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A nonlinear spinor Geld, suggested by the symmetric coupling between nucleons, muons, and leptons,
has been investigated in the classical approximation. Solutions of the Geld equations having simple angular
and temporal dependence were obtained, subject to the boundary conditions that the Gelds be regular
and that all observable integrals be Gnite. These b.c. lead to a nonlinear eigenvalue problem, whose solu-
tions may be systematically discussed in the phase plane. Numerical solutions were obtained with a
di8erential analyzer. If charge and mass of the particle-like solutions are defined in terms of J's4dx and
J'T4+x, then the number of masses corresponding to the same charge turns out to be small in all cases
investigated. For certain lagrangians the nonlinearity leads to solutions having positive energy only. The
mass ratio between the lightest stable particle and the heaviest unstable particle can be taken of the order
of 10 ~, if the nonlinear coupling constant is properly chosen. Although our specific model is too simple to
meet certain obvious requirements, a theory of this general type has some interesting features.

INTRODUCTION that of special relativity, still the total 6eld resulting
from this synthesis does account for much of what is
now known about elementary particles; and since the
di6erential equations form a nonlinear system, one has
the possibility of a unitary theory. ' Therefore, one pos-
sible procedure is to look for localized solutions of this
total 6eld, which is exactly the one currently used.
The partial success of the held equations as currently
interpreted does not, of course, guarantee even the
same limited success of the same equations interpreted
according to a unitary theory. Nevertheless, the possi-
bility seems well worth investigating because the usual
procedure does not treat the nonlinear terms correctly
and of course also leads to in6nities.

Here, however, we follow the diGerent procedure of
studying a simpler nonlinear 6eld, 6rst, to avoid the
mathematical complexity still associated with the three
simultaneously interacting Gelds, and, second, to explore
the possibility that a simpler lagrangian in the richer
nonlinear theory can accomplish as much as a more
complicated lagrangian in the linear theory.

The simple case considered here is that of a single
nonlinear spinor Geld which is not coupled to any other
6eld. Although the nonlinearities of the usual. theories
result from just the interaction of different 6elds, the
mathematical situation there is quite similar to what
we treat here. (We intend to present at a later date cor-
responding results for the interaction of different fmlds. )
The 6eld described here, however, since it is spinor, may
be of some interest in itself, because the symmetric
coupling' between leptons, muons, and nucleons, as
well as the possibility of building bosons out of fermions,
seems to indicate a fundamental role for spinors in ele-

HIS paper contains a classical investigation of
certain properties of a unitary field theory which

seem to correspond to some of the needs of elemen-
tary particle physics. Such a theory has these principal
features: the equations of motion are derivable from
a variational principle whose lagrangian density is
invariant under a particular group; the equations
of motion are nonlinear; the physically admissible
solutions of the 6eld equations are everywhere 6nite and
quadratically integrable, so that the classical in6nities
never appear; the particles, instead of having an inde-
pendent existence as GeM singularities, appear only as
intense localized regions of 6eld. Extensive investiga-
tions' have been made along these lines at a very
fundamental 1evel; but these eQ'orts have attempted to
extract the speci6cally nuclear 6elds, as well as the elec-
tromagnetic and gravitational Gelds, so far probably
with little hope of success, from an underlying total
6eld. A program, similar in spirit but technically much
less formidable, may be based on the invariance of the
lagrangian density under the group, not of general rela-
tivity, but only of special relativity.

The Maxwell, Dirac, and Yukawa 6elds, including
their usually assumed interactions, are the simplest pos-
sibilities permitted by the Lorentz group. The Dirac-
Maxwell 6eld has been able to account for most of the
facts about electronic systems, and in conjunction with
the Yukawa 6eld, has been able to describe some of the
properties of nuclei and mesons. Although a composition
of the lagrangian densities of these three 6elds and their
Lorentz invariant interactions, which is simply additive
and which excludes the gravitational 6eld as well, may
not seem natural from a standpoint more general tha

~ See, for example, A. Einstein and E. G. Strauss, Ann. Math.
47, 731 (1946); E. Schrodinger, Proc. Roy. Irish Acad. 49, 275
(1944).

' R. Finkelstein, Phys. Rev. 75, 1079 (1948).' J. Tiomno and J. A. %heeler, Revs. Modern Phys. 21, 153
(1949); 0. Klein, Nature 161, 897 (1948); I.ee, Rosenbluth, and
&ang, Phys. Rev. 75, 905 (1948); M. Ruderman and R. Finkel-
stein Phys Rev 76 1458 (1949)
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mentary particle theory. In addition, spinor theories of
the pion' and photon (neutrino theory of light) already
have been proposed; and, although unsuccessful, they
do not discourage further study.

