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A relation is obtained between the generalized resistance and the Quctuations of the generalized forces
in linear dissipative systems. This relation forms the extension of the Nyquist relation for the voltage
fluctuations in electrical impedances. The general formalism is illustrated by applications to several par-
ticular types of systems, including Brownian motion, electric Geld Quctuations in the vacuum, and pressure
fluctuations in a gas.

I. INTRODUCTION

~ 'HK parameters which characterize a thermo-
dynamic system in equilibrium do not generally

have precise values, but undergo spontaneous Quctua-
tions. These thermodynamic parameters are of two
classes: the "extensive" parameters, ' such as the volume
or the mole numbers, and the "intensive" parameters'
or "generalized forces, "such as the pressure or chemical
potentials.

An equation relating particularly to the Quctuations
in voltage (a "generalized force") in linear electrical
systems was derived many years ago by Nyquist, ' and
such voltage Quctuations are generally referred to as
Nyquist or Johnson "noise. " The voltage fluctuations
are related, not to the standard thermodynamic param-
eters of the system, but to the electrical resistance. The
Nyquist relation is thus of a form unique in physics,
correlating a property of a system in equdibriN~ (i.e.,
the voltage fluctuations) with a parameter which
characterizes an irreversible process (i.e., the electrical
resistance). The equation, furthermore, gives not only
the mean square Quctuating voltage, but provides, in
addition, the frequency spectrum of the Quctuations.
The proof of the relation is based on an ingenious union
of the second law of thermodynamics and a direct
calculation of the Quctuations in a particular simple
system (an ideal transmission line).

It has frequently been conjectured that the Nyquist
relation can be extended to a general class of dissipative
systems other than merely electrical systems. Yet, to
our knowledge, no proof has been given of such a
generalization, nor have any criteria been developed
for the type of system or the character of the "forces"

* This work was supported in part by the ONR.
f Now at Oak Ridge National Laboratory, Oak Ridge, Ten-

nessee.
'For the theory of Quctuations of extensive parameters see

Fowler, Statistical 3/mechanics (Cambridge University Press,
London, 1936), second edition; or Tolman, Principles of Statistical
3Eechanics (Oxford University Press, London, 1938). A recent
development of the theory is given by M. J. Klein and L. Tisza,
Phys. Rev. 76, 1861 (1949).

~ A statistical mechanical theory of fluctuations of intensive
parameters will be given in a subsequent paper by R. F. Greene
and H. B. Callen.

g H. Nyquist, Phys. Rev. 32, 110 (1928).A very neat derivation
and an interesting discussion is given by J. C. Slater, Radiation
Laboratory Report; "Report on Noise and the Reception of
Pulses, "February 3, 1941, unpublished.

to which the generalized Nyquist relation may be
applied. The development of such a proof and of such
criteria is the purpose of this paper (Secs. II, III, and
IV). The general theorem thus establishes a relation
between the "impedance" in a general linear dissipative
system and the Quctuations of appropriate generalized
"forces."

Several illustrative applications are made of the
general theorem. The viscous drag of a Quid on a
moving body is shown to imply a Quctuating force, and
application of the general theorem immediately yields
the fundamental result of the theory of Brownian
motion. The existence of a radiation impedance for the
electromagnetic radiation from an oscillating charge is
shown to imply a Quctuating electric 6eld in the
vacuum, and application of the general theorem yields
the Planck radiation law. Finally, the existence of an
acoustic radiation impedance of a gaseous medium is
shown to imply pressure Quctuations, which may be
related to the thermodynamic properties of the gas.
The theorem thus correlates a number of known eGects
under one general principle and is able to predict a
class of new relations.

In the 6nal section of the paper, we discuss an
intuitive interpretation of the principles underlying
the theorem.

It is felt that the relationship between equilibrium
Quctuations and irreversibility which is here developed
provides a method for a general approach to a theory
of irreversibility, using statistical ensemble methods.
We are currently investigating such an approach.

