
DISTORTION IN ASYMMETRIC TOP MOLECULES

comparable with the over-all eKciency of the most
scient phosphors, indicating that its lower over-all
e%ciency is due to a small percentage of radiative
recombinations.

C. General

While this work was in progress, two other papers
reporting the evaluation of the electron mobility in
cadmium sulfide by combined photometric and photo-
electric measurements appeared. ""In each of these
the analysis depends upon the assumption of detailed
models incorporating the bimolecular recombination
law. By measuring the ac component of the photo-
current produced by modulated ultraviolet excitation,

'2 J. Fassbender and H. Lehmann, Ann. Physik 6, 214 (1949)."I.Broser and R. %arminsky, Ann. Physik 7, 289 (1950).

Fassbender and Lehmann found mobility values be-
tween 20 and 40 cm'/volt-sec, for which they claim
only an order-of-magnitude accuracy because of the
approximate nature of the theoretical representation.
An investigation of the complete current decay curve
led Broser and Warminsky to conclude that the
mobility is of the order 5 cm'/volt-sec. Our method
differs from these primarily in that it does not require
a detailed model. The ultimate accuracy of the method
is not limited by the validity of assumptions as to
details of the mechanism or by the degree of approxi-
mation of the theoretical development.

The authors are grateful to Professor R. J. Cashman,
Dr. R. Frerichs, and Professor A. J. F. Siegert of the
Physics Department of Northwestern University, for
help and advice.
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A semiclassical approach is used to develop a simple expression for the centrifugal distortion correction
in asymmetric top molecules. The general expression for the shift of any given energy level involves five
experimentally determined distortion coef5cients and a knowledge of the dependence of the term value
as a function of asymmetry. A useful simplified expression for the frequency correction in dJ'= 0 transitions
involves only two effective rigid rotor parameters and four distortion coefhcients. The method is applied
to the microwave spectrum of HIC+0; the results show excellent internal consistency. The resulting rigid-
rotor parameters are: a=282, 106 Mc/sec, b=38,834 Mc/sec, and c=34,004 Mc/sec. The electric dipole
moment is determined to be 2.31~0.04 debye and the line breadth parameter as 97&10 microns Hg per
Mc/sec.

I. INTRODUCTION

I
'HE problem of handling the sects of centrifugal

distortion in rotational spectra is not one of
theory, which has been extensively discussed by several
authors; rather, it is one of finding convenient and
direct means of relating the experimental data to the
theoretical parameters. With the high precision now
available through microwave spectroscopy this central
problem has acquired renewed urgency. In a series of
papers by various authors from this Laboratory it is
proposed to develop and apply two simplified methods
for calculating the frequency shifts due to centrifugal
distortion.

The general theory of vibration-rotation energies was
first formulated by Wilson and Howard, ' and several

*This work was supported in part by the Signal Corps, the
Air Materiel Command, and ONR.

t Now at National Research Corporation, Cambridge, Massa-
chusetts.' E. B. %'ilson, Jr., and J. B. Howard, J. Chem. Phys. 4, 260
(1936).

other similar analyses' have since appeared. For our
purposes the analysis given by Nielsen is the most
convenient. His paper gives explicitly to second order
the matrix elements for the hamiltonian of a general
vibrating-rotating polyatomic molecule. The analysis
proceeds in conventional fashion; the matrix elements
for the rotational energies are developed in terms of
symmetric top wave functions which have the quantum
numbers J, E, and N. The matrix has ofF-diagonal
elements in E only, namely, (E'~ II

~
X&2) and

(IC~ II~ E&4). The elements are expressed in terms of
the three equilibrium-molecule principal moments of
inertia, the variation of these moments with vibrational
state, and six centrifugal distortion coeS.cients which
involve the equilibrium structure and the vibrational
potential constants through cubic terms. When the

'A list of these publications, mostly dealing with specific
molecular symmetries, is given in H. H. Nielsen, Phys. Rev. 60,
794 (1941);61, 540 (1942).

