
THEORY OF INTERNAL CONVERSION

atomic number varies approximately as Z4~' (in agree-
ment with the predictions of the Fermi-Thomas sta-
tistical model of the atom, but with a dHkrent propor-
tionality constant) for the light atoms, but the binding
energy varies as Z"" for heavy atoms. Consequently,
binding energies for atoms near the end of the periodic
table will be approximately 15 percent too low when
calculated by the Fermi-Thomas expression with a
coefficient chosen to give agreement with experimental
values for the light elements.

(2) In so far as the charge distribution in heavy atoms
can be specified by a single "atomic radius, "this atomic
radius varies with Z approximately as Z "'.

(3) On the basis of Dickinson's estimates of the
accuracy of the values of eV given by (l), one would
estimate that the accuracy of Eq. (3) for atomic
binding energies should be 5 percent or better.

Unfortunately, the possibility of a direct experiment
test of the foregoing conclusions appears very remote
at the present time.
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The theory of the internal conversion process is presented on a 6rm quantum-mechanical foundation and
in a form most convenient for calculations. The question of the correct gauge for the radiation potentials
and the eGect of the 6nite size of the nucleus On these potentials are considered.

I. INTRODUCTION
' 'HE theory of the internal conversion process has

been developed by Mott' and by Taylor and
Mott' on the basis of correspondence principle argu-
ments. In 1936, Hulme' discussed the interaction of
two particles in a form applicable to the theory of
internal conversion. This paper put the theory on a
firm quantum-mechanical foundation so far as the
matrix elements used in the calculation of Ã„ the
number of electrons ejected per second, were involved.
Unfortunately, Hulme's explicit introduction of the
coulomb direct interaction and his expansion of the
radiation field in a series of plane rather than spherical
waves made it impossible to compare the theory directly
with the prescription followed by the calculators of
internal conversion coeKcients. Up to the present date,
no rigorous quantum-mechanical derivation of the
matrix elements used in the calculation of E„ the
number of gamma-quanta emitted per second, has been
presented,

In view of the recent exact calculations of internal
conversion coefhcients, 4 6 it seems that a rigorous

~ Part of a dissertation submitted by one of us {N.T.) in partial
fulfillment of the requirements for the Ph.D. degree at New York
University.

t Present address: St. John's University, Brooklyn, ¹wYork.' N. F. Mott, Ann. inst. Henri Poincarb 4, 207 (1933).
~H. M. Taylor and ¹ F. Mott, Proc. Roy. Soc. {London)

A142, 215 (1933).' H. R. Hulme, Proc. Roy. Soc. (London) A154, 487 (1926).
4 Rose, Goertzel, Spinrad, Harr, and Strong, Phys. Rev. 76,

1883 (1949); and privately circulated tables of results.
~ B.A. Gxi6ith and J. P. Stanley, Phys. Rev. 75, 534 (1949).' J. R. Reitz, Phys. Rev. 77, 10 (1950).

quantum-mechanical investigation of the internal con-
version process is desirable.

II. THE PROBLEM

It is desired to calculate the transition probability
from the initial state in which the nucleus is excited,
the electron is in its ground state (bound electron), and
no quanta are present to a final state in which the
nucleus is in its ground state, the electron is in its
excited state (continuum electron), and no quanta are
present. The nucleus and the electron interact with
each other only through the electromagnetic field
coupling. Since no quanta are present initially or
finally, the intermediate states are those for which a
single quantum is present, and either both nucleus and
electron are in their ground states (erst intermediate
state) or both are excited (second intermediate state).
The first intermediate state corresponds to a double
process in which the nucleus makes a transition to its
ground state and emits a gamma-quantum, and the
electron makes a transition to its excited state and
absorbs this quantum. Since the intermediate state
need not conserve energy, the energy of the gamma-
quantum does not have to equal the initial excitation
energy of the nucleus. The second intermediate state
corresponds to a double process in which the electron
makes a transition to its excited state and emits a
gamma-quantum, and the nucleus makes a transition
to its ground state and absorbs this quantum. In this
case it is apparent that the intermediate state cannot
conserve energy.

The description of the states is summarized in Table I.
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State

First inter-
mediate

Second inter-
mediate

Final

Nucleus

excited

Number of
Electron quanta Energy

ground 0

Prob.
amp.

ground gl ound

excited excited

ground excited

W+k+E bk'

CE

TABLE I. Description of states. in which 0" and 4 are, respectively, the electronic and
nuclear wave functions with the subscripts 0 and f
referring to the initial and final states. Here e, r, dr,
and e refer, respectively, to the charge, position, volume
element, and Dirac operator for the electron. The cor-
responding primed quantities refer to the nucleus. And
Al, ~&" and i&I.~(" are, respectively, the vector and
scalar potentials for the 2~th multipole of the ith type
(electric, magnetic, or longitudinal).

