPV+aaP'V' and bP+aaP',
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cannot in general vanish. Hence for HWO both (Pi)
and (Pm) have nonzero values.

We thus arrive at the conclusion that gromeg Poyntieg
/exes can arise from waves propagated obliquely to the
drift motions.

These waves are plane polarized with the electric
vector in the plane containing the directions of propa-
gation and drift and with the magnetic vector per-
pendicular to this plane.

For a disturbance which arises initially at a plane
(@=constant) 6xed to a frame of reference which is at
rest in the medium as a whole we find from (147) and
(163) that the Poynting Quxes, of these oblique growing
waves, along the direction of the electron drift com-
ponent V~ are always negative. But for a disturbance
which arises initially at a plane fixed in a frame which
moves against the electron drift at least as fast as the
positive ions (i.e., a frame in which Vi)0, Vi &~0)
the Poynting flux for the growing I.~' wave-mode is
positive. We may also describe such an initial dis-
turbance as one which moves against both streams of
charged particles.

%'e shall now derive the following interesting com-
plement to the formula (142).

For assigned real values of the wave number J./2s
below a certain value the dispersion Eq. (137) yields a
pair of conjugate complex values of the frequency co.

The physical interpretation of this result is that one of
the corresponding waves grows in time.

By means of the substitution,

co= pz+q,
where

p=21-(Vi —Vi') C= zL(Vi+ Vi'),

Eq. (137) reduces to (140) with

~= I2po/PI(Vi Vi')
I

~= I2po'/O'J(Vi Vi')
I ~

Hence ro has a pair of (conjugate) complex values
when, and only when,

, I+I(Vi—V,'] ( V,—V,')

For Vi=c/10, Vi'= —c/100, po'=pa/10, this yields
cl.&12.15po, in good agreement with the (&a, 1.) curve
in Pig. 4 of the paper by Bailey and Roberts. s

For waves in interpenetrating double streams of
electrons with no static magnetic field present the
theory is formally similar to that developed in the
present section with r replaced by —r. It follows that
in such double streams growing Poynting cruxes can
arise from waves propagated obliquely to the streams.
For a disturbance which arises initially at a plane
(x= constant) 6xed to a frame of reference which moves
against one stream at least as fast as the second stream
moves, we 6nd from (147) and (163) that for a growing
I.j' wave mode the Poynting Qux along the direction of
the drift components V~ and Vi' is positive. Also within

a certain band wave numbers which grow in time can
occur.

IX. SUMMARY AND GENERAL DISCUSSION

The results obtained may now be summarized as
follows.

In Sec. II the general equations for the uniform
medium and the equations for small perturbations are
derived. By an appropriate choice of the system of
co-ordinates these may be used to study plane or
cylindrical perturbations.

Section III contains the general dispersion equation
and other equations which govern plane perturbations.
In general there are twelve wave modes.

Sections IV and V are concerned with the approxi-
mation in which the motions of the positive ions are
negligible, i.e., for wave frequencies which are not too
low. The resulting dispersion Eq. (4) agrees exactly
with that previously obtained by means of an entirely
diBerent method.

In Sec. VI is discussed the special case of the theory
of Sec. III in which the drift velocities of the electrons
and positive ions and the static magnetic field are all
parallel to the direction of propagation. It is found that
the possibIe wave modes are four purely longitudinal
and eight purely transverse and circularly polarized
modes. Their dispersion and other equations agree sub-
stantially with those previously obtained by means of
the nonrelativistic theory. The bands of frequency in
which growing circularly polarized waves (e.g. , circular
noise-waves) can occur are determined approximately.

In Sec. VII the theory of Sec. III is used to study the
analogous waves in interpenetrating parallel double
streams of electrons with a parallel static magnetic
field present. The results obtained are formally similar
to those given under Sec. VI. It is also found that with
small drift velocities and frequencies not near the elec-
tron gyro-frequency, the growing circularly polarized
waves which correspond to a given total charge-density

Q and a given total current-density J are approximately
like the growing circular waves in a single stream of elec-
trons with the same densities Q and J when associated
with an equal number of infinitely heavy positive ions.