3 The treatment excludes molecules with internal rotation and
those with tetrahedral symmetry. For accidental degeneracies see
H. H. Nielsen, Phys. Rev. 68, 181 (1945).
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FIG. i. The microwave absorption frequencies of H2C"0 as
functions of J and E j,. The solid circles represent the presently
know n spectrum.

centrifugal distortion terms are neglected, the matrix
can be expressed in terms of the single asy~~etry
parameter a (or the simply related parameter 5); hence,
the matrix can be diagonalized once a numerical value
for ~ has been specified.

In short, the general procedure involves setting up
the complete energy matrix and then diagonalizing it.
A basic difBculty in the former operation is the inevi-
table lack of precise initial knowledge of the equilibrium
molecular structure and the potential constants. Thus,
the initial coeRcients can be only estimates, although
these estimates can be successively refined by reiterating
the calculations after comparison with experimental
data. However, the first diagonalization is generally
tedious enough to discourage successive approximation
even though a method of approximate diagonalization
is available for some high J terms. 4

Simplifications occur for certain classes of molecules
and for certain types of transitions. The general analysis
has been carried out for H20 and H2S. ' The second
paper of the present series will give the development
and application of a simple analytical expression with
which the transition frequencies may be simply analyzed
and the amount of distortion shift evaluated.

Alternately, a different attack may be used, which
is presented in this paper. As shown by Wilson and
Howard the exact calculation involves three "effective"
reciprocal moments of inertia. These represent the
equilibrium constants modified in a complicated fashion
by the presence of zero point and excited vibration.
The true levels are those of a fictitious rigid rotor
corrected finally for the effects of centrifugal distortion.

4 S. Golden, J. Chem. Phys. 16, 78 (1948); 16, 250 (1948).
~ E.B.Wilson, Jr., J.Chem. Phys. 4, 526 (1936); 5, 617 (1937);

B. T. Darling and D. M. Dennison, Phys. Rev. 57, 128 (1940);
P. C. Cross, Phys. Rev. 47, 7 (1935); B. I. Crawford, Jr., and
P. C. Cross, J. Chem. Phys. 5, 621 (1937); Grady, Cross, and
King, Phys. Rev. 75, 1450 (1949).

a, b, c Effective rigid-rotor rotational constants expressed in
frequency units (Mc/sec). By convention a &~ b &~ c.

Dimensionless asymmetry parameter defined by
8= (b—c)/(a —c). For nearly prolate-symmetric
molecules 0&B«1.

Dimensionless asymmetry parameter defined by
a = (2b —a —c)/(a —c) = —1+28.

Term value, a function of quantum numbers and
asymmetry, expressed in frequency units (Mc/sec).

A dimensionless quantity, essentially a reduced
energy. It contains the entire effect of asymmetry
on the term value W.

Usual angular momentum quantum numbers.
An index which for a limiting prolate-symmetric top

becomes the quantum number E (projection of J
on the molecule-fixed principal axis of least
moment of inertia). In a slightly asymmetric top
this significance is partially retained, partially lost.
In this paper E l will sometimes be abbreviated
to K, where this can be done without confusion.

A symmetry-indicating index which is +1 or zero.
An asymmetric top state is specified by the
quantum numbers J, E', M, y.

An index having the same significance for an oblate-
asymmetric top as E l does for a prolate-asym-
metric one. See KHC for the relation between
J, E l, El, andy.

The term value is

W, = ,'(a+c)J(J+1)+-,'(a c)E(J, E g-, y;—, 8)

+distortion terms. (1)
%'e may temporarily confine ourselves to the transitions
between states of the same J and of the same E i..
states which in the prolate-symmetric top are degen-
erate. For these transitions we have

~'1=La(& c)t&(~ &-~ 7* &)—&(~—&—I VJ &)I]
+Ldifference of distortion terms]. (2)

When (u —c), 8, and the quantum numbers have been
specified, the rigid-rotor transition frequency repre-
sented by the first bracketed expression can be calcu-
lated as accurately as desired. '

'I King, Hainer, and Cross, J. Chem. Phys. 11, 27 (1943);
Cross, Hainer, and King, J. Chem. Phys. 12, 210 (1944). We
shall refer to these as KHC and CHK, respectively.