II. THE DISSIPATION

A system may be said to be dissipative if it is capable
of absorbing energy when subjected to a time-periodic
perturbation (as an electrical resistor absorbs energy
from an impressed periodic voltage). The system may
be said to be linear if the power dissipation is quadratic
in the magnitude of the perturbation. For a linear
dissipative system, an impedance may be de6ned, and
the proportionality constant between the power and
the square of the perturbation amplitude is simply
related to the impedance Dn the electrical case, Power
= (voltage)' R/

~
Z

~
']

In the present section we treat the applied perturba-
tion by the usual quantum mechanical perturbation
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methods and thus relate the power dissipation to
certain matrix elements of the perturbation operator.
We thereby show that for small perturbations, a
system with densely distributed energy levels is dissi-

pative and linear, and we obtain certain pertinent
information relative to the impedance function.

I.et the hamiltonian of the system in the absence of
the perturbation be Ho, a function of the coordinates

qc qz ~ and moments pc. pz. . of the system.
In the presence of the perturbation, the hamiltonian is

II=IIo( qz Pz . )+VQ( . clz Pz".). (2.1)

where Q is a function of the coordinates and momenta,
and V is a function of time which measures the instan-
taneous magnitude of the perturbation.

Again invoking the electrical case as a clarifying
example, we may have V as the impressed voltage and
Q=ge,x,/l. , where s; is the charge on the oth particle,
x; is its distance from one end of the resistor, and I. is
the total length of the resistor.

If the applied perturbation varies sinusoidally with
time, we have

whence

E-( )~)" ( )n(E)dE, (2.10)

a system initially in the eth state is

g V' I l&E-+h IQIE-)I'p(E-+h )—
I
&E„—h~

I QIE„&I'p(E.—»)}. (2.'t)

To predict the behavior of a real thermodynamic sys-
tem, we must average over-all initial states, weighting
each according to the Boltzmann factor exp( E„/—kT).
Let the weighting factor be f(E„),so that

f(E.+h~)/f(E. )=f(E )If(&- h~)—
= exp( —hco/kT). (2.8)

The power dissipation is, then,

Power=s�«o'~Z-f
l(E.+» I Q IE.& I'n(E-+»)

—
I &E-—»

I Q IE-& I'p(E.—»)}f(E.) (2 9)

The summation over n may be replaced by an
integration over energy

V= V0 sin&et. (2 2)
~00

Power=porVo'co p(E)f(E)
We Inay now employ standard time-dependent per-

turbation theory to compute the power dissipation.
Let f~, fo P„be the set of eigenfunctions of the
unperturbed hamiltonian Ho, so that

II' =EH., (2.3)

and let the true wave function be f. Expanding P in
terms of the f„

P=P„a„(t)P, (2.4)

and substituting into the Schroedinger equation for cP,

Hog+ Vo sincotQcP=ihctf/ctt, (2.5)

one obtains a set of Grst-order equations for the coefh-
cients a„(t), which may readily be integrated. If the
energy levels of the system are densely distributed,
one thus 6nds that the total induced transition proba-
bility of a system initially in the state cp„ is

-', orVo'h 't l(E +hcolQIE ) 'p(E„+hco)
+ l(E —» Q IE-& I'n(E- —») }, (2 6)

where the symbol (E +»
I QIE„& indicates the matrix

element of the operator corresponding to Q between
the state with eigenvalue E„+kau and the state with
eigenvalue E„.The symbol p(E) indicates the density-
in-energy of the quantum states in the neighborhood
of E, so that the number of states between E and
E+bE is p(E)8E.

Each transition from the state cP„ to the state with
eigenvalue E„+Ace is accompanied by the absorption
of energy», and each transition from f„ to the state
with eigenvalue E„—ku is accompanied by the emission
of energy Ace. Thus the rate of absorption of energy by

V= Z(co) Q. (2.12)

The instantaneous power is VQE/ I
Z I, and the average

power is

Power= -', VooE(co)/ I Z(co) I
' (2.13)

where E(co), the resistance, is the real part of Z(co).
If the applied perturbation is not sinusoidal, but

some general function of time V(t), and if v(co) and

ct(co) are the fourier transforms of V(t) and Q(t), the
impedance is de6ned in terms of the fourier transforms:

v(co) =Z(co) V(co). (2.14)

In this notation we then obtain, for the general
linear dissipative system,

E/IZI'= " n(E)f(E)I l&E+h IQIE&l'p(E+h )

—
I &E—»IQIE& I'p(E —») }dE (2 13)

40

X I I &E+ hco
I Q IE) I'p(E+hco)