In Sec. VIII the theory of Sec. III is discussed in the
special case in which there is no static magnetic field
and the e6'ects of collisions are negligible. It is found
that there are twelve di8erent wave modes. Of these
only the six which correspond to the dispersion Eq.
(131) include growing wave modes. For waves propa-
gated obl~gehy to the drift motions there are two such
growing modes. The corresponding frequency bands in
which they occur are given approximately by (142) and
(143). It is also found that these growing oblique wave-
modes have associated Poynting fiuxes. The com-
ponents of these Quxes along the direction of the electron
stream are negative when they arise initially from a
disturbance at a plane (@=constant) at rest in the
medium as a whole. But when the plane of this dis-
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turbance moves against the electron stream at least as
fast as the positive ions, one of these Buxes is positive.
Lastly it is shown that these growing wave modes are
plane polarized with the electric vector in the plane
containing the directions of propagation and drift.
Similarly„ in double streams of electrons growing
Poynting Quxes can arise from waves propagated
obliquely to the streams. %hen the initial disturbance
occurs in a plane which moves against one stream at
least as fast as the second stream moves, the Qux in the
direction of the drift components Vj and V~ is positive
for the growing L~' wave mode.

%'e may now consider brieQy the source of energy
of the growing waves. As was pointed out or implied in
earlier publications" the momentum and energy in the
growing waves are necessarily derived from the static
current in the medium, i.e., from the momentum and
energy corresponding to the drift motions of the elec-
trons and ions. In order to see in more detail how the
latter are in part transformed into momentum and
energy of growing waves (of the charged particles and
of the field) we may here use the well-known relativistic
equations, derivable from the fundamental equations in
Secs. I and II with so= vo'=0, which express the prin-
ciples of conservation of momentum and energy by the
vanishing of the divergence of a tensor T;;. This tensor
is given by

T@=3E;,+E;,,
where M;, is the sum of the momentum energy tensors
of the two kinds of moving charged particles and E;; is
the momentum energy tensor of the electromagnetic
Geld.

Each of these tensors consists of a part independent
of the perturbations and a part depending on them.
Hence we may set

T(,= T~,+t~&)

where only t;; depends on the perturbations.
On taking Ox along the direction of propagation and

averaging over time the divergence equation yields

8(T,g+t, g)/Bx=O, (i=1, 2, 3, 4). (166)

The first of Eqs. (166) is, in effect, the same as Eq.
(i2) in the publication on circular waves' when the
collisions and gradients of electron partial pressure are
neglected. It implies that a growing wave acts on the
total momentum of the streams with a mean force
which opposes this momentum. This provides a criterion
for the direction in which such a wave does actually
grow.

Consistently with this the fourth of Eqs. (166) shows
that when a wave of a given frequency arises which
grows in the direction of Ox, i.e., when the component
along Ox of the total mean Qux —ict4~ of wave-energy,
of the electrons, ions and the Geld, increases in the direc-
tion Ox, then the component along Ox of the total Qux
—icE~~ of drift energy of the electrons and ions de-

creases in the direction Ox by the same amount per
unit length. "

%ith very heavy ions their contributions to the
momentum and energy exchanges may be neglected and
we may then conclude that the wave will grow in the
direction of the component along Ox of the drift motion
of the electrons.

This last result entails a revision of that part of the
recent discussion3 of the growth of circularly polarized
waves in a sunspot, which is concerned with E~ waves.
It is now clear that, like the E2 waves, the E~ waves
also must grow in the direction of the electron drift
motion. "But unlike the others the E~ waves cannot
escape into free space since their associated Poynting
Quxes are directed inwards. As a result the Sec, 5 of
that paper requires correcting by deleting all references
to escaping theoretical E~ waves and expunging their
frequency bands from the Fig. 4.

The E~ waves were there related to the extraordinary
waves in the magneto-ionic theory. In order therefore
to explain the cited report of Ryle and Vonberg that
extraordinary solar waves can be occasionally observed
it is necessary to study the growth and escape of waves
which are propagated obliquely to the sunspot axis. A
preliminary investigation shows that such extraordinary
waves can arise from E2 waves as a result of the change
in their polarization in passing through a region in
which po(1 —V&) ' is equal to a&, the wave frequency.
It is hoped to publish this investigation of oblique
propagation in due course.

%e shall now brieQy consider the application of the
E.M.I. theory to the problem of the origin of cosmic
noise and solar "isolated bursts" and "outbursts" of
of noise, all of which published hitherto have been found
to be randomly polarized, "

First it should be noted that no current method of
observation can distinguish between noise which is a
mixture of plane waves with their planes of polarization
scattered completely at random and noise which is a
mixture of elliptically polarized waves with their senses
of rotation scattered completely at random.

