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Radio Wave Generation by Multistresm Charge Interaction
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The excitation of plasma oscillations in traveling beams is reviewed; analytic and graphical methods are
employed to ascertain the ranges of parameters over which wave growth may exist and to determine
contours of constant amplification factor. The effect of thermal velocities is taken into account by utilizing
approximations to a maxwellian distribution. It is found that the possibility of growth exists even for beam
injection velocities much smaller than the mean thermal motion in the region; narrow band widths are
encountered under these circumstances. Possible applications to solar phenomena are indicated.

An investigation of the effect of the initiating disturbance upon the frequency band generated leads to
the conclusion that where the possibility of growth in time exists, a spatial description of initial conditions
gives rise to a broader band than does a temporal prescription. This is illustrated in specific cases.

Previously suggested mechanisms for the conversion of these longitudinal oscillations into transverse
electromagnetic energy are considered quantitatively and found to be inadequate. A more promising
mechanism is suggested.

I. INTRODUCTION

HE possibility of accounting for much of the
abnormal radio noise received from the sun on the

basis of conversion of the kinetic energy of ejected
prominence material into electromagnetic radiation has
led several workers' to consider the excitation of plasma
oscillations by moving charged particles. The results
obtained thus far have been mainly for the case of one
or two uniform homogeneous beams, and even here
some errors appear to have been committed;" while
these results serve to indicate the nature of the pro-
cesses, their application to the solar atmosphere, in
which thermal velocities are of the order of most
injected beam velocities, or greater than them, has been
questioned. ' It is the purpose of this paper to re-examine
and extend the two-beam case and to discuss the modi-
fications introduced by appropriate models of thermal
motion. The mechanisms available for the conversion
of these longitudinal type oscillations into radiation
fields are also investigated.

For the sake of completeness, we summarize below
a simple derivation of the three-dimensional dispersion
equation for a composite discrete and continuous elec-
tron velocity spectrum. We shall assume the absence of
any static fields, and neglect the motion of the positive
lons.

II. THE DISPERSION EQUATION

Let there be r interpenetrating streams of electrons
of densities %pi, . , Ep„,Ep„Per unit volume, and
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National Bureau of Standards.
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"See Sec. III.
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traveling with uniform velocities Up&, . , Up& ' ' Up„,
let there also be Sp electrons with a continuous velocity
distribution dip in the range dUp at Up. The first-order
perturbation of the steady-state quantities are denoted
by lower case letters.

The oscillating current density is, then, for a discrete
stream

E= vp 8A—/at; —8= v&&A,

where the potentials satisfy the equations:

vV (&/~') ~V/~t'—= t/pp;—
V'A (1/c') O'Jt/Bt p=——ppi.

(2)

We seek solutions in which the space-time variation of
the first-order perturbations is of the form exp( —F r
+j cot). Then the equation of motion, '

(Bti,/Bt)+(Up, v)up+vup=(e/m)[E+vXB), (4)
'The third term on the left-hand side of Eq. (4) refers to the

loss of directed momentum as a result of collisions with heavy
particles. Electron-electron collisions are already taken into
account on a hydrodynamic basis by the scalar potential. If U~
is considered the average velocity, then v may be shown to be
exactly the number of collisions made by an electron per second,
provided the momentum after a collision bears no relation to that
prior to the collision. I E.V. Appleton and F. W. Chapman, Proc.
Phys. Soc. (London) 44, 246 (1932).g Since the density Quctuations
arise from corresponding velocity variations, it sufBces to take ac-
count of collisions at this point alone, at least when the collision time
is much longer than the oscillation period. This formulation may be
employed in general only for intrabeam collisions where the zero
component of velocity is the same for both particles involved, since
only the oscillatory component of momentum is presumed de-
stroyed at each collision; for interbeam collisions, an electron will
generally be thrown completely out of the region of velocity space
occupied by its former beam, so that the zeroth-order quantities
would be affected. The perturbation methods of the small signal

and for the continuous stream

di= e(udXp+Updm) (1a)

to first order, where e is the electronic charge. We derive
the fields from scalar and vector potentials through the
familiar relations:
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assumes the form,

Finally, we must satisfy the continuity condition

(Bp/Bt)+7 i=0,

which becomes with the aid of Eq. (1)

(v+joo —r Uo, )u, (joo—r Up, )po, =No, r.u,
.