The equations for the probability amplitudes are~

III. SOLUTION BY USE OF THE
LAPLACE TRANSFORMS

z&t=Wa+ dkHopba+ jr dkHoo bp,

zbp=kbp+Hppa+ jI dEHp&ccE,

The system of Eqs. (2a—d) is most easily solved by

(2a) the use of the laplace transformation. In contrast to
the direct method of solution, no assumption as to the
general form of the solution has to be made.

We denote the laplace transforms by the use of
capitals. For example, '

ibp'=(k+W+E)bc'+Hop'a+ j dEHpe'cz, (2c) LI «=A= t —
(t)dt, (3a)

ice Ecg+——
J

dkH&zpbp+ dkHep'bp',

with the initial conditions

a(0) = 1, bp(0) = bp'(0) =cs(0) =0.

where s=p —ice, and p&~0. After applying the initial
(2d) conditions (2e) and making the substitution cop= W

+E co, the tra—nsforms of Eqs. (2a—d) are

(2e)

In the above equations, J'dk denotes integration over
all gamma-ray energies and summation over all mul-
tipoles in the radiation 6eld, while J'dE denotes
integration over all energies of the continuum electron
and summation over the spins. The matrix elements are

Hap ——e(2&r/k)& dr+r*[e AIM&" (kr)
J

f
(k co zrt)Bp= —HppA —j dEHp@C@,

(k+ o&p i zt) Bp' H—pp'A ——dEKp —p'CE, —

I I(E co zrt)C&z= ——d—kHe„B„dkH@p Bo—.
J ~&z&

(3c)

(3d)

H pp= e'(2zr/k) t)I dr'Cf*[n' ArM&'&*(kr')

—zy, M &'&*(kr')]C„
H po'= e(2zr/k) t dr 4y*[n ArM &'&*(kr)

' Relativistic units with k=m c=1 are used throughout. In
the usual notation the equations are of the form:

ib =Z J'b P 0*H'P 'expIi(E 0—E ')tIdr.
We set a =b~ exp{—iE~'t) and substitute, obtaining

za Bop &.—J a.P P=*&'P.o&tr

Before proceeding to the solution of these equations,
a discussion of the order of approximation required is
appropriate. For the radiation processes" which we are
considering, tca&, z is proportional to e'. Therefore, as
will be seen from the mathematics below, A must be
determined in fourth approximation. The zeroth
approximation of A gives a(t) as a periodic function of
the time; the second approximation gives the decay of
a(t) with the emission of the gamma-quantum; and
the fourth approximation gives the decay of a(t) with
both the emission of the gamma-quantum and the
ejection of the extra-nuclear electron. Since the first
approximation does not include the eRect of the
presence of the extra-nuclear electron, BI,need be deter-

s See, for example, W. Heitler, The Quantum Theory of Radiation,
(Oxford University Press, New York, 1944).

9See any book on laplace transforms; for example, R. V.
Churchill, Modern Operational Mathematics in Engineering
(McGraw-Hill Book Company, Inc. , New York, 1944).

"gee, for instance, Heitler, reference 8, p. 97,
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mined in third approximation; Cg need be determined
in second approximation only.

In zeroth approximation (3b) gives
A = i—/$W o—o i—(ot+ yk+ yo) ] (3m)

Uoj( —Ujo ) is evaluated in Appendix B.Then, writing
vo=~lUjol',

(W oo—i—rt) A = i— 3f
Substitution of (3m) into (3i, k) gives

Substitution of (3f) into (3c, d) yields Bk and Bk in
first approximation:

—i Ugo
(3i')

(E ~ irt)L—W oo —i(rt+—"jk+ "jo)](k oo —irt)—Bk ——HkoA-, (3g)

(k+ ooo irt) B—k' = Hko'A-. (3h) z[Hko+zorUjoHk~]
Bk= . (3k')

(k oo —iot—)[W oo —i (r—t+ p k+ yo) 7Substitution of (3g, h) into (3e) gives Cko in second ap-
proximation:

(3n)a(t) = expL —iWt —(y,+yo) t],

The inverse transforms of (3m, i', k') are easily ob-
f +Ek+ko +Ek IIIso tained. "They are

(E oo ir—t)Cg—A) ~ d——k +, (3i).k —a)—~g k+ o)p —ig

where the integral over k, which we denote by Ufp, is
evaluated in Appendix 8:

[Hko+ior UjoHk„]
4(t)= {e '"—a(t)},

k W+—i (yk+ y.)
(3o)

and

A tLHko+ior UjoH—k„], (3k)

(k+ ooo irt) Bk' —A/Hko'+——irr Uj,HI—,„'], (3l)

where III„- is HI,~ with E replaced by co and likewise
for HI,„'.The evaluation of the integrals over E is dis-
cussed in Appendix B.