—I&E—h~lQIE&l'p(E —»)}«(211)
We thus 6nd that a small periodic perturbation

applied to a system, the eigenstates of which are densely
distributed in energy, leads to a power dissipation
quadratic in the perturbation. For such a linear system
it is possible to define an impedance Z(co), the ratio of
the force V to the response Q, where all quantities are
now assumed to be written in standard complex
notation,
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we introduce the density factor p(E). Thus we finally
obtain

III. THE FLUCTUATION

We have, in the previous section, considered a system
to which is applied a force V, eliciting a response Q.
We now consider the system to be left in thermal
equilibrium, with no applied force. We may expect,
even in this isolated condition, that the system will
exhibit a spontaneously fluctuating Q, which may be
associated with a spontaneously fluctuating force. We
shall see, in this section, that such a spontaneously
Quctuating force does in fact exist, and we shall 6nd
its magnitude.

Let (V ) be the mean square value of the spontane-
ously fluctuating force, and let (Q') be the mean square
value of the spontaneously fluctuating Q. Although
we shall be primarily interested in (V'), we shall find it
convenient to compute (Q') and to obtain (V') from
Eq. (2.14).

Consider that the system is known to be in the nth
eigenstate. The hermitian property of IIO causes the
expectation value of Q, (E IQIE„), to vanish. The
mean square fluctuation of Q is therefore given by the
expectation value of (c)' or (E I

Q'I E„).Then

(E-I @'IE-&=2-&E-I @I E-&«-I 01E.&= h 'Q„&E„
I PpQ —QHp I

E )
X(E IHpQ —QPplE )= h '2-(E-—E-)'I «-I Q IE-) I'.

00 00

&0'&= " h~' " p(E)f(E){I&E+h~IQIE&l'p(E+h~)

+l(E—h IQIE&l'p(E —h )}dE d, (35)

or, utilizing the deinition (2.14) of the impedance,

(V*)= t IZlh- t .(E)f(E)J, 0

X{I&E+h IQIE&l'p(E+h )

+I«—h~lQIE&l'p(E —h~)}dE d~ (36)

IV. THE GENERALIZED NYQUIST RELATION

(3 1) J p(E)f(E) { I &E+hcp
I Q IE& I'p(E+ hpp)

0

In the two previous sections we have computed
R/IZI' and (V'). These quantities involve the con-
structs

Introducing a frequency ~ by

hcd= IE„—E„l, (3.2)

the summation over ns may be replaced by two integrals
over cp (one for E (E and one for E„)E):

&E. I
O'I E-&= h 'J" (h~)'I (E-+h~

I Q I
E.& I'

~l&E—h~IQIE&l'p(E —h~))dE, (4.1)

the negative sign being associated with R/IZI' and the
positive sign with (V'). We shall now see that the two
values of (4.1) are simply related, and thus establish
the desired relation between (V') and R(cp).

Consider 6rst the value of (4.1) corresponding to the
negative sign, which we denote by C(—).

Xp(E„+hcp)hdcp+h ' (hcp)'
J„

X I(E„—hcplQIE„)l'p(E —hcp)hdcd.

f
h~'{ I(E-+h~ I Q I E-& I'p(E-+ h~)J,

+ l(E.—h~IQIE-&I'p(E- —h~) }d~ (33)

The Quctuation actually observed in a real thermo-
dynamic system is obtained by multiplying the Quctu-
ation in the nth state by the weighting factor f(E„),
and summing

&Q'&= Zf(E-) i" »'{
I &E-+h~

I Q I E-) I'p(E.+h~)
0

c(—)=j f(E) I &E+»IQIE&l'p(E+h~) p&E)dE
0

f(E) I &E—»
I Q I E) I 'p(E) p(E—hcp)dE (4 2)

In the second integral we note that (E—hpplQIE)
vanishes for E(leo, and making the transformation
E~E+hcp in the integration variable, we obtain

C(—)=
~

l(E+hpilQIE)l p(E+hcp)p(E)f(E)
0

X {1 f(E+hpp)/f(E) ) dE—. (4.3)

By Eq. (2.8) this becomes

Xp(E+ hpi) p(E)f(E)dE (4.4).
+ I &E-—h~lQIE-&I'p«- —h~) }d~ &34& C(—)= {1—exp( h~/hT) } t