A+U &(FXg)j (5) for a discrete beam, and

(joo r—Up)dro=dNpr u (6b)

for the continuous stream. If one makes use of Eqs. (1),
(6) (3), and (6), Eq. (5) takes the form,

(r Up, —ja)—v)u, +
~
I

~

'+ co'/c'

oog ug p d(Mp )u 1rr p + ~'
——(j~+lJ„F—rU„)

-~j~—P Uo, a jCO —g Uo C2

Ur q t. f
Ur.

X P ~') I+. Iu*+ 'd(~p')I 1+ lu =0, (7)
joo —r Up, ( jr' —r Up,

(q=1 r, as well as all points in the continuous dis-
tribution), where co, = (Np 8 /oprrt), cop = (Npc /oprrp) and
the scalar products are to be taken with the first vector
following the dot.

In general, the dispersion relation for the system of r
discrete beams may be obtained only by employing the
determinantal condition for a nontrivial solution of the
expanded 3r simul. taneous homogeneous equations
equivalent to Eq. (7). Introduction of the continuous
distribution would lead to an infinite determinant.

On physical grounds it is evident that stream-wave
interaction leading to the possibility of wave growth
requires a near match between beam and wave velocities.
Since the particle speeds contemplated are much less
than the speed of light, it is assumed that I'~co/Upp
)&co/c. With this assumption, the magnetic force terms
may be neglected; taking the dot product of the

remainder of Eq. (7) with F, summing over q and
integrating over the continuous distribution, one obtains
for the dispersion equation,

Mq
2

~ (co+jr Uop)(op+jr lJo,—jv)

d(~p')+t =1, (g)
(op+jr Uo)(op+jr. Up —jv)

which differs slightly in form from the Eq. (11) derived

by Bohm and Gross' probably because of the difkrent
methods of averaging employed in the two cases. The
physical result, however, can be shown to be the same,
viz. , that electronic collisions damp the wave by a factor
1/e in the time 1/v. These collisions, together with
second-order saturation eGects, set a limit to the am-
plitude of any growing wave which may arise. In addi-
tion, the maintenance of the oscillations in the presence
of collisional damping is dependent upon a supply of
directed, or mechanical-type, energy. This requires a
departure from thermal equilibrium in the velocity
distribution of the plasmas.

FIG. 1. Graphical determination of real propagation constants,
and of regions in which wave ampli6cation can occur, for the two-
beam case.

theory are then no longer applicable. An exception exists for a
thermal distribution of initIal beam velocities, where detailed
balancing may be relied upon to preserve the static momentum
distribution.

III. THE TWO-STREAM CASE

%e consider first the interaction of two discrete elec-
tron beams, moving with velocities UUOI and V02 along
the Z axis. %e will assume the initial disturbance to
occur in this same direction; if collisions are neglected,
Eq. (8) reduces to

Loo,'/(ca+ jI'U«)'j+ooP/(co+ jFUpp)'=1, (9)

where F is now the component of the propagation
vector in the z-direction. This process has been con-
sidered by Haec but his results are vitiated by the
omission ofcertain te' rms in his Eq. (19), which are of
the same order as the terms retained. 4

Before discussing the general solution of Eq. (9), we
will note several special cases of interest. For an electron
stream of velocity eo&, and plasma frequency ar& moving

4 —yb, and +yb, respectively, from the right-hand side of the
lrst and second equations.



RADIO WAVE GENERATION

into a static electron atmosphere of plasma frequency
erg, we obtain

P =j(~/»1)L1~~1/(~' —~2') I7. (1O)

Equation (10) has been considered. by Pierce' for elec-
trons moving through an ion atmosphere. Wave am-

pli6cation is possible only when co &~2. The singularity
at co=co2 may be removed by introducing cpllisional

damping.
FOr 011/U01= 012/U02, the quartiC, Eq. (9), iS reduCible

to a biquadratic. The resulting algebraic solution a6ords
an insight into the physical aspects of the process. Kith
the substitutions,

rU„rU02
01!»= n~ 01/012 =A 2 =2 =» (11)

CI O 04I 02

Eq. (9) reduces to

L&/(v+n)'7+ 1/(v+ p)'= 1, (12)

whose solution is

v= —2(n+P)~ IL2(n —P)7+1+L(n —P)'+17'I' (13)

For wave growth one must consequently have

00 +2~001&2/
~
&1 012( ~ (14)

The maximum value of the imaginary part of y in Kq.
(13) is —,', at (n —P) =V3.