Substituting (3k, 1) into (3b) gives A to the fourth
approximation:

(W oo iot) A—= —i+iykA—

+irrUjoA I dk
BoI.&a &o~'&I '

. +
k —M —sg k+ happ

—$$

where the integral over k, which we denote by
"Reference 3, p. 497.

Ujo ee'~td—r fdr'pj*ey*(1 nn')(e'"—x/X)%'ohio.
J

(B5)

The result (85) is in agreement with that of Hulme. "
Substitution of (3g, h) into (3b) gives A in second
approximation:

&ol,IIko &oj'&ko'
(W oo irt)—A =—i A—

J
—dk +

k —Q) —$'Q k+ G)p zg

(3j)

where the integral over k, which we denote by z»,
yi being real and positive, is evaluated in Appendix B.
Substitution of (3i, j) into (3c, d) gives Bk and Bk in
the third approximation:

(k oo irt)Bk— —

—Ugp
cg(t) = {e 'e' a(t)}-

E W+i (—y k+ yo)
(3p)

Ar, = dE{ce(~)~'=
V1+72

(3q)

A;= "dk[k, ( ) J

= Hko+irrUjoHk
I
. (3')

rl+ Yo

Thus, it is seen that S, is proportional to

}Hko+i rjUjoHk„~ '

rather than }Hko~'. The correction term iorUjoHk will
be discussed in the next section.

dr%'j*[n SrM(&or)+i. Pz~(cor)]%'o

This result is in agreement with the correspondence
principle prescription for the number of electrons
ejected per second.

'~ Reference 9, p. 295.

IV. COMPARISON WITH CORRESPONDENCE
PRINCIPAL RESULTS

Equation (3q) states that the number of electrons
ejected per second is proportional to

~
Ujo

~

'. When the
radiation Geld contains all multipoles, Ufo is given by
(B5). In practice, the radiation field due to an excited
nucleus does not contain all multipoles. The selection
rules restrict the 6eld to that of a given multipole, say,
the 2kth, of a particular type (electric, magnetic, or
longitudinal). In this case, Ujo is given by Eq. (B3)
of Appendix B. It then follows that

~
Ujo~o is propor-

tional to
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According to (3r), X„ the number of gamma-quanta
emitted per second, is proportional to

l H~e+irrUrcjK„l'
The second term in this expression represents the e8ect
of the presence of the extra-nuclear electrons. In the
case in which the radiation field is restricted to a given
multipole,

HI,O+i7r UIOHc„

= e'(2s/a&) &)tdr'Cr*[a' Ac~*( cd') —iC r~*(cor'))40

(
X l

1—(2s'e'/ce)

dr%'(*[a BI.~(cur)+inc~(cur)) %0

rection term represents the matrix element for electron
transitions from bound to continuum states, i.e., the
matrix element for the absorption of a gamma-quantum,
while the second bracket represents the matrix element
for the emission of a gamma-quantum. The correction
term therefore represents an interference between the
two radiation fields involved.

Neglecting the factor of order e', the internal con-
version coefficient for the given multipole radiation is

(2~3e2/&) "d.e *[a B,~(~r)+ iy,"(~r))e, . (4b)

V. THE GAUGE QUESTION

For a given multipole, Uro' is given by (B3') when
r is greater than r'. From the method of evaluation of
Vf0 in Appendix 8, it is clear that for r less than r'

X l)
d C'o*[ A *( )—4 "'( ))C'

l
(4 ) U„(2,„.,/„) I'd, C...[..A, („„)+;q („„)) 1.

J
This result shows that the number of quanta escaping
from the atom divers from the number ejected from the
bare nucleus only by a factor of order e', in agreement
with the correspondence principle result of Taylor and
Mott. '

The physical significance of the correction term is
readily seen from (4a). The erst bracket in the cor-

dr'@~*[a' Br,jr*(~r') i%I *(~r')—)4, .