~ The correct expression is given later in Eq. (4).
The continued fraction development given in KHC is ex-

tremely convenient and can give any required accuracy; useful

The distortion correction can be expressed as a Taylor's
series in the quantumnumbers. In the following section
we present a semiclassical analysis whose result is to
indicate which in the terms in this expansion may be
expected to be important,

II. DEVELOPMENT OF EXPRESSION FOR
THE DISTORTION CORIMCTION

In this section the notation adopted is that of King,
Hainer, and Cross. 6 In the interest of brevity we shall
carry out the development for the case of a nearly
prolate-symmetric molecule, but the method and many
of its results are much more general than this. At the
end of the derivation we indicate its wider application.

The following symbols and definitions are assigned:
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Before developing an expression for the distortion
correction, we write down a simple approximate expres-
sion for the rigid-rotor frequency. Figure 1, which
shows the absorption frequencies for formaldehyde,
suggests that the variation with J involves a factor
such as [J(J+1)/E'$~. A good approximate expression
has been given by Wang;9 in our notation it is

—c (J+K)! gX

(3)
2 (J E)!(E——1)!(K 1)!1—6x '(1——,'b)x '

Noting that if J&)E, then only a small error is incurred
when (J+K)!/(J K)! i—s replaced by Jx(J+1)», we
find that for our purposes adequate accuracy is obtained
with the simple form"

v=2(a c)LbJ—(J+1)/K'j (f) (»)
f=1.00, 1.00, 0.71, 0.44, 0.26,

for E=1, 2, 3, 4, 5„,respectively.

In this expression the factor f is substantially inde-
pendent of J and 5, but does assume different values,
as shown, for various E.
It is well known that for a nonrigid diatomic molecule,

the term values are

W= BJ(J+1) DJ'(J+1—)' D&0.

Thus, the correction acts to decrease the term value
and is proportional to the square of the angular mo-
mentum of the molecule.

For an asymmetric top, with its three principal
moments of inertia instead of one, we must generalize
this result. We shall assume that the distortion correc-
tion involves terms, nine in all, containing the average-
squared values of angular momenta as projected along
the three principal axes. We calculate these average-
squared momenta by a method discovered and applied
to this type of problem by Cross;" the proof appears
in a paper by Bragg and Golden. "The expression is

(P.')=BW/ba. Since W and a are both expressed as
frequencies, the P's are accordingly dimensionless
momentum numbers.

If now we consider the effect on an energy level of
small independent changes du, db, dc in the rotational
constants a, b, c, we obtain easily the first-order change
in the term value:

dW =da[ ,'J(J+1)+-,'E ,'bdE/db j+d-b[-', dE—/-db j
+dc[',J(J+1) ', E ', (a -b)/(a c)—dE-/d—bj-. —(4)—

approximate calculations can be made by a modification of
Golden's method (reference 4, first paper).' S. C. Wang, Phys. Rev. 34, 243 (1929}.A discussion of this
splitting formula, together with numerical tables, is given by
Hainer, Cross, and King, J. Chem. Phys. 17, 826 (1949} (referred
to as HCK}.

' Here and above E is used as shorthand for the index E 1."P. C. Cross, Phys. Rev. 47, 7 (1935}.In some respects our
development of the centrifugal distortion correction is similar to
that of Cross.

~ J. K. Bragg and S. Golden, Phys. Rev. 75, 735 (1949},

Next we postulate that

sdal +o(Ps )1+~b(Pb )1++ (Pc )ly

sdbl Bs(Ps )1+Bb(Pb )1+Bc(Pc)1&

-', dc' = C,(P,')i+Cb(Pb') i+C,(P,') i.

(6)

The nine coeKcients A, C, represent constants of
the molecule. After some manipulation we find

dWg= L(dEg/db)2+M(de/db)Eg+1V(dE)/db) J(J+1)
+QEP+RE)J(J+1)+5J'(J+1)', (7)

where the new constants I.. -.S involve only a, b, c,
.C, and are hence independent of quantum num-

bers.
The desired frequency correction is the difference of

two such term-value corrections. At this point we
may specialize, both for brevity and because it is appro-
priate to H2CO, to the case of M=0, ~ i=0 transi-
tions. Expressing the energy levels in terms of their
average reduced energy, E, and the rigid-rotor fre-
quency vi~, we arrive at the distortion correction"

4Evg2 dE 2vi~ ( dE)—+M
~

EE+b
(b —c) db (b c) 0 —db)

4vy22Kvi2+.VJ(J+1) +Q E
(b c) (a—-c)

2vig
+RJ(J+1) . (8)

(a-c)

All these terms contain vi2 as a factor, which is the
first important result of our analysis.

