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A Note on Atomic Binding Energies*

L. L. FoLDv
Case Institute of Technology, Cleveland, Ohio

(Received April 2, 1951)

By the use of Dickinson's recent calculations of the diamagnetic field for atoms based on Hartree calcu-
lations, and a theorem due to Feynman, an expression is obtained for the total binding energy of the elec-
trons in an atom as a function of atomic number. The results are compared with predictions of the Fermi-
Thomas statistical model. It is found that the binding energy for small Z varies as Z~~' in accord with the
statistical model but for high Z the dependence on Z becomes approximately Z'~t'~. The equation for the
binding energies is estimated to be correct to 5 percent or better.

HE Fermi-Thomas statistical model of the atom'
is unique among atomic models in that, apart

from a scale factor and normalization, it gives the same
charge distribution to atoms of all atomic numbers.
The linear dimensions of the charge distribution are
Axed by an "atomic radius" az which according to the
theory varies with atomic number as Z '". The model
then predicts that the total binding energy of an atom
varies with atomic number as Z/ae Z'". There appears
to be no experimental data which can be employed to
check this Z-dependence for the heavier elements. It
has been found, ' however, that it is checked excep-
tionally well for the lighter elements (from helium to
oxygen) in spite of the fact that the statistical model
would be expected to be poor for such light elements.

An alternative method of checking this Z dependence
of the total binding energy is to compare it with the
results obtained on the basis of more accurate atomic
models. The most natural choice of the latter is the
Hartree model, and the comparison is greatly facilitated
by recent calculations of Dickinson' of the internal
diamagnetic 6eld for atoms based on the results of
Hartree calculations. Dickinson has presented a table
of values for the electrostatic potential at the nucleus
of an atom due to the electrons, computed from the
Hartree electron distributions for all atoms for which
Hartree calculations have been made. If one plots the
logarithm of the electrostatic potential at the nucleus
against the logarithm of the atomic number (Fig. 1),
one 6nds that the points from He (Z=2) to Hg (Z=80,
the highest atomic number for which Hartree calcula-
tions are available) fall with remarkable precision

( 1 percent) on a straight line. The equation of the
straight line' then gives the relation,

eV = (12/5) Z"'R,
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~ G. Allard, J. phys. et radium 9, 225 (1948).' K. C. Dickinson, Phys. Rev. 80, 563 {1950).
4 It will be noted from Fig. 1 that the straight line represented

by Eq. (1) is not the best straight line through the points but is
slightly low for small g, This choice has been made for two

where e is the elementary unit of charge, V is the
electrostatic potential, and E is the Rydberg in energy
units (R= 13.595 ev).

To relate eV as given by (1) with the total binding
energy of an atom we make use of the following theorem
clue to Feynman The partial derivative of an energy
eigenvalue of a system with respect to a parameter occurring
in its Hamiltonianis given by the expectation value of the

partial derivative of the Hamiltonian operator with respect
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FIG. 1. Plot of logarithm of electrostatic potential at atomic
nucleus due to electrons vs logarithm of atomic number from
Hartree and Fermi-Thomas models. Circles represent values
from Hartree model obtained by Dickinson. Dotted line represents
result from Fermi-Thomas model. Full line is a plot of Eq. {1).
reasons: the convenient values obtained for the numerical coeK-
cient and exponent and the fact that by this error we largely
compensate the effects of a later approximation {see footnote 6).

~ R. P. Feynman, Phys. Rev. 56, 340 (1939).
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z
Ea(Z) Ea(Z 1—)= ~ —e V(Z)dZ+Iz,

Z-1
(2)

where Iz is the erst ionization potential of the atom
of atomic number Z. From (2) one obtains easily by
summation and the use of (1):

z
Ea(Z) =

~

eV(Z)dZ+ g I,+Ea(2)
"2 zM

=Z'"'R+ P Ig—1.278R, (3)
z 2

TABLE I. Calculated and experimental atomic binding energies
in electron volts.