Inside the nucleus, r may be greater or less than r'.
Consequently, the complete expression for Uf0', in-
cluding the eBect of the finite size of the nucleus, is

CO R

Ufo'= (2~ ee'i/co)
~

dr%'r*[a Br~(cur)+ifr, (cur))%'0 t dr'Cr*[a'. Ar~*(cer') i/I. *(cer'))4—0

0

r" r

+ dr 0f*[a

Br'�(a&r)+

i&P(cur)) +0 t dr'4 f [a' AI Jcr (cur') .

iver,

*(a&r')]4'o—

where the range of r and r' have been indicated on the
respective integrals, R denoting the nuclear radius.
This result for the eGect of the finite size of the nucleus
on the radiation potentials is in agreement with that
obtained by the correspondence principle method. "

If we neglect the contribution from inside the
nucleus, (Sa) reduces to

Uyp'=( m2' ee'i /)c0

X J" dr@I*[a Br,ccc(cur)+iyr, ~(cer))%;

dr'Cf*[a' Ac, ~"(cur') i&I.~~(cur'))4'0 . (—5b)
0

In the calculations of internal conversion coeScients,
however, the range of r has been taken as 0&r&00

» N. Tralli and M. E. Rose (unpublished).

rather than as E.&r&~. The question arises as to
whether or not this extension of the range of r may be
carried out with the radiation potentials expressed in
terms of any arbitrary gauge. The answer is in the
negative, as has already been pointed out by DancofI'
and Morrison. "The range may not be extended in the
case of electric multipole radiation when the Heitler
gauge is employed, because the artificial singularities
at the origin introduced in the definition of the multi-
pole potentials make the matrix elements give a finite
contribution from an arbitrarily small region. For
this same reason, the Heitler gauge may not be used in
the investigation of the eGect of the finite size of the
nucleus on the radiation potentials.

If, by a gauge transformation, we obtain another set
of potentials for which the integrand of the matrix
element is small at the origin, this latter set can be

"S.M. DancoB and P. Morrison, Phys. Rev. 55, 122 (1939).
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called correct. This condition is satis6ed by the con-
ventional gauge.

Pz, (cose) = I 421/(2L+1) j Z YL,~*{8',y') Y ~(8, y),
APPENDIX A.

EXPANSION OF THE RADIATION FIELD IN
SPHEMCAL HARMONICS

We introduce the function,

may be written

{e'~x/X)I =(2m i/k)Z PJ.~pl, ~*2, u u'. (A12)

{kr}=kfJ.{k~)YI, (8, @), (Al)

in which fg{kr) =(kr) VL,+~(kr), where J is the bessel function,
and YL,~(8, qb) is the normalized spherical harmonic. '5 Now &J.~
satisfies the equations

so that"
(e'~ /X)I={2m i/k) Z B (')A (A13)

(A2) Similarly,+y~M k2y~M —0

dryI, ~(k)yi, ~'*{k')=BI,I, b~~ b(k-k'}.

LMi

{e i~ /X)I= —(22' i/k) z B &')*A (A14)(A3) LMi

Introducing the vectors Bi~ which bear the same relationship to
as the Al.~ to &L, , it may be shown that

& Bl.~&'AL,~&"*=&yl.~yz, ~*Z u.uIMi IM

It may then be shown'~ that the radiation potentials can be
written

Al,~«'j= (1/k) gal, ~, {A4)

'"'=[L(L+1)3 KrXV)4s~, (A5)

A,~& &= tk L(L+1)j-~V X{rX~)y,~, (A6)

in which the superscripts l, es, e on the AL, jar refer to longitudinal,
magnetic, and electric radiations, respectively.

Using the unit vectors

ug ———2 &(i+ij), up=%, u g
——2 &{i—ij)

such that all vectors may be written

V=X, Vu =Z, Vu„ (A8) A& —A~~ (rrs) e
—ikt or

The radiation potentials in the diGerent gauges are easily
obtained. The equations of gauge transformation are

y=y' —A./dt, A=A'+~),
where ) is a solution of the wave equation,

V x-d x/dt =0. (A15)

In the Heitler gauge divA' p'=0. Since the sole condition on )
is that it satisfy Eq. (A15), we may take

) =k-&yL,~e-i&,

so that
dX/dt = —ill ~e-s" ~X=Al ~«~e-i~f,

In this gauge, therefore, the expressions for @ and A are

Longitudinal: &I,~, AL,~«),
Magnetic: p A~~(nt) (A16)

Electric: 0) AI,~('&.