We can now also insert the explicit dependence of E
and dE/db on J, E, and b:

E=[ J(J+1)+2E'$—+b[J(J+1)—K']+ (9)

The final expression, simplified by introducing four
new constants, is

dv~g —— vg2[(X,+XcbE)J(—J+1)
+ (Xb+XbbE)E' j. (10)

Thus, we have arrived at the following point: six
adjustable constants —the two rigid. -rotor parameters

"Also used is the expression (3a} and the easily verified fact
that f is suKciently constant so that db 1g/db=(E/5) vga.

The brackets are easily identified as (P,'), (Pb'), and
(P,2). We are now prepared to formulate our theory.
Consider two states whose rotational constants have
undergone small changes de~, db~, dc~, da2, db2, dc2, and
whose energies are thus changed by increments dW&,
dW'~. Focusing our attention on one of these states and
using Eq. (1), we write for the first-order distortion
correction

dW&= (P, )zdai+(Pb )gdbx+(Pc )&dc'.
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(a—c) and (b—c), and the four centrifugal distortion
constants X; ~ X~~—are available for fitting the meas-
ured frequencies of the M=O, hE &

0("a"-t——ype)
transitions of a slightly asymmetric top molecule. Since
in particular cases many more than six such transitions
can be studied, the accuracy of the formula can be
critically tested. The application of this analysis to the
microwave absorption spectrum of formaldehyde is
given in the next section.

It was indicated above that the analysis given is
valid for many asymmetric tops other than nearly
prolate-symmetric ones, assuming that it is valid at all.
Since the experimental evidence conirms this latter
point, it is worth while to indicate the appropriate
extensions.

The various exact and approximate methods for
calculating asymmetric top energy levels have recently
been discussed by King" and by Hainer, Cross, and
King. ' They introduce the convenient ratios
7 =[X'/J(7+1)]& and q=E(x)/J(J+1); these quan-
tities range between 0 and +1 and between —1 and +1,
respectively. The familiar diagram of Fig. 2 shows the
variation of a typical set of energy levels over the
complete range of asymmetry. Several remarks can be
made with reference to this diagram. First, the energy
levels are perfectly symmetrical about the dashed
diagonal line; the prolate-asymmetric treatment using
the asymmetry parameter 5= (1+x)/2 is exactly paral-
leled by the oblate-asymmetric treatment using a
parameter e=(1—x)/2. Replacement of b by e hence
adapts all formulas presented here to the oblate case.

Second, our general expression LEq. (7)7 gives the
distortion correction to a level in terms of its reduced
energy E and the rate of change, dE/db Owing to the.

simple linear relationship between 5, ~, and ~, however,
Eq. (7) can be written with its derivatives in terms of
whichever asymmetry parameter is convenient; it is

'4 G. %. Kin.g, l. Chem. Phys. 15, 820 {1947).

hO 4 -06 -Q4 -Q2 0 02 04 06 QS l.p
ASYMMETRY PARAMKTKR x

F&G. 2. Reduced energy levels of an asymmetric top for J=4
casus asymmetry parameters ~, 5, and ~.

perfectly general and applies over the entire range of
asymmetry. The problem is thus reduced to one of
6nding adequate expressions for E(x) and dE//dx. As
.pointed out by King, an expansion of E in terms of 5
or e diverges when carried to the dashed diagonal line,
so that such expansions are useful only in the rather
large upper left and lower right corner regions. Suitable
approximations are also discussed in reference 12.

A third remark applies to the more specific case of
those M=O transitions between adjacent levels for
which the Wang formula LEq. (3)7 is applicable. The
same considerations of remoteness from the dashed
diagonal apply, and for high values of X (i.e., high K ~

for prolate-asymmetric or high E~ for oblate-asym-
metric) the Wang formula is useful to surprisingly large
values of 6 (or e). This point is thoroughly discussed
in HCK.