I &E+h~lQIE& I'
0

As in Eq. (2.10), the summation over n may be
replaced by an integration over the energy spectrmn if
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If t."(+) denotes the value of (4.1) corresponding to
the positive sign, we obtain, in an identical fashion,

X t I&F+k~lglE&l'p(F+k~)p(E)/(F)dF-, (4.6)
0

and from Eq. (3.6),

(V')= " IZI'k~ «1+exp( k&a/k—T)}

X " l&F+k~IQIE&l'p(E+k~)t(E)f(E)de~ (4 t)J,
Comparison of these equations yields directly our
fundamental theorem:

where

&V')= (2/s) it E((o)E(co, T)dcd,
J,

(4.8)

E(~, T)= ,'h~+h~ke-xp(k&/kT) 1j ' —(4.9-).

It may be recognised that F(co, T) is, formally, the
expression for the mean energy at the temperature T
of an oscillator of natural frequency m.

At high temperatures, F(ra, T) takes its equipartition
value

F&cd, T)~kT, (kT&)ka)) (4.10)

and the generalized Nyquist relation takes its most
familiar form

(V') (2/s)kT ~R(co)dry. (4.11)

To reiterate then, a system with a generalized
resistance A(co) exhibits, in equilibrium, a Quctuating
force given by Eq. (4.8) or, at high temperature, by
Eq. (4.11).

We shall now consider a few speci6c applications of
this theorem. The application to the electrical case is
obvious, the general Eq. (4.8) being identical with the
Nyquist relation if the force V is interpreted as the
voltage. The content of the general theorem is, however,
clari6ed by considering certain less trivial applications.

V. APPLICATION TO BROWNIAN MOTION

The fundamental result of the theory of the Brownian
motion of a smaH particle immersed in a Quid is that
the particle moves in response to a randomly Quctuating

C&+)= «1+e"p&—k~/kT)» i" I&F+""I&I+&I'
~0

Xp(Z+ka)) p(F)f(E)dF.. (4.5)

With these alternative expressions for (4.1), we can
write, from Eq. (2.15),

~( )/l~( ) I'= «1—em( —k /kT)}

force F(t) (with components F„F„,F,) such that

&F ')= (2/s)kTrt dco. (5.1)

Here g is a frictional constant, so dered that the
viscous drag on a particle moving with velocity e is

Frictional force= —qe. (5.2)

(If, in particular, the particle is spherical, q is known
by Stokes' law as 6s" (viscosity) (radius). )

It is interesting to recall brieQy the rather compli-
cated and circuitous chain of reasoning by which the
above result is obtained. One Qrst makes the ccssccmptiorc

that the particle moves in response to a randomly
Quctuating force which has a constant, but unknown,
spectral density. (The spectral density is, in actuality,
not constant, and Eq. (5.1) is not valid at high fre-
quencies. ) By application of the theory of stochastic
processes, one is then able to predict the distribution
functions for either the displacement or the velocity of
the particle. 4 The distribution function for displacement
yields the diBusion constant, which in turn may be
related by the Einstein relation' to the frictional
constant p, thus evaluating the spectral density. '
Alternatively, the distribution function for velocity
yields the energy, which is known by the equipartition
theorem and which therefore evaluates the spectral
density, yielding Eq. (5.1).

W'e now apply our general formalism to the Brownian
motion. We assume the existence of a viscous force as
given by Eq. (5.2). The system of a particle in a Quid,
the particle being acted on by an external force, is then
dissipative and linear. The real part of the impedance
is simply q (the inertial mass of the particle giving a
pure reactance of mar). We conclude immediately, in
accordance with Eq. (4.8), that a particle in a Quid is
acted upon by a spontaneously Quctuating force for
which

(F.')=(2/s)g " E(o), T)dcd.
0

(5.3)

For high temperatures or low frequencies, (kco«kT);
this reduces to Eq. (5.1).

4 See M. C. Wang and G. E. Uhlenbeck, Revs. Modern Phys.
17, 323 (1945); and J. L. Doob, Ann. Math. 43, 351 (1942).

See A. Einstein, Investigations un the Theory of the Brmoeiee
Mceemeet (Dutton and Company, New York); or A. Einstein,
Ann. Physik 17, 549 (1905).