The expressions for the scalar and vector potentials in the con-
ventional gauge are obtained just as easily. Take

[L/k'(L+1) &t&ys~e —'"'

so that the scalar potential is

d~/dt= —i kL/(L+1) j
The relations (A10, 11) are in agreement with those of Heitler. s

With the notation (A17)

where u~=u * and V~= V * for a real vector, we may express
the components of the Ag~ as"

As&ro«&=[(L+1)/(2L+1)]&(M+a, —o (LM)r~»ras+P+'

+[L/(2L+1)]'(M+a& al LM)s &.&os—&~+, (-A9)-
As»ro& &=&(M+a, a)&LM)s, &&tr,

~+—', (A10)

As&r &4&=[L/(2L+1) j&(M+a, —a~LM)y, +&, «f&s+&

[(L+1)/(2L+—1)]&(M+a, a~ LM)s &, &&I&z,
&~+—'. (A11-)-

@,~{kr')=kJ,{k")Y&~{8',y'},

yJ.~{kr)=kHJ. & )(kr) YJ.~(8, y),

I=Zy uyu:—l1+33+lkkq

where JJ.{kr') = (4'} &Jl+y(kr'), and Hl, ('&(kr) = (kr) &HL+y(')(kr},
in which J is the bessel function and H&'& the hankel function of
the first kind, the well-known relation'8

ei~ /X=i2r(4'') & Zi(2L+1)Jl+~(kr')Hl+y(')(kr)PI, (cosO&),

where r is greater than r', X=
~
r-r'[, 0 is the angle between r

"We use the choice of phase factors of H. Bethe, et al. , Hand-
buch der Physik (Verlag. Julius Springer, Berlin, 1933), second
edition, 24/1, p. 273; and W. Heitler, Proc. Cambridge Phil. Soc.
32, 112 (1936).

"See, for example, the treatment of P. M. Morse and H. Fesh-
bach, 3fethods of Theoretical Physics (M.I.T., Cambridge, Mas-
sachusetts, 1946), Chapter IX.

"For the properties of the &mitary matrices (&»&r»&&~ jo&) n&, see,
for example, E. Wigner, Grlppentheorie (Braunschweig, Vieweg L
Sohn, 1931);or E. U. Condon and G. H. Shortley, The Theory of
Atonm Spectra (University Press, Cambridge, England, 1935).
In the notation of Condon and Shortley, these would be written
(j&1»»»&o

~j&lj &»)
's See, for instance, W. Magnus and F. Oberhettinger, Special

PNncti ons of Mathematical Physics (Springer-Verlag. , Berlin,
1948},p. 21.

and
h= —

I L/(L+1) j4LL,~«)e iaf'.

The electric multipole vector potential is then obtained from the
equation of gauge transformation,

A&'~ =AL~&'& —LL/(L+1) g&AL~«~. (A18)

The magnetic multipole vector potential remains as given by
(A5). Hence, in the conventional gauge there are no longitudinal
potentials, and the electric multipoles have both scalar and vector
potentials.

APPENDIX B.
EVALUATION OF INTEGRALS

In the calculations carried out below, the Heitler gauge (A16),
ls used.

lH I

k—a]—ig k+coo —ig
'

Time-dependent perturbation theory tells us that the transition
probability per unit time is appreciable only if energy is conserved
between initial and final states. ~ In accordance with the discussion

» See, for instance, Morse and Feshbach, reference 16, p. 486."See, for instance, L. I. SchiG, Quantgm 3fechanics (McGraw-
Hill Book Company, Inc., ¹wYork, 1949), Sec. 29.
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in SchifP' and in Hulme B' the second term in the integrand cannot
be ignored. It is taken into account by integrating the first term
from —~ to +~ instead of from 0 to +00. Then

+ HE&op
Ufo = dk-

k—co—sq

+ dk
=22lee' Z

k{k co tg)

d + *Le A &i&(kr)+'y &i&(kr) j+o

dv'ed*pe' ALM &i&*(kr') —i«M &i&*(kr') jC p

in which the superscript (i) refers to the longitudinal, magnetic,
or electric 2L multipole, and «M&i&=0 for i=m, e, and eLM&i&

=«M. The ZLMi of the bracketed terms may be written

Z fdr fdr'ef 4f»[e A,n&'&(kr)e' As~&'&»(kr')
LMi

+i«M(kr) e' ALM &'&*(kr') —i«M*(kr') e-ALM &'&(kr)

+«M(kr}« ~(kr') j+pC p. (82)