To obtain the band width over which wave ampli-
6cation is possible in the general case, we utilize a
graphical solution of Eq. (9). With the substitutions

X n+ jTUol/001 y p+ jTU02/M2

there results

(1/z')+ 1/y2 = 1.

Eliminating P in Eq. (15) yields the linear relation

y = (Pr/n)z+ P(1—r), (17)

(16)

where r= Uoo/Uo1.
The real roots, corresponding to purely imaginary F,

are given by the points of intersections of Eq. (16) with

Eq. (17).A graph of the quartic is shown in Fig. 1. Any
straight line intersecting the rectangle ABCD formed

by the asymptotes will cut the quartic is only two real
points. The limit of zero amplification is reached at the
points of tangency. Figure 2 indicates the ranges of
8/0 over which the propagation constant contains a real
part, as a function of p, for representative values of
n/p. The band width reaches a minimum for either of
the beams static (8/0= &1)and increases monotonically
as matching of the two-beam velocities improves. For
r= —1, (5/0= + oo), the band width becomes zero.
These results are what we should expect on physical
grounds, as dispersion in the velocity militates against
organized motion. For the case n/P= 1, it is interesting
to note that as r increases from 0 to 1, the band width,

p, M

FIG. 2. Ranges of amplification for the two-beam case; temporal
specification of initiating disturbance. Wave growth exists in the
region to the left of a given curve.

in units of P(1—r), increases from 1 to 2v2 (OF and OE
respectively, on Fig. 1).'

Figure 3 gives contours of constant amplification
factor for the case P/n= 1. The region to the left of the

'ltf [I.O

I $ IO IR 14

FIG. 3. Contours of constant amplification for the two-beam
case, with P/a= 1. In the region to the left of the dotted lines the
phase velocity is positive. Wave growth= expt (~1/v)v2Xcontour
value)/unit length.

'HaefPs statement (reference 1) that there is amplification in
this case when the inhomogeneity factor (8/v) (co/co&) lies between
0 and V2 is not correct. The maximum allowable value for this
factor is itself a function of the beam velocities, increasing from 1
to V2 as r increases from 0 to 1.
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(iI/I&) (Io'/(oI) &v2. (21)

This result illustrates a characteristic difI'erence
between the solutions based upon the two assumptions.
As the limit on the right of Eq. (21) is no longer a
function of ii/v, this latter case gives rise to the greater
band width. Figure 4 indicates the ranges of ampli-
fication in the general case, and should be compared
with its analog, Fig. 2.

IV. AMPLIFICATION IN THE PRESENCE OF
THERMAL VELOCITIES

This is of the form (12); it has the solution,

a=(f/~~)o~ I(f&/~)'+1~L4(lb/~~)'+lj'I', (19)

where all permutations of the algebraic signs are to be
taken. The condition for wave growth (in time) is then

liI/Iog &V2; (2o)

and, since the real part of the frequency is, from Eq.
(19), Io'=lo, condition (20) may be written

Fro. 4. Ranges of ampli6cation for the two-beam case; spatial
speci6cation of initiating disturbance.
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dotted line corresponds to positive phase velocities of
the waves; to the right, these velocities are negative.
In general, low amplication is associated with large
band width, i.e., with closely matched beam velocities.
Putting 1—r=o, and solving Eqs. (16) and (17), we
obtain the real part of I' to be of order e. For the limiting
case of r = 1 (homogeneous beam), the straight line (17)
passes through the origin, a singular point of the quartic
which corresponds to a double real root. The points of
intersection, R and R', Fig. 1, give th~ well-known
solutions of wave propagation along a uniform beam.

We have thus far considered the wave frequency ro to
be real and ascertained the behavior of the wave number,
/=P/j. This procedure may be reversed to find the Io

corresponding to real /. A discussion of the physical
significance of these two viewpoints will be given in
Sec. V. For the case oI&=coo, Eq. (9) becomes:

L1/(a —lUoi/ooI) ]+1/(a —lUoo/ooI) = 1. (18)

We take as model a homogeneous beam of electron
density po„ injected with uniform velocity v, into a
plasma of density

po(Uo) = constant,
~

Uo
~

& I&o,

~
Uo~ )oo.