2
3

5

7
8

10
20
30
40
50
60
70
80
90

Hartree
fEa. (3)1

78.63
202.1
400.3
676.8

1041
2506
2068
3535

1 833X 104
4.811X104
9.590X 104
1.637X 10'
2 532X 10'
3.663X 105
5.049X 10'
6.705X 20~

Eg
Fermi- Thomas

fEa (4)l

105.0
270.1
529.0
890.5

1363
1952
2666
4486

2.262 X 10'
5.824X 10'
2.240X 20~
1.918X20~
2.934X 205
4.207X 10'
5.744X 20~
7.561X 105

Modified
Fermi- Thomas

|Eq (~)l

79.40
204.2
399.5
672.5

1029
1474
2013
3388

1.708X 104
4.398X 104
8.607X 204

2.449X 20~
2.226X 20~
3.177X 20»
4.338X 20~
5.710X20~

Eg+
[Exp, }

78.63
202.49
397.25
667.59

1024.87
1473.37
2032.98

4' From tabuiation in reference 2.

' It will be noted that this expression is not quite correct, since
Eq. (2) considered as an interpolation formula between integral
values of Z cerresponds to the charge on the electrons being kept
equal to the charge on the nucleus as the atomic number varies
from Z—1 to Z. An estimate of the error committed can be
obtained by comparing the value of eV for a neutral atom and
for the atom with one electron removed. Dickinson's table
includes values for ions where the Hartree calculations are
availabl, and from these it is found that the error in the integrand
is largely compensated for all Z by the error in Eq. (2) discussed
in footnote 4.

io the parameter. If we apply the theorem to an atomic
system corresponding to a nucleus with charge Zt, and
Z' electrons, we find (BEa/BZ) =aV, where Ea is the
binding energy of the system, V is, as above, the electro-
static potential at the nucleus due to the electrons, and
in the diGerentiation Z', the number of electrons, is
held constant. If after the difI'erentiation Z' is set
equal to Z, then eV may be identified with the quantity
in (1). Therefore, the dilference in binding energies
between an atom of atomic number Z—1 and the
singly ionized atom of atomic number Z is given by

pz
eV(Z)dZ.

Z—1

Hence the di8erence in binding energies between neutral
atoms of atomic numbers Z—1 and Z is given by

where the binding energy of He has been used as the
base from which the summation is extended. Since the
6rst ionization potentials for practically all the elements
are known, Ea(Z) can immediately be calculated with
the results tabulated in Table I. Also tabulated are
the results obtained from the Fermi-Thomas statistical
model:

Ea(Z) =20.83Z'" ev,

and from another expression of the same form:

Ea(Z) = 15.73Z'" ev,

(4)

(5)

but with the coefficient adjusted' to give better agree-
ment with the known binding energies of the light
atoms. It will be noted from the table that the binding
energy apparently increases more rapidly with Z than
the Z'I' relation given by the Fermi-Thomas model,
and for large Z is more closely represented by a Z""
dependence. While (3) is not quite as accurate as (5)
in representing the experimental binding energies of the
light atoms (see Table I), it would appear that the
good agreement with (5) is at least partly fortuitious.

The fact that the Z-dependence of binding energy as
given by the Fermi-Thomas model does not approach
asymptotically the result from the Hartree calculations
(assuming the latter to be more correct) for asymptoti-
cally large Z might be considered puzzling, in view of
the common statement that the Fermi-Thomas model
should give essentially correct results for large Z where
the statistical assumptions should be well satisfied. As
a possible reason for this discrepancy we might point to
the fact that the electronic charge distribution predicted
by the Fermi-Thomas model is always incorrect in the
neighborhood of the nucleus, regardless of how large Z
may be, because of the singularity in the coulomb field
at the nucleus. The 1/r singularity in the coulomb
potential due to the nucleus results in an electronic
charge density which varies as r & in the neighborhood
of the nucleus, while actually the electronic charge
density should be constant in this neighborhood. This
"pulling in" of electronic charge in the neighborhood of
the nucleus afFects the binding energy of the atom in
two ways. First, it increases the binding energy because
of the larger potential energy of interaction between
this charge and the nuclear charge. Secondly, it more
electively shields the outer parts of the electronic
charge distribution from the nuclear charge resulting
in a "pulling away" of these outer parts of the charge
distribution from the nucleus. This results in a decrease
in their potential interaction with the nucleus and a
decrease in the total binding energy. If the 6rst of
these eGects is dominant, we would have at least a
qualitative explanation of the high Fermi-Thomas
binding energy relative to that obtained from the
Hartree model.