Since the hamiltonians have the form,

B= —e.p—pm —e -ALM&i&(kr) —i«M&i&(kr),
H'= —e' y' —p'yg' —e' ALM &i&'(kr')+i«M &i&*(kr'),

we obtain

e ALM &'&(kr) = {1/k}e +«M(kr) = (i/k) e.ELM(kr)
= (i/k) L«M(kr}H —H«M {kr)g

e'*ALM'"*(kr') = (i/k) LOLM'(kr') H' —II'@LM'(kr') j.
Then (82} reduces to

dr fdr'Cr*Cr* 5 e Ator&'&{kr)e' At&e&'&»{kr')
LMi

+L1-(W+E)/kj ~ «M{kr}yL *(k") ~pep.
LM

Hence,

dk
Uro 2&ree'fdr——dr'0'r»4r»

X Z e ALM&i&(kr)e'. A M&'&*(kr')
LMi

+ Z t 1—(W+E)/kj@z, M{kr)yz, M*(kr') +p+p.
LM

Now, the dependence of «M(kx} and ALM&i&(kx) on k is confined
to the (spherical) bessel function JL(kx) which each contains. We
consider the case where r is greater than r' and make the sub-
stitution,

2JL{kr)=HL&'&(kr)+HL&~&(kr).

As has been remarked above, the integral is to be evaluated for
conservation of energy, W =E=k= ~. Then, from the location of
the pole, it is clear that only the HL&'&(kr} part of JL(kr) will con-
tribute to the integral. Therefore,

Ufo = (2e'ee'i/»&) fdrfdr'er»4y» 5 e Bs»& &'&(o&r)

LMi

Xe' ALM&i&*{cur') —Z &LM(cur}fIkLM*{ ur') +pC p, (83)
LM

where the BLM difters from the ALM only in the replacement of
JL by' HL&~&.

I See reference 3, p. 494.

Ke note here that, in general, the radiation field does not con-
tain all the multipoles. Selection rules usually restrict the radiation
field to a given multipole, say the 2Lth, of a particular type (l, m,
or e). In this case, (B1) reduces to

Uro' 2=&ree'f . fdr%'r»I e As»&(kr)+its~(kr)j@o

dw'4f*fe' ALM*(kr') —i« *(kr') j4p, (81')

where it is to be remembered that &LM=0 for electric and mag-
netic radiation. Carrying out the integration over k as indicated
above, (B1') becomes

Ufp = (2&ee'i/~) d~+f*pe BLM(f&ter)+Q'L (fear) j+p

X dr'ey*fe' ALM*((or') —
iaaf LM*(~') jap . (83')

Returning to (83) we note that, from (A12),

Z ELM(~r) «M*(~') = (~/2W) (e'~x/X),
LM

and Z e BLM&i&(cur)e' ALM&i&*(~r')

= & e BLM"'(~r)ALM i&*(cur'). e'
=e ( /2+i)(~'"x/X)r e'
=( /2~i)(. '-x/X)(e e). (84)

Substitution of these results into (83) gives

Uro= ee'fdrf—dr'0'r*Cy*{i e e'){e'" /'X)+o+o (BS).

The same result is obtained for Vfp when r is less than r'.

2. Evaluation of dk . +Ho&ko Ho a'Hko

k —co —ig k+ cop —sg

Proceeding as above, the integral reduces to

f+- lffool* +- (k ~)lffool' . +- vlffoolo
dk . -= dk =+i dk

(k—cg)~++ — (k—co)~+g'

The first integral on the right represents the principal value part
of the original integral and is usually neglected. In the second
integral, I ffoo le is a slowly varying function of k. For small v, the
denominator has a sharp minimum for k =~, so that the integrand
has a sharp maximum. We may therefore take Hp ~ outside
the integral sign and replace it by its value at k = cu, Hpf„~. Hence,

~ ~ ~
+- lkfool' . , +- n

dk . =ilffomlo dk, =ivIHo~lo=iv&,

where

Iffo Io=(2ve"/~) fdr'er*fe' As»r&'&»(~r') its *{~r')]co—.

g. Evaluation of fdE/ffos/(E o& o„)jan&f——

dEfa&E'/(E —~—i„)j.
Proceeding as above, we obtain

dE&H~E/(E ——i~)j=z~H&„

and

dE)Hf, E'(E—cy—if/I}j=i Bl,„'.

H 'H

k—co—iq k+ cop
—iq

Comparison of this integral with that denoted by Ufp, and
noting (A14), shows that this integral is Upf —Ufo*.