The theory shows that elliptical waves can arise only
from an ionized medium in which a magnetic Geld is
present. Such a medium will be referred to as a magnetic
source. So when elliptic (e.g., circular) waves are ob-
served (such as solar noise from sunspots) they provide
unimpeachable evidence that they come from or pass
through a magnetic source. But randomly polarized
waves cannot by themselves alone serve to distinguish

"Since t;1 is of the second order in the perturbations, it follows
that f;1 and therefore 8, U, etc., differ from constants only by
quantities of the second order. Hence in Eqs. (1.0) to (9.1) of
Sec. II, the quantities 8', U, etc. may be taken as constants
without introducing errors of the same order as the perturbations.

"As I have learned from Mr. J. A. Roberts, this fact was first
pointed out by Dr. Twiss in a colloquium address given by
him in August last at the University of Cambridge.

'6 The use by some authors of the term "unpolarized" for such
noise is theoretically incorrect and very apt to be misleading in
regard to the problem of the origin of this noise.
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between magnetic and nonmagnetic sources of noise.
These waves can be attributed to magnetic sources only
through observations by means of highly directional
aerial systems (e.g. , radio interferometers) and observa-
tion of the Zeeman eGect. It follows that the recorded
observations of cosmic noise (and of some solar bursts
and outbursts) do not by their random polarization
alone indicate whether they come from magnetic or non-

magnetic sources.
As indicated by the results of Sec. VIII, which are

summarized above, the relativistic theory of K.M.I.
waves provides one explicit example and perhaps a
second example of nonmagnetic sources of noise in

which certain waves can grow and escape. These are,

respectively:

(i) A stream of electrons moving relatively to the positive ions
and an initial disturbance in a plane moving against this stream
as fast as or faster than the ions;

(ii) Two streams of electrons and an initial disturbance in a
plane moving against both streams. This example is as yet uncer-
tain since the exchanges of momentum and energy between the
growing waves and the streams have not yet been fully inves-

tigated. The situation is like that envisaged by HaefP' for solar
noise but here the waves are propagated obliquely to the drifts.

From both sources the escaping waves would be
plane polarized but if the streams in a source change
their direction much, and at random within distances
that cannot be resolved by extant receiving aerial
systems, these waves would appear to be randomly
polarized. In these nonmagnetic sources the electrons
and ions need not possess appreciable temperatures. If
they did have suf5cient temperatures then, according
to the earlier nonrelativistic theory additional modes

of growing waves could arise; but whether these waves
can escape requires further investigation.

In magnetic sources there can arise additional modes
of growing waves of which at least one can escape.
These are in general elliptically polarized. An example
of the escaping mode is the E2 wave referred to above.
If the magnetic 6eld in a source changes its direction

much, and at random within distances that cannot be
resolved by the receiving system these modes would be
observed as randomly polarized waves.

It thus appears theoretically that magnetic sources

are more efkctive than the others. This conclusion is

amply coo6rmed by numerous laboratory experiments,

in the University of Sydney and elsewhere, with dis-

charge tubes or electron tu,bes subjected to magnetic
fields, "and by the fact that strong solar noise is most

frequently associated with sun-spot activity and usually

comes from the neighborhood of sun spots (or from

"V. A. Bailey and K. Landecker, Nature 166, 259 (1950);
P. C. Thonemann and R. B.King, Nature 158, 414 (1946);J. D.
Cobine and C. J. Gallagher, Phys. Rev. 79, 112 (1946); W. T.
Ruthberg, Phys. Rev. 70, 112 (1946); J. Denisse and J. L.
Steinberg, Compt. rend. 224, 646 {1947);E. Astrom, Trans.
Roy. Inst. Techn. Stockholm 22, 70 (1948); D. Sohm, Division 1
in the National Nuclear Energy Series (Mcoraw-Hill Book
Company Inc., New York, 1949), Chapter 1, Vol. 5.

places where sunspots were observed one solar month

earlier).
All these facts lend support to the hypothesis, sug-

gested in the original publication" on E.M.I. waves,
that a notable part of cosmic noise and strong solar
noise commonly originates in magnetic sources. This is
consistent with the view of Pawsey and his collabo-
rators' that cosmic noise and strong solar noise may
be due to similar processes, but it allows some room for
nonmagnetic sources.

From this hypothesis it would follow that our Galaxy
and the Great Nebula in Andromeda (M31)20 probably
contain a large number of strongly magnetized ionized

regions. This is consistent with the known existence of
magnetic stars and with the view, now becoming current,
that turbulence in ionized media can set up local mag-
netic 6elds. Visible and invisible magnetic stars could
be magnetic sources of cosmic noise, but it does not
follow that known magnetic stars are suQiciently strong
sources for observation of their noise by current
methods. Also it is an interesting question whether most
"point sources" (radio stars) are magnetic and other
sources are nonmagnetic.