Equation 8 then yields

1=(~,o/(~+ jrU,)q+~oo/(~o+ ro~oo),

where
VQ

wo'= —
' po(Uo)d Uo.

PE VP

(22)

(23)

It should be noted that the integration performed to
obtain Eq. (22) is not valid if the singularity at
Uo ———co/ jI' lies on the path of integration. This
represents a breakdown of the linear approximation, as
pointed out by Bohm and Gross. ' Since the equation is
valid for complex values of I', however, it may be
employed to investigate the characteristics of all ranges
of amplification.

To reduce Eq. (22) to a form amenable to graphical
solution we make the following substitutions:

1=jP& a= oI/o&o& P= I»/Io» r= I&&/oo&

(24)
y = (I+ lI&,)/o&, x= loo/Ioo.

Then the purely imaginary solutions of F correspond
to the real points of intersection of the curve,

y' = (x' —a')/(x' —a'+ 1),

with the straight line

y=(Pri )x+0 (26)

FIG. 5. Graphical determination of zones of amplidcation in the
presence of a uniform, sharp cut-off velocity distribution.

These solutions possess validity, of course, only if the
singularity discussed above is not contained within the
integration limits of Uo. For the determination of
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complex roots, these functions may nevertheless be
considered as the analytic continuation of the expression
which describes the physical situation only for complex
I'.

Figure 5 illustrates the salient features of the con-
struction. In Fig. 6, the shaded regions indicate the
ranges over which at least one pair of complex roots
exists, i.e., over which ampli6cation of an initial dis-
turbance would take place. At large values of o,, cor-
responding to considerable mismatch between the
frequency of the disturbance and the equivalent static
plasma density, the ampli6cation region is bifurcated
into two quite narrow bands of the parameters r and P.
As o. approaches unity, these bands broaden out, uniting
into a single region at n= 1 and 6nally extending over
the entire r Pplan—e at a=0 It .is seen that ampli-
6cation is possible when the thermal velocities are
greater than the velocity of the homogeneous beam, i.e.,
for r(1.

Contours of constant growth factor for the o, = 2 case
are plotted in Fig. 7. The solid line contours belong to
solutions in which the phase velocity of the wave is in
the direction of the beam velocity e„while the dotted
contours indicate phase velocities opposite to the beam
motion. The magnitude of the wave growth is suf-
6ciently large to produce a saturated equilibrium within
a fraction of a wavelength. The amount of energy
converted into the oscillatory state can be estimated,
in the quasistatic approximation, by following the
(hyperbolic) path corresponding to proportionate de-
creases in n, and sr„ in the r—P plane, until the zero
ampli6cation contour is crossed. The validity of such
quasi-static methods is questionable in view of the rapid
rates of growth involved. It is interesting to note,
nevertheless, that only a small amount of energy con-
version would be obtained under highly mismatched
conditions (as n 10).

In Fig. 8, the arrangement of parameters is more
directly applicable to the solar problem. A situa-
tion is visualized wherein prominence material (co„v,)
erupts into the corona (ceo, so). The range of a over
which the propagation constant contains a real com-
ponent yields the approximate band width of the burst.
In view of the high temperatures prevailing in the
corona, "r" values of less than unity are to be ex-
pected. In the vicinity of 0.= 10, for r =0.1 the
band width is about 5 percent (between zero amplifica-
tion points; if reckoned between half-power points it
would of course be considerably less, the exact amount
being dependent upon the form of the initiating dis-
turbance). Narrow band widths of this order have been
obtained experimentally for many of the smaller bursts.

As the homogeneous beam velocity, e„ increases, the
zone of ampli6cation broadens and shifts to somewhat
lower frequencies. For r&1, a truncation appears, the
branches broadening and shifting to lower frequencies
as r increases. At r =5, the region of splitting has shifted
ofF the plot. These curves indicate the possibility of
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bursts at separated frequencies with no activity at inter-
mediate frequencies.