6 A similar analysis has been applied to the Bow of heat by
L. S. Ornstein and J. M. W. Milatz, Physica 6, 1139 (1939).

VI. ELECTRIC DIPOLE RADIATION RESISTANCE AND
ELECTRIC FIELD FLUCTUATIONS

IN THE VACUUM

An oscillating electric charge radiates energy, leading
to a radiation resistance. We shall see that this radiation
resistance implies a Quctuating electric 6eM as given by
the Planck radiation law.
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Consider a dipole, of charge e, displacement x, and
dipole moment p=ex. Let one charge be axed and let
the other oscillate so that

P= Po since(. (6.1)

It is well known that the electric dipole radiation leads
to a dissipative force'

Fp Ppe———'c Pd'p/dP, (6.2)

VIL ACOUSTIC RADIATION RESISTANCE AND
PRESSURE FLUCTUATIONS IN A GAS

We now consider the acoustic radiation from a small
oscillating sphere in a gaseous medium. This radiation
leads to a radiation impedance which, in accordance
with our general theorem, implies a Quctuating pressure
in the gas.

The wave equation for the propogation of pressure
waves in the gas is

where e is the velocity of the moving charge. The
equation of motion of this charge is

V'P= c 'O'P/Bt', (7.1)

md p/dt+rrpppppx+F p= F, (6 3)

where Ii is the applied force, and coo is the natural
frequency associated with the intra-dipole binding
force. Inserting (6.1) in (6.3) we get

F=rNPpe '(&ppp —oP) sin~t+ppeaPc~Pp cosM$. (6.4)

One may note that the average rate of radiation of
energy (Fp) is

(Fp) = p'(—
ecpo cP'Pp)(coPpe ') =—,'co4c 'Pp' (6.5)

where c is the velocity of sound in the gas. Let the
radius of the sphere be a, and let

a=ao+e '"'Bu (7.2)

so that the sphere expands and contracts sinusoidally.
The boundary condition to be satisfied by the pressure
waves at r=ao is

p8'a/Bt'= BP/Br—at r = ap, (7.3)

where p is the equilibrium value of the density. The
solution of these equations is readily found to be

The real part of the impedance is obtained by taking
the ratio of the in-phase component of Ii to ~. Thus

g(co) = (p'epp'c 'Pp)/(s&Ppe ') =-Ppe'c 'oP. (6.6)
where

P=r 'Pp exp(iKr icot), —

E= ra/c

(7 4)

(7.5)

According to our general theorem, we now deduce
that there exists a randomly Quctuating force eh on
the charge, and hence a randomly Quctuating electric
field B„such that

(cPg,P) = (2/pr) t g(pp, T)—cPc—P~Pd&y,

0
or

(S.P)=(4/3)pr 'c '

~ co

X
~

{-', hra+ hppLexp(hem/hT) —17-'I ppPd(o. (6.7)
0

This conclusion can be put into a more familiar
form by utilizing the fact that the energy density in an
isotropic radiation field is simply

and

Pp= —pcoPapPba/1+iKap7 L1+(. Ka)p'7

Xexp( —iKap). (7.6)

Thus, the compressive force acting on the surface of
the sphere is

F=4prapPp exp(iKap i&st), — (7 7)

and defining the radiation impedance as the ratio of
complex force to complex velocity, we find

2-F/[ i' exp(- ippt)-ba7
Z [4prap pc(Eap) p4prap pcKa—p7/[1+ (Eap) 7. (7.8)

The generalized Nyquist relation now states that a
sphere immersed in a gas will experience a Quctuating
compressive force, such that

Energy density=(8')/4pr=3(8, P)/4pr

whence

Energy density

(6.g) (F')= (2/Pr) E(a), T)4PrapPPc(PPap/c)'
aJ

XL1+ (cheap/c)'7 'dpp. (7.9)

=pr 'c '
l {-,'ha)+hcoLexp(her/hT) —17—'}co'dpp (69)

The Quctuating pressure is the compressive force per
unit area on a vanishingly small sphere.

The first term in this equation gives the familiar
infinite "zero-point" contribution, and the second term
gives the Planck radiation law. '

or

(P') = lim (F')/(4prapP)',
ay-+0

(P')=gpr 'c 'p ~ F(a) T)ppPd(o—. —

(7.10)

(7.11)
7 Vf. Heitler, The Qgaetem Theory of Radiation (Oxford Uni-

versity Press, London, 1936).
The interaction of free electron and radiation 6eld has been

discussed from a somewhat different point of view by W. Pauli,
Z. Physik 18, 272 (1923);A. Einstein and P. Ehrenfest, Z. Physik
19, 301 (1923).