All these considerations suggest that it would be
worth while for astronomers to examine carefully the
neighborhood of all visible "point-sources" of cosmic
noise for traces of the Zeeman eGect and all point-
sources (including solar ones) for traces of an excess of
elliptically polarized noise. Even transient traces would

be worth seeking. "
I wish to acknowledge with thanks the help with this

work which I have received from Messrs. R. F.Mullaly,
W. Moriarty, and J.W. Dungey through their checking
of the calculations and criticisms. Discussions, by cor-
respondence, with Mr. J. A. Roberts and discussions

with Mr. Dungey have also been valuable in regard to
the question of escape of Ej and other waves.

The assistance of Messrs. Mullaly, Moriarty, and

Dungey has been made possible by Australian Com-

monwealth Research Grants.

APPENDIX I

The relativistic equation of motion for a mean charged particle
moving in a gas does not appear to have been published before.
It will therefore be derived here.

H V is the velocity of the particle of mass mo, Vg the velocity of
the gas and moL the mean rate of loss of momentum of the particle
through its collisions with gas molecules then from Maxwell's

equations of transfer of momentum we have

L= v(V —V~), (1a)

where v is a positive constant which depends on the nature of the
collisions and on the number-density of the molecules. On account
of its dimensions v may be called the collision frequency.

' V. A. Bailey, Nature 161, 599 (1948).
'9 Pawsey, Payne-Scott, and McCready, Nature 157, 158 (1946}.
'~ R. H. Brown and C. Hazard, Nature 166, 901 {1950).
"Since this paragraph was written, Dr. Pawsey has called my

attention to the recent observation by Payne-Scott and Little
of transient traces of circularly polarized solar noise immediately
following "outbursts. "
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(4a)

In the present theory the frequency of collisions between the
particle and oppositely charged particles is taken, as negligible by
comparison with V. Also all the velocity-distribution functions
will be taken as constant.

The four-vectors of velocity of the particle and gas, in any
inertial frame of reference S, will be denoted by U; and Ug,
respectively.

We shall now search for a four-vector I which is such that the
relativistic equation of motion of the particle is

U;8U;/Bx;+L. =kF;; U; (2a)

and also such that the nonrelativistic Eq. (1a} approximately
specifies its space components L1, L2, L3.

In {2a) F;; is a skew-symmetrical tensor and for U; we have

U;V;= —c'. (3a)

On multiplying (2a) by V; and summing over ti we obtain

V;L,=O.

Pro. 1. Repre-
sentation of the
four-vectors V;,
Vg, , and L;.

Also we necessarily require

L;I„=g, (5a)

where
tana= Vp/ic, cosn= Pp, sinat = PpV p/ic,

(6a)
Pp= {1-Vp'/c')».

If the line PQ is drawn perpendicular to OP then by (6a}

PQ= Vp, OQ= pp '3c. (&a)

where p is an invariant.
Without loss of generality we may now take the x1 axis of our

inertial frame of reference S parallel to the relative velocity
V—V, of the particle and the gas. This will help us to determine

p in a simple manner.
The relations (3a), (4a) and (5a) are conveniently illustrated

by the Fig. 1 in which the four-vectors V;,V„and L; are repre-
sented by vectors OP„OG and OR in the x1x4 plane of the frame S.

The vectors V; and V„have the same length ic and are inclined
to the x4 axis at the angles 8 and H„respectively. On account of the
relations (4a} and (5a) the vector L; is perpendicular to V; and
has the length p. Since also I has the sign of V—Vg we must have
the vector L; inclined at the angle 8+m/2 to the x4 axis.

The angle a between the vectors V; and U„. is clearly also an
invariant with respect to any frame S. To determine if we take
the frame Sg which is at rest in the gas. Then if Vp is the velocity
of the particle in this frame we must have U;Vg, =—Ppc2. (13a)

By means of (13a) it is easily verified that the expression (9a}
or (11a) for L; satisfies the relations (4a) and (5a) as is required.
It also clearly yields a space vector L(L1, L2, L3) which agrees
with that specified approximately by (1a).

On account of (10a) and (13a) Eq. (11a) may be written as

L;= vpW; (14a)

the collision frequency v associated with each velocity four-vector
is that for the proper frame of the corresponding particle.