III. APPLICATION TO THE MICROWAVE
SPECTRUM OF HgC120

To test the six-constant formula developed above we
have measured the frequencies of seventeen AJ=O,
hE ~

——0 absorption transitions of ordinary monomeric
formaldehyde gas H2C"O. The values of J range from
2 to 31 and those of E ~ from 1 to 5.

The constants are evaluated according to the follow-
ing procedure. De6ne the symbols

v&= true frequency (measured),

v, = calculated rigid-rotor frequency,

vs= distortion correction to rigid-rotor frequency

(this is called de~2 in the derivation above).

For much of the calculation it is convenient to deal
with the readily recognized dimensionless quantities
obtained when the above frequencies are divided by
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(a—c)/2. These root-differences will be referred to
simply as "roots."

IOOPOO
j

& I I l
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~ I I I
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& I I 1 I
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& I i I
f

& I

r, =2r )/(a —c),

r, = 2v./(a c—),
rg= 2vd/(a —c).

(r, is exactly the quantity E& E&—
from the rigid-rotor calculation),

TABLE I. Rigid-rotor constants and distortion
coefBcients of H2C"O.

8 = (b —c)/(a —c) =0.019,466,6+5
b —c=4829.7+0.3 Mc/sec
a —c=248, 102+12 Mc/sec

X;= 7.74, X;q=+2.33 all X10~, and all estimated
XI,= —277, Xqf, =+242 accurate to ten percent

TABLE II. Calculated distortion —corrected spectrum
compared with measurements.

The steps are as follows:

1. Assume a value of b=(b —c)/(a —c). The energy level
expansions in powers of 8, as given in Table III of KHC can be
used for a 6rst crude estimate of B. A feedback method for
re6ning this value in Appendix A. The initially chosen value of 8
should be a rounded number of two or three signi6cant 6gures.

2. Calculate the rigid-rotor quantities r, corresponding to all
the measured transitions. Even for this first computation the
continued-fraction method of solving the secular equations is
about as easy as the Mathieu approximation and has the ad-
vantage that its accurate values can be useful in later interpolation
calculations. The frequency calcuIations should preferably be
made to at least seven places.

3. Pick a likely value for (a—c). If some low J and E 1=1
transitions are available, these have the smallest possible distortion
correction and can hence be used to estimate (b—c) initially to
three or four significant 6gures; (a—c} is obtained by combining
this value with the assumed value of b.

4. Calculate all the "true" roots r&,. These are simply the
measured true frequencies v& divided by (a —c}/2.

S. Form all the quantities rq/r, =(r,—rf)/r, . All subsequent
manipulations are performed with these quantities, which may
be given the symbol rg, g.

6. Within each family of the same E, form 6rst differences
Tg+I, ~—Tg, J:, and divide by 2(J+1). These are the provisional
values of (X;+X;kE) for the various values of E.

7. Calculate X; and X;& either graphically or, preferably, by a

K, =4
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FIG. 4. Distortion corrections and residual errors.

least-squares solution. It will be found that this result is relatively
insensitive to errors in the initial choice of 8, and the values
obtained will probably not require drastic modi6cation. On the
basis of the calculated X; and X;I, calculate the J corrections
(X;+X;~)J(J+1) for each line.

8. Subtract these J corrections from the total corrections Tg, E.
to obtain the provisional E corrections for each line. These
quantities are the "numerical remainders" referred to in the
Appendix.

9. Divide these E corrections by E2 and examine whether the
trend with K is linear. In making a least-squares evaluation of XI,
and X» it is advisable to average the quantities within each
value of K and then weight the averages equally. This prevents
overemphasis of the data associated with any particular E value.

10. Correct the value of (a—c), if necessary, by the method of
the Appendix. Compute a new value of 8 rounded to four signi6-
cant figures.

11. Repeat steps 2 through 9; the result should be a much
improved E-fit. Having computed the r, for the new value of 8,
it is now appropriate to vary (b —c). The quantity (a—c) will,
of course, vary proportionally, giving rise to new values of r&.

These can rapidly be made to give new approximations to the E
correction, as shown in Fig. 3, where 8 is near the correct value.