Our conclusions may be summarized as follows:
(1) On the basis of Hartree calculations one finds

that the total binding energy of atoms as a function of
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atomic number varies approximately as Z4~' (in agree-
ment with the predictions of the Fermi-Thomas sta-
tistical model of the atom, but with a dHkrent propor-
tionality constant) for the light atoms, but the binding
energy varies as Z"" for heavy atoms. Consequently,
binding energies for atoms near the end of the periodic
table will be approximately 15 percent too low when
calculated by the Fermi-Thomas expression with a
coefficient chosen to give agreement with experimental
values for the light elements.

(2) In so far as the charge distribution in heavy atoms
can be specified by a single "atomic radius, "this atomic
radius varies with Z approximately as Z "'.

(3) On the basis of Dickinson's estimates of the
accuracy of the values of eV given by (l), one would
estimate that the accuracy of Eq. (3) for atomic
binding energies should be 5 percent or better.

Unfortunately, the possibility of a direct experiment
test of the foregoing conclusions appears very remote
at the present time.
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The theory of the internal conversion process is presented on a 6rm quantum-mechanical foundation and
in a form most convenient for calculations. The question of the correct gauge for the radiation potentials
and the eGect of the 6nite size of the nucleus On these potentials are considered.

I. INTRODUCTION
' 'HE theory of the internal conversion process has

been developed by Mott' and by Taylor and
Mott' on the basis of correspondence principle argu-
ments. In 1936, Hulme' discussed the interaction of
two particles in a form applicable to the theory of
internal conversion. This paper put the theory on a
firm quantum-mechanical foundation so far as the
matrix elements used in the calculation of Ã„ the
number of electrons ejected per second, were involved.
Unfortunately, Hulme's explicit introduction of the
coulomb direct interaction and his expansion of the
radiation field in a series of plane rather than spherical
waves made it impossible to compare the theory directly
with the prescription followed by the calculators of
internal conversion coeKcients. Up to the present date,
no rigorous quantum-mechanical derivation of the
matrix elements used in the calculation of E„ the
number of gamma-quanta emitted per second, has been
presented,

In view of the recent exact calculations of internal
conversion coefhcients, 4 6 it seems that a rigorous

~ Part of a dissertation submitted by one of us {N.T.) in partial
fulfillment of the requirements for the Ph.D. degree at New York
University.

t Present address: St. John's University, Brooklyn, ¹wYork.' N. F. Mott, Ann. inst. Henri Poincarb 4, 207 (1933).
~H. M. Taylor and ¹ F. Mott, Proc. Roy. Soc. {London)

A142, 215 (1933).' H. R. Hulme, Proc. Roy. Soc. (London) A154, 487 (1926).
4 Rose, Goertzel, Spinrad, Harr, and Strong, Phys. Rev. 76,

1883 (1949); and privately circulated tables of results.
~ B.A. Gxi6ith and J. P. Stanley, Phys. Rev. 75, 534 (1949).' J. R. Reitz, Phys. Rev. 77, 10 (1950).

quantum-mechanical investigation of the internal con-
version process is desirable.

II. THE PROBLEM

It is desired to calculate the transition probability
from the initial state in which the nucleus is excited,
the electron is in its ground state (bound electron), and
no quanta are present to a final state in which the
nucleus is in its ground state, the electron is in its
excited state (continuum electron), and no quanta are
present. The nucleus and the electron interact with
each other only through the electromagnetic field
coupling. Since no quanta are present initially or
finally, the intermediate states are those for which a
single quantum is present, and either both nucleus and
electron are in their ground states (erst intermediate
state) or both are excited (second intermediate state).
The first intermediate state corresponds to a double
process in which the nucleus makes a transition to its
ground state and emits a gamma-quantum, and the
electron makes a transition to its excited state and
absorbs this quantum. Since the intermediate state
need not conserve energy, the energy of the gamma-
quantum does not have to equal the initial excitation
energy of the nucleus. The second intermediate state
corresponds to a double process in which the electron
makes a transition to its excited state and emits a
gamma-quantum, and the nucleus makes a transition
to its ground state and absorbs this quantum. In this
case it is apparent that the intermediate state cannot
conserve energy.

The description of the states is summarized in Table I.