If we now rotate the frame S about its x4 axis through an arbi-
trary angle, the relations (9a} and (11a) remain unaltered and U;,
U„have the general forms,

V;=(U1, U2, U3 U4} Ug'=(Ug1 Ug2 Ug3 U,4) (12a)

with U4 and U,4 the same as before rotation.
Thus

V12+ V22+ V32 —V2 Vg12+ Vg22+ Vg32 —Vg2

Also, since a is unaltered, we have

OP'OQ coscx= U (Pp 1U„),

with summation over i, and so by (7a) and (6a)

In the frame S„which moves with the particle we have V, = —Vp

and so the relation (1a}yields

where
W; = —c~U„.U;V;—U„. (15a}

L,=.„(—V,)=;V,.
Also in this frame L; lies along the x1 axis, i.e., L1=@.Hence

p= vvVo. (Sa}

The line QP is, by {7a) and {Sa),of length p/v„and is parallel
to L;. Therefore QP represents the vector L;/VV. Similarly OQ
represents the vector Pp 'Ug;.

We therefore have the vectorial relation

L'= vv(U' —Po 'Ug'). (9a)

Also since the number of collisions VCh made by the particle in
the time Ch must be an invariant and dt/P is also invariant we have

vv= pv= ppvp~

where
a=(2- V'/")-»

(10a)

and vp is the collision frequency in the frame S,.
Then (9a) may be written in the symmetrical form,

L; =)„V;—vpVg, . (11a)

This or (9a) may now be taken as the exact relativistic equiva-
lent. to the relation (la). It wig be noted that in the form (12a)

In the frame S, at rest in the gas we have therefore

W;=(—s%){U4U1, U4U2, U4U3 c +U4)
which is identical with the expression for W; in Eq. (9) of Sec. II.

Equation (2a) then becomes the dynamical Eq. (5) adopted in
Sec. III with S, as the frame of reference.

In a general frame S the fundamental Kqs. (1) to (8) remain
valid provided that in (5) and {6) W; is expressed by (15a) given
above. Then (9.1) is replaced by w;= —c Vg;{g';e;+U;u;), etc.
The derived equations for the perturbations are then modified
only through the terms involving vp and vp'.

Hence, when these terms are neglected the perturbation equa-
tions obtained in Secs. II and III are valid in any frame of
reference.

In the present discussion it is assumed for simplicity that the
collision frequencies vp, vp are independent of the drift velocities.
This is correct only when the mean random motions of the par-
ticles are large compared with the drift motions. But with all
applications in which the effects of the collisions are small this
assumption will not lead to any serious error. When the mean
random motions are not large compared with the drift motions
the exact effects of collisions can be calculated only by means of
more complicated methods which vill not bg consiQqr|*, d here,
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FH:. 2. Graph
of Eq. (18a).

APPENDIX II

The quartic equation,

A'/(z —1)'+B'/(z+1)'= 1 (16a)

with A and B given positive numbers, is satis6ed by the sub-
stitution,

z—1=A sec8, z+1=Bcosec8, (17a)

where 8 is a root of
A sec8—B cosec8+2=0. (18a)

If A and B are taken as the coordinates of a point P in the

(g, q) plane shown in Fig. 2, then for any given value of 8 Eq.
(18a) represents a straight line QRP inclined at the angle 8 to the
(-axis and with the following intercepts on the axes:

OQ= —2 cos8, OR=2 sin8.

The intercept QR, of this line by the axes, is therefore of con-
stant length 2.

If C is the midpoint of QR then, by (17a), the corresponding
value of the root z is given by

z= CP. (19a)

Also it is easily proved that the envelope of the line (18a) is
the four-cusped hypocycloid~

(20a)

which is a closed curve symmetrical about 0.
A real tangent to this curve from the point P(A, B) necessarily

has its angle of inclination 8 equal to one of the real roots of (18a)
and its intercept by the axes equal to 2.

Since there are two or four such real tangents according as
P(A, B) is outside or inside the curve, it follows that Eq. (16a)
has two real and two complex roots or four real roots according as

A &+B&~(2&. (21a)

The real roots can be determined easily by drawing through the
given point P(A, B) all the lines which have their intercepts QR
by the axes equal to 2.

When two complex roots z3, z4 occur they can be determined as
follows by means of the known real roots z~, z~.

On expressing (16a) as a polynomial equation we see that

zg+zg+zg+z4 =0, zgz~az4= 1-A' —B'.
It then follows that

(22a)
where

x= —$(z&+z&), y=f(1—A~ —B')z& 'z& '—x j&. (23a)

~ See for example J. Edwards, Digerential Calculus (The Mac-
millan Company, New York, 1912), p. 301.