Transition

Oo, o~io, I
21, 2~21, I
31,3~31,2

41, 4~3I, 3

51, 6~51, 4

72, e~72, 6

82, v~82, e

92, 8~92, v

143, 12~143,11
153 13~153,12
163 14~163,13
173, 15~173,14
224, 19~224, 18
234 2o~234, IS
244, 21~244, 2o

254, 22~254, 21
264 28~264, 22

315,2~315, 2e

Correction used
(Mc/sec)

not calc.
0.37
2.49
8.04—19.35—13.55—25.38—44.73—56.71—89.73—138.15—207.53—147.87—216.68—312.44—443.78

-621.42—347.94

Calc. freq.
(Mc/sec)

not calc.
14,488.74
28,975.07
48,284.39
72,407.81

8884.44
14,725.97
22,964.53

7892.49
11,753.88
17,028.65
24,069.98

7362.77
10,366.87
14,361.53
19,595.83
26,359.16

7827.25

Meas. freq.
(Mc/sec)

72,838.14
14,488.65
28,974.85
48,284,60
72,409.35

8884.87
14,726.74
22,965.71

7892.03
11,753.13
17,027.60
24,068.31

7362.60
10,366.S1
14,361.54
19,59S.23
26,358.82

7833.20

Error
(Mc/sec)

~ ~ ~

+0.09
+0.22—0.21—1.54—0.43—0.77—1.18
+0.46
+0.75
+1.05
+1.67
+0.1?
+0.36—0.01
+0.60
+0.34—5.95

From this point the procedure is essentially one of
successive re6nings and will not be further described.
Note that when (b —c) is varied the change of E cor-
rection is greatest for E= 1 with dilutions of 1/4, 1/9,

~ . ~ for the successively higher E's. This provides a
means for straightening the E-Qt. By carrying out the
6tting procedure outlined above we have arrived at the
results shown in Tables I and II.

As indicated earlier, the distortion corrections are
proportional to the rigid-rotor frequencies s „and it is
hence natural to carry out the 6tting process in terms
of the fractional quantities (r,—r&)/r, or (v.—v,)/v, .
Figure 4 shows the values of distortion correction and
residual error expressed in parts per million of the
calculated rigid-rotor frequency. Figure 4 and Table II
thus display the corrections in fractional parts and lQ
terms of frequency, respectively.
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Since the test of any theory is its ability to predict,
the computations were based entirely on the sixteen
lines with E equal to one through four, and the fre-
quency of the previously unobserved 31~,2~315, 26

transition was predicted with the use of the best-fit
constants. This transition was subsequently searched
for and found very nearly at the predicted frequency.
The error amounts to only 1.7 percent of the distortion
correction applied, or one part in 1300 of the measured
frequency. The sixteen lines used in evaluating the
constants are fitted to one part in 20,000. It seems
evident that a useful amount of truth resides in the
simplified distortion theory.

In obtaining the values set forth in Table I a total of
eight cozpplete fitting processes were carried out in-
volving four slightly different values of 8 and four
slight variations of (b—c) and (a—c). The limits of
error stated in Table I are estimates based on the
sensitivity of the residual errors to variation of the
respective parameters. Slight variations in 8, for in-

stance, can be accommodated by corresponding varia-
tions of the other parameters, particularly the distortion
coeScients. Variations in the rigid-rotor parameters
3, (b c), a—nd (a—c) greater than those indicated give
rather pronounced deviations from the required form;
and it is on this basis that these limits of error are
assigned.

The individual values of the distortion coefficients
are purposely assigned rather large uncertainties,
although the three-figure values shown result quite
dehnitely when the stated values of 3, (b c), and-
(a—c) are used. The striking fact is that for every
value of rigid-rotor constants in the narrow range where
a reasonable fit can be obtained, the net values of the
distortion corrections are predicted with great consis-
tency. Even though the individual values of X,' XI,~
do vary appreciably as shown in Table III, their
combination to give the distortion correction results in
a highly stable value.

We conclude that although the individual values of
X; ~ .X» are not known with great certainty the
distortion corrections can be taken as quite accurate.

For the three lines of Table III, Bragg. and Shar-
baugh" have published approximate values of the

TAsLE III. Distortion corrections for some typical lines calculated
with three slightly different sets of constants.