To ascertain the dependence of the foregoing results

I
I

I
I

44 I

I
I
I

I
66

I
I
I
I

I

44
I

2 I ~0

p 4J
e

PEG. 7. Contours of constant ampli6cation factor for a=2;
wave growth= exp)(co%') )(contour valuejfunit length. Wave
phase velocity is opposite in direction to injected beam motion
along the dotted contours. Group velocity is in the same direction
as phase velocity for r& j., but is oppositely directed for r &1.
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FIG. 8. Zones of ampli6cation for several values of the ratio
of injection to thermal velocities.

=J" [1 (2qrUp/&o)—+3(jr/riu)~Uos ''j—'

I
m q- jI'U,

Xexp —
I I dUo, &1, (28)
(2kT

If the mean square speed for a one-dimensional dis-
tribution, kT/ns, is denoted by VP, the equation for the
propagation constant becomes

1-[~,'/(~+jr', ) ]+(~,/~)'[1y3(jr/~)'s, 'j, (29)

to second order in I'. The nature of its roots may be
investigated by graphical means similar to those
employed previously. The quartic obtained possesses
only two branches, which lie along the y axis. As a
result, only an upper limit exists for "r"at any n and P.
These upper limit curves lie fairly close to those of Fig.
6, for corresponding values of the remaining parameters.
The addition of further terms to the expansion in Eq.
(28) does not materially acct the situation, since the
algebraic sign of aH such contributions is the same as

on the particular model assumed, it is desirable to em-

ploy an alternative functional representation of a ther-
mal velocity distribution. To this end we expand the
denominator of the integrand in Eq. (8) and take

fo(Uo) =Xo(es/2xkT) t exp[ —(m/2kT) Uo']; (2l)

then we have

p" exp[—(m/2kT) U021

(1+jTUa/o)) '

that of the I'-term and so merely shift the asymptotes
of the two branches without creating any additions.

An explanation for the lack of a lower "r" limit is to
be found in the divergence of the series expansion at
large Uo, which renders this type of approximation
invalid in this region. It is the branches along the x axis
in Fig. 5 which give rise to the lower "r" limit, and the
roots obtained by intersections with these branches
correspond to Fso/eu) 1. Consequently, agreement
would not be expected in this region. The y-branch
roots, on the other hand, yield Fg/ro & 1, which validates
the upper "r"limit results obtained from our expansion.

A rather crude but nonetheless a useful criterion for
the validity of the results obtained with a given ap-
proximation to a thermal distribution arises from the
fact that the true distribution, in the absence of any
directed beams, cannot alone produce growing oscil-
lations, since the resultant conversion of thermal energy
into directed wave energy would violate the second law
of thermodynamics. Consequently, if for any set of
parameter values a given distribution standing alone
in the dispersion equation gives rise to growing waves,
then one cannot expect the results in this range of the
parameters to be a reliable index of the behavior of a
true thermal distribution.

The uniform distribution, sharp cut-off model pre-
viously considered, for example, violates this criterion
for 0, & j., so that the results in this region are suspect.
A distribution of the form,

fo(Uo) = (&o/~) 1 o/(1'o'+ Uo')

which appears to give a good description of a thermal
distribution, yields spurious results for e& i.Physically,
the slow rate of decrease of the number of high energy
particles in this distribution is responsible for producing
internal ampliacation in this region. For n&1 the
results obtained are qualitatively similar to those for
the uniform distribution; and, in fact, as o. approaches
zero, the two dispersion relations become identical.

V. DESCMPTION OF INITIATING DISTXHRBANCE

Boundary conditions, su8icient to determine the
initial amplitudes of the modes of oscillation, may be
prescribed either temporally or spatially; the type of
description which is appropriate depends, of course,
upon the physical situation envisaged. In an electron
tube device, for example, a known time signal is
generally impressed at a Axed space position; con-
sequently, a temporal description is appropriate. For a
medium such as the solar atmosphere, where the ini-
tiating disturbances take the form of random inhomo-
geneities of density and current, only a spatial de-
scription at a 6xed instant would be physically per-
missible.