This result may be checked by a direct computation
paralleling the standard derivation of the Planck
radiation law for the electromagnetic modes in a
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vacuum. The number of acoustic modes with frequency
between co and co+dry is $s 'c 'oak&, and the acoustic
energy density is

Energy density= F(au, T)$m 'c 'co'dec. (7.12)
4

(F')= (2/s) F.((a, T)sao'pc
4

Xt 1—ca0 '&o 'Jg(2u)ap/c)jdco, (7.15)

and the Quctuating pressure is

(P') = lim (F')/(7ra02)'
ay—4

ol

(P')= ps 'c ' E(&o, T)co'd(o.
J

(7.16)

(7.17)

Thus the mean square Quctuating wall pressure, as
given by (7.17), is just twice the mean square fluctuating
volume pressure, as given by (7.11).This factor of two
clearly arises from the fact that the pressure waves in
the gas must have velocity nodes at the wall. Fluctua-
tions in the neighborhood of the wall may be found by
treating the radiation from an oscillating sphere near a
reQecting boundary.

FinaHy, it will be noted that the above equations for
pressure Quctuations involve the velocity of sound in
the gas, which is not a usual thermodynamic parameter.
This quantity may, however, be expressed in terms of
standard thermodynamic quantities. Thus for fre-

«P. M. Morse, VibraAoe end Soled (Mcoraw-Hill Book
Company, Inc. , New York, 1936).

Employing the relation that the acoustic energy density
is proportional to the mean square excess pressure

Energy density= p 'c '(P'), (7.13)

we again obtain Eq. (7.11).
It is interesting to compare the above result with the

pressure Quctuations at a boundary of the gas. The
proximity to the boundary, and the shape of the
boundary, may be expected to inQuence the radiation
impedance and hence the pressure Quctuations. %e
consider the pressure Quctuations immediately con-
tiguous to a plane rigid boundary, and we shall 6nd
that for this simple case, the mean square pressure
Quctuation is just twice that in the volume of the gas.

Consider a plane wall bounding a semi-infinite region
containing the gas. If the wall contains a circular
piston of radius ao, the radiation resistance is'

F=sao pc[1 cao '—~ 'jq(2coao/c)j, (7.14)

where Jj indicates the 6rst order bessel function. The
Quctuating force acting on a circular area in a plane
boundary is therefore

quencies which are suKciently high that the compres-
sions in the acoustic waves may be considered to be
adiabatic, we have'

c2—C~v lp 1~T 1 (7.18)

VIII. CONCLUSION

The generalized Nyquist relation establishes a quanti-
tative correlation between dissipation, as described by
the resistance, and certain Quctuations. It seems to be
possible to give an intuitive interpretation of such a
connection.

A dissipative process may be conveniently considered
to involve the interaction of two systems, which we
characterize as the "source system" and the "dissipative
system. " The dissipative system, explicitly considered
in Secs. II and III, is necessarily a system with densely
distributed energy levels and is capable of absorbing
energy when acted upon by a periodic force. The source
system is the system which provides this periodic force
and which delivers energy to the dissipative system.

Assume the source system to be 6rst isolated from the
dissipative system and to be given some internal
energy. If the source system is a simple dynamical
system, its subsequent dynamics will be periodic (as,
for instance, the oscillations of a pendulum or of a
polyatomic molecule). The system may be thought of
as possessing a sort of internal coherence. If, now, the
source system is allowed to act on the dissipative
system, this internal coherence is destroyed, the periodic
motion vanishes and the energy is sapped away, and
the source system is left at last with only the random
disordered energy (~kT) characteristic of thermal
equilibrium. This loss of coherence within the source
system may be thought of as being caused by the
random Quctuations generated by the dissipative system
and acting on the source system. The dissipation thus
appears as the macroscopic manifestation of the dis-
ordering eGect of the Nyquist Quctuations and, as such,
is necessarily quantitatively correlated with the Quctu-
ations.