Identia-
cation (b —c) (a -c) x& mrs x& x&~

A 0.019,466,60 4829.7 248, 102 7.74 2.33 —277 242
8 0.019,466)39 4829.6 248,099 8.94 1.97 —310 251
C 0.019,466,68 4829.8 248, 106 7.75 2,33 —242 232

Identifi-
cation

A

C

9s,a~9a, v

(Mc/sec)
44.7
44.3
46.2

171,13~173,14

(Mc/sec)
207.5
206.9
208.9

254,%%-+254,21

(Mc/sec)
443.8
441.3
442.7

"The first microwave measurements of formaldehyde were
reported by J. K. Sragg and A. H. Sharbaugh, in Phys. Rev. 75,

TABLE IV. The rotational constants of H3C"0, and the
corresponding effective moments of inertia.

Rotational
constant

Value
(Mc/sec)

282,106
38,834
34,004

Moment of inertia

1.792 amu-A'
13.015
14.864

distortion correction calculated by the method of Wilson
and Howard. These corrections were given as 30, 147,
and 305 Mc/sec, respectively, which are uniformly less
than our values in the ratio of about 0.68 to one. This
agreement is considered very satisfactory.

IV. THE ROTATIONAL CONSTANTS OF H2C"0

From the analysis just given we have obtained values
of the eGective rigid-rotor rotational constants in the
form (a—c) and (b c). An a—dditional piece of informa-
tion, permitting individual evaluation of a, b, and c, is
the measured value of the Op, p~1p, 1 transition fre-
quency, which is simply (b+c). We must remember
that the u, b, and c are approximately, although not
exactly, reciprocal moments of inertia averaged with
respect to the zero-point vibrations. If we assume that
centrifugal distortion is negligible for the Op, p~ip, i
transition (it vanishes identically for the initial level),
then we obtain u, b, and c immediately. These values,
together with the eGective moments of inertia to
which they correspond, are given in Table IV.

Table IV shows two points of importance. First, the
values obtained from the ultraviolet work of Dieke and
Kistiakowsky" are rather spectacularly confirmed. They
obtained for a and (b+c) the values 281,900, and
72,850 Mc/sec, respectively, to four significant 6gures.
These agree excellently with our more accurate values
of 282, 106 and 72,838 Mc/sec.

The second point is that although the molecule is
planar its largest moment of inertia, I„is not equal to
the sum of the other two. This "inertia defect" is a
well-known consequence of zero-point vibration and
can be calculated. ' The fact that it is so large makes
those structure calculations which appear in the litera-
ture" much less accurate than indicated.

We have made extensive measurements of the
microwave spectrum of the isotopic molecule H~C130,
which we intend to report later. With the aid of these

1774 (1949). In this excellent work they measured and correctly
identified the four transitions 92, g +92, 7, 173, 13~173,14,254, 2q~254, q1

and 264, 23~264, 32. Their fifth unidentified line we have shown to
be the 92, s—+92, 7 transition of the isotopic molecule H~C"O.
Other early unpublished work was done by R. I. Kyhl and M.
W. P. Strandberg, who are responsible for the 00, 0

—+20, i, 31,3~31,q,

41,4~1,3, and 51, 5—+51, 4 measurements here reported.
"G. H. Dieke and G. B. Kistiakowsky, Phys. Rev. 45, 4

(1934).They resolved the rotational fine structure of an electronic
transition with six vibration bands between 3530 and 3260A.
Infrared work by H. H. Nielsen and collaborators has confirmed
certain of the results but not improved their accuracy.

'7 G. Herzberg, Irbfrured uM Rumue Spectru of Polyutomic
Molecgles (D. Van Nostrand Company, Inc. , New Vork, 1945),
p. 440,
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measurements, approximately corrected for the e8ects
of zero-point vibration, we have estimated the equi-
librium structural parameters of formaldehyde to be
the following: C—H distance 1.12~0.01A, C—0 dis-
tance 1.21~0.01A, H —C—H angle 118'&2'. While
these 6gures are tentative, we feel that they represent
the best values available.