Mathematically, for the exponential space-time
dependence employed here, these two modes of descrip-
tion appear to rest on an equal footing: spatially im-

posed boundary conditions result in the possibility of
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temporal amplification, while temporally imposed
boundary conditions result in the possibility of spatial
amplification. That this equivalence does not hold
physically is evidenced by the fact that a spatial de-
scription gives rise to wave growth over a wider band
of frequencies than does a temporal speci6cation. Fun-
damentally, this appears to result from the prescription
for all time of the form of the motion at the initiating
point, employed in the temporal description. The
analogous prescription of the motion over all space at
a 6xed instant of time utilized in the spatial method of
specifying the initiating disturbance is less restrictive,
since wave growth can occur at all points once the
initial instant has passed. A quantitative comparison of
the frequency bands in question was given in Sec. III
for the two-beam case.

The determination of the initial mode amplitudes
requires for the spatial case, ' p, (z, 0) and Bpq(z, 0)8t,
for each of the r interacting beams (or equivalent in-
formation). Then the coefEcients of the oscillating com-
ponents of charge for each beam, and in each mode
follow from the 2r equations:

2)' riq
00

P Ag„(k) = pq(z, 0)d-"*dz,
n-i

(30)
2t' t'" ~pq(z o)
Q qid (k)Ag (k)= ~ c '"'dz, q=1 r,

Bt

together with the r relations between the components
of oscillating charge density in each beam which are
characteristic of each mode.

The reality of the wave growth associated with the
complex propagation constants obtained here follows

from their conjugate nature. It may be contrasted, for
example, with the solution to the wave equation for a
passive, lossy medium where one obtains F=~jkE&,
with complex dielectric constant E. Either choise of
sign, in this case, corresponds to a diminution in wave
amplitude along the propagation direction, since the
relative sign of the real and imaginary parts of F is
6xed. For complex conjugate values, on the other hand,
one can always select a wave whose amplitude increases
in any given direction as a result of the independence of
the algebraic signs governing the real and imaginary
portions of I'.

VI. MECHANISMS OF CONVERSION INTO
RADIATION FIELD ENERGY

The foregoing modes of oscillation are all of the
longitudinal type, that is the electric 6eld generated is
irrotational. To Row through space devoid of matter,
it is necessary that the waves in question possess a
Poynting Qux. This requires that the electric field
contain a component transverse to the propagation
direction. It is the purpose of this section to examine
several mechanisms which have been proposed to effect
this conversion.

The presence of a transverse static magnetic field
sufBces to couple the motion of the oscillating charge
into a direction mutually perpendicular to the 6eld and
to the propagation vector, giving rise to a transverse
component of electric field. The interaction of the static
magnetic 6eld, and of the newly created oscillating
magnetic field with the forced vibrations in the trans-
verse direction reacts back upon the original motion,
altering its propagation constant. Taking account of
these efkcts, we may write Eq. (8) in the determinantal
foHIl:

q (j rsq+id)' L Pj r Uq+qqjq qq~q)—
j&H 0)q

2

q pgrvq++jq ~„q

g2p2 ~ 2

1+
ni' q ~d' 1—ni~'/(jrzq+ni)q

j
ni (j r&q+ni)' qqa'—

=0)

where
qqa= cBq/rÃ, (32)

Bo=static magnetic field Qux density and the summa-
tions are carried out over all the beams present. The
familiar splitting of each of the roots in the presence of
the 6eld appears here. The modes leading to growth
arise from the upper diagonal term; since

i r i -~q/z, ))a)/c, (33)

the oG-diagonal cross product sects these mode
propagation constants only to order (zq/c)'. Conse-
quently, the magnitude of the splitting depends pri-
marily on the ratio [ni&/( jrvq+ iq) g .The energy division

' The temporal case has been treated by V. A. Bailey, Phys. Rev.
78, 428 {)9So).

may be deduced from the ratio of the 6eld intensities
represented by the second row of Eq. (31), utilizing
Eq. (33):

2~tranaverse q 40M~

+longitudinal C r [gr&q+id] &H

t'&q 'l ' (~~I-i —li(c) & ~d)

The presence of a component of mass velocity trans-
verse to the direction of wave propagation gives rise to
a corresponding motion on the part of the bunched
charge which serves to generate a transverse electric
Geld. A reaction back upon the original longitudinal
motion occurs. in this rase, only through the coupling
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produced by the newly created oscillating magnetic field. The determinantal equation assumed the form:

GOq F 07q sqy
I—P +j z——.

a (jl'v„+a))' co e (jI'vq, +(o)2
=D,

F coq vga glpl (~ p
2- p2v 2

+j—~ . , I+, -~i —
I

I- .
co ~ (jpvq, +~)' co' s 4(g j (jI'v„+(g)'

(35)

where e~ is the transverse component of mass motion
of the qth beam.