An analogy which is perhaps useful is provided by
the historical development of the theory of spontaneous
radiation from excited atoms. After the initial develop-
ment of quantum mechanics, it was found impossible
to compute the spontaneous transition probabilities for
an isolated excited atom, and this dissipative process
appeared to be outside the existing structure of dy-
namics. %ith the development of quantum electro-
dynamics, however, the dissipation could be computed,

where Cp and C~ are the specific heats at constant
pressure and volume, p is the density, and X& is the
isothermal compressibility. For these frequencies, the
pressure fluctuations in the volume of the gas are thus
given by

(P') =gx 'p'KrCvCr ' t F(—a), T)aPCkg. (7.19)
J
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and it was found that the "spontaneous" transitions
could be consistently considered to be induced by the
random Quctuations of the electromagnetic Geld in the
vacuum. In this case, of course, the excited atom plays
the rale of the source system, and the "vacuum" plays
the role of the dissipative system.

It would thus appear that a reasonable approach to
the development of a theory of linear irreversible
processes is through the development of the theory of
Quctuations in equilibrium systems. Certain results in
this connection will be given in subsequent papers by
Richard F. Greene and one of the authors (H.B.C.).
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The Disintegration of Nd'4'

W. S. EMMERICH AND J. D. KURBATOV
Ohio State University, Columbus, Ohio

(Received March f.2, 1951)

Three groups of monochromatic electrons corresponding to gamma-rays of 91.5+1.0 kev, 320+3 kev,
and 534~4 kev have been identified in the disintegration of Nd'~. These gamma-rays are ascribed to
transitions in Pm'~. Evidence has been obtained for a complex beta-spectrum of Nd'4~. On the basis of
coincidences, a partial scheme of disintegration for Nd'~ is proposed. The total energy decrease from the
ground state of Nd'~ to the ground state of Pm'~ nuclei is 1.425&0.015 Mev.
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L INTRODUCTION

S INCE the original observation of an 11-day period
radioactive neodymium' several papers have been

published on the radiations emitted by this species. ' '
%hen Gssion products became available, it was possible
to identify the 11-day period as mass number 147. By
absorption technique, the beta-emission was found to
be 0.9 Mev and 0.4 Mev with intensities of 60 and 40
percent, respectively. ' Low energy electrons, x-rays,
and gamma-rays of 0.58 Mev with an intensity of 40
percent were also observed. Coincidences were obtained
between high energy betas and x-rays, also between
lower energy betas and gammas. In a recent letter'
beta-energies of 780 kev and 175 kev were reported,
complex beta-gamma-coincidences were found, and the
absence of gamma-gamma-coincidences noted.

II. PROCEDURE

For the present study, commercially supplied neo-
dymium in the form of neodymium oxide was irradiated

TABLE I. Internal conversion electrons in Nd"'.

with neutrons at the Oak Ridge National Laboratory.
The activated material was aged to allow for the decay
of 12-min Pm'" and 4'l-hr Pm'". Corrections were
applied in various phases of this investigation for the
growth of 0.22-Mev beta-rays of the daughter product,
Pm"~. Spectrometer sources were prepared on Cello-
phane tape. They were not covered, and a radiogram
showed that the distribution of the activity was prac-
tically uniform. Since neutron-activated material was
used, inert neodymium was present, and a method of
obtaining a correction for scattering in the source (at
low energies) is mentioned below in connection with the
correction for counter window absorption. Sources for
the coincidence counter were mounted on Cellophane
and covered with zapon.

Measurements were carried out with the aid of a
permanent magnet electron spectrograph, a thick lens
beta-spectrometer, and coincidence counters.

The electron spectrograph is of the semicircular type
using photographic plates as detectors. Although large
sources had to be used to attain sufEcient intensity for
the measurement of internal conversion electrons in this
instrument, a resolution of one percent could be ob-
tained for energies over 100 kev. The magnetic Geld
strength between the pole pieces was determined with
internal conversion electrons of I' ' and Cs' ~.

The ring focusing was efhciently attained in the beta-
spectrometer by using a coil that extends along the total
path length of the electrons. The position of the deGning
ba@e was found from electron trajectories as deter-
mined by the empirically measured magnetic GeM dis-
tribution inside the coil. Additional baSes were installed
to minimize scattering from the walls and to eliminate
the higher order focusing of slow electrons. A 2-mg/cm'
mica window 6-M counter was used as detector. The
spectrometer was operated with a resolution of 4