Finally, we show in Fig. 5 a map of the microwave
spectrum of H2C~O. The intensities are calculated
according to the Van Vleck-KeisskoG formula, but all
quantities entering into the calculation are experi-
mentally known. In particular, the dipole moment has
been measured as 2.31&0.04 debye and the line-width
parameter E/6' is 97&10 microns Hg per Mc/sec. In
a recent letter (Phys. Rev. 82, 95 (1951))J.N. Schoolery
and A. H. Scharbaugh give a precision measurement
of the formaldehyde dipole moment. The two values
are 2.339+0.013, and 2.340~0.019 debye units, for the
92, S~92, 7 and 3&, 3

—+33, 2 transitions, respectively. This
supersedes the earlier, and lower, result of Bragg and
Scharbaugh and is in excellent agreement with our
less precise results.

The method of preparation of formaldehyde developed
for these experiments is due to Bailey. ' Well-dried
calcium formate was decomposed at temperatures in
excess of 150'C to form solid calcium carbonate and
monomeric formaldehyde.

The authors would like to express their appreciation
for the assistance of Miss Mida Karakashian in carrying
out computations and for the laboratory assistance of
Messrs. J. D. Kierstead and E. C. Ingraham.

v5 —vc vd —vc vd ~ (1a)

Define the 6's of various quantities as the increment in going
from incorrect to correct values:

hv, = v, '—v,', similarly for 5's of vd, (a—c), (b —c).

Also, by Kq. (1a), we have Av, =dvd, so again we drop sub-
scripts and refer simply to d v.

The quantity (b —c) can be taken as known (see step 3) and so

'8 B. P. Dailey, private coaimunication.

APPENDIX

FEEDBACK METHOD FOR CORRECTING
ASSUMED VAIUES OF 6 AND (a—c)

Say that the calculation has been carried through step 8, but
that the results are known to be incorrect. Differentiate between
these incorrect and the as yet unknown correct values by super-
scripts i and c, respectively: v, ', v&', vd', correct values (unknown);
v,', v~', vd', incorrect values from first calculation:

Vg =Vg Vd .
But v& is a measured frequency and cannot be incorrect; hence,

drop its superscript:
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can (X,+X;I,E)J(J+1).Unknown are (a—c)' and 8'.

~.'= UP(~+ I)/~j~L(I —~)'j"/L(~ —~)'3~ '

Taking logarithmic derivative and applying to the finite changes
6, we obtain

Av/v, '= KA(b —c)/(b —c)'—(K—1)h{a—c)/(a —c)'. (2a)

As stated above, however, the first term can be taken as zero,
glvlIlg

b, (a—c)/(a —c)'= I
—1/(E —1)jav/v, '.

But b,v = vd' —vd' and we have

(3a)

vd' ——v, '{(X;+X;~)J{J+1)+(Xk+XI,~)E2 j
= (v,'+~v) t (X;+X;~)J{J+1)+(X&+X&~Ej,

vd'= v, 't (X;+X;qE)J(J+1)+numerical remainder j.
In this the X; ~ Xqq are all the correct values; the numerical

remainder is, for each transition, the quantity left when

(X;+X;I,E)J(J+1)is subtracted from the (r&—r, ')/r, '. See step 8.
We obtain

Av )numerical remainder —(Xg,+XI'~)E j
1—L(x;+x;~)J(J+1)+(x +x ~)E'j

= —Lnum. rem. —(Xq+Xq~) E2jv, '/vg.

Thus, finally, we have

A(a —c) Lnumerical remainder —(XI,+XII,E)E2) v '
(a—c)' E—1 Vg

(4a)

(Sa)

For initial correction purposes the factor v, '/v& may be taken
as unity: refined values can be used in later applications of the
formula. The presence of E—1 in the denominator compels the
numerator to vanish for E=1, hence the average value of the
numerical remainders for E=1 is equal to XI,+Xk&. At this
point it is possible to estimate the variation of (X~+XqI,E)E2
with E's greater than 1, but it is usually better to neglect this
quantity compared with the numerical remainder and form a
best estimate of the required correction b, (a—c). With this
information a new value of 8, rounded to perhaps four significant
figures, can be used to recompute the complete set of roots r,.

For later application the complete expression obtained by
combining Eqs. (2a) and (4a) can be used instead of Eq. (Sa).

FREQUENCY IN KILO" MEGACYCLES

Fn. 5. Map of the H2C~O spectrum between QNO and 90,000
Mc/sec. The intensities are calculated, but the quantities entering
into the calculation have been measured. Solid lines represent
observed absorption frequencies; dashed lines are computed.