The original number of longitudinal modes is pre-
served. The first-order change in the propagation
constants of these modes may be shown to be
~-', (vw/c)'&o, /v„; the ratio of 6eld intensities,

+trans/+long vgyvqa/& ~

In the absence of a transverse velocity, the lower diag-
onal term gives rise to the modes characteristic of
propagation of transverse waves as found in ionospheric
theory. For or, &~, a pair of positive and negative real
values appear for F; the usual interpretation associates
the propagation directions present when co, &co (I'
imaginary) with these real values in such a fashion as
to correspond to attenuated fields for both roots.
Roberts' has shown that the presence of a finite v~
gives rise to a small imaginary part in the previously
purely real pair of F's. He has interpreted this as making
possible growing transverse waves. v

The irrotational nature of the longitudinal plasma
oscillations herein considered arises from the perfect
balancing of the rate of change of electric Aux density,
Bd/W, against the oscillating current i. Martyn' has
suggested that the introduction of collisional damping
destroys this balance, giving rise to a radiation field.
This argument is fallacious because it does not take
account of the change in the characteristic plasma
frequency brought about by the introduction of the
damping term. If this is considered, the balance is
restored. In general it follows from Poisson's equation
(2) and the continuity equation (4) that

V. (i+d) =0. (36)

Consequently if it is possible to write:
~ ~

~ (i+d) =a(i+d) ~, (37)

where "a" is an algebraic quantity, then no electro-
magnetic 6eld exists. This will always be the case if i

~ From a physical viewpoint an inconsistency appears to exist
if one allows e~ to approach zero, since one continues to obtain a
growing 6eld on this fast interpretation, rather than the decaying
6eld characteristic of normal ionospheric propagation. The resolu-
tion of this dilemma probably requires a better type of approxima-
tion than is provided by the currently employed geometric
optical methods, since the wavelength becomes in6nite at the
limit in question.

I D. F. Martyn, Nature 159, 26 (1947).

and d have components only along the direction in
which space variations are present, provided this space
dependence is the same for both.

To complete the discussion, it is instructive to con-
sider the means utilized for the conversion of the energy
of longitudinal space charge waves into transverse elec-
tromagnetic oscillations in many types of electron
tubes. The cavity entered by the bunched beam is
designed to produce a large electric field in the region
traversed by the beam for a relatively low energy
storage, at the frequency of the space charge wave. The
wavelengths of the two oscillations will generally be
quite diferent under these conditions, but this does not
acct the energy transfer because the interaction is
confined to a region which is small compared to either
wavelength. It is this independence of the wavelengths
of the two modes which makes it possible for each to
satisfy its own dispersion relation. When the region of
interaction extends over many wavelengths, on the
other hand, a match is required both in frequency and
in wavelength in order for a net interchange of energy
to occur. For such a double matching to be in agreement
with the dispersion relations for the two modes is a very
special circumstance, and so there will normally be no
excitation of the transverse mode. An exception arises
if a region exists in which the wave characteristics vary
considerably within a wavelength, or a period. Physi-
cally, the electron tube interaction model, or its tem-
poral equivalent, then becomes applicable, since the
rapidly varying conditions permit a net energy delivery
with only one of the parameters of the two modes
matched. Such a situation can arise if steep gradients
are present in the medium characteristics, as might
occur near the edges of prominence eruptions, or if the
rate of growth of the longitudinal oscillations is such as
to cause a considerable departure from uniformity in
the amplitude of these oscillations within a wavelength
spatially, or a period temporally. Since the usual cal-
culated growths are very rapid, this last state of a6'airs
may well provide the answer. A quantitative investiga-
tion of energy transfer under these conditions requires
a nonlinear theory and so will be left to a future paper.

In conclusion, one of us (H.K.S.) wishes to express
his gratitude for the opportunity to work at the National
Bureau of Standards during the summer of 1950. We
are indebted to Mr. Robert Lawrence for much of the
graphical computation work.