The special theory to be given here conforms to the
following general pattern. The invariance of the
lagrangian density to gauge transformations and to the
inhomogeneous Lorentz group leads, in view of the
equations of motion, to the conservation laws:

Q=)t LgP*Pdx, (B1)

that J contains no field derivatives. The charge, rest
mass, and spin, generally defined by Eq. (A), now
become

B„s„=0, 8„8„=0, 8„3f„p=0, oL,[/*8' (8—4$*)P]dx+ Ldx, (B2)
where s„,8„,and M„p are well-known expressions which

may be written down as soon as the lagrangian is speci-
fied. From these equations of continuity it follows that
Q, G, and 3f s, defined by

S,=c ')~ LgP*( o(8/—8y)+ ,')r, )Pd-x) (B3)

oQ= Jt s&dx) oG~=~ 84~dx)

iM,p=c 'Jf IVo sdx,

are, respectively, scalar, vector, and 6-vector, not
approximately but exactly, and that they are time
independent. A field confined to a small region will then
carry a definite charge Q, energy-momentum G, and
angular-momentum M p. This localization of charge,
energy-momentum, and spin may in general be inter-
preted as a single particle, or as a cluster of particles. If
the theory is quantized, the charge, energy, and (total
angular momentum)' become operators; but they
mutually commut- again because of gauge and
Lorentz invariance —so that the usual classification of
elementary particles according to mass, charge, and
spin is not invalidated.

where

~Ld4x, L=pIo+Ig,

Io=&VV Ii= o&[0'v~8A' —(8A') VA],

THE NONLINEAR SPINOR FIELD

The Dirac lagrangian may be written in terms of the
two invariants Io and I~.

for which
W= W(Io, I),

Lg= 1.

(3a)

(3b)

The equations of motion now become

82/bf~=0, or y 8 P+pf —og8W/8$t=0; (4a)

82/g =0, or (8 ft)y yft+ig8W—/8/=0. (4b)

In addition, there is the useful invariant equation,

P~(8Z/g t) (8Z/g) P= 0, —

Ig+ pIo+g/2[(8W/8$))f)+$~8W/8$t]=0. (4c)

SPECIALIZATION OF LAGRANGIAN

The very simplest possibility for 8' is

where 8L/8Iq We su. ppose that these integrals are
all computed in the proper system (G=O) and that the
s-axis is taken parallel to the spin.

Now L~ 1+g8W——/8I~. Hence, if I~ does not appear
in W, it follows from Eq. (B1) that the charge density
will be definite as in the usual Dirac theory. Dia'erent
possibilities, such as 8'=IOI~ and O'=I~' have also
been studied in detail. For these the charge density is
not definite so that neutral particles could conceivably
result from compensation; however it was found, ' for
the particular cases studied, that a node in the charge
density precluded the existence of localized solutions of
the field equations. e We therefore limit ourselves to the
case

and p is a constant of dimensions [L] '. Since the theory
to be given is classical, p, is a fundamental constant not
necessarily related to the Compton wavelength ap-
pearing in the usual formulation. A generalization of
Eq. (1) may be written as

O'=Io'

Another interesting form is

W= E(Ãv.4')'.

(Sa)

(Sb)

L= pIo+Ig+gW Io, Ig, J), (2)
Equation (Sb) is closely related to one variant (Mfiller-

where J indicates other possible invariants of the spinor
field, g is a constant, and 8" is a simple function which
nevertheless makes the theory nonlinear, We assume

'E. Fermi and C. N. Yang, Phys. Rev. ?6, 1739 (1949};G.
Wentzel, Phys. Rev. ?9, /10 (1950}.

gM. Ruderman, thesis, California Institute of Technology,
1951.' In addition, these theories have the property that charge and
spin are proportional, so that neutral particles have no spin. This
feature is, of course, entirely wrong; but no effort to rectify it
will be made here.
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Rosenfeld) of meson theory, in which the coupling is

Z(4'vA) x.,

where the five-dimensional vector x„consists of the
vector meson field x„(y=1 4) and the pseudosclar
meson field y5. This form was singled out, first, because
it is (like the M.R. invariant) formally simple, and easy
to handle; and, second, because it involves a pseudo-
scalar coupling, which not only behaves quite di6erently
from other couplings, but also seems to be required-
in some measure at least —by experiment. It was then
decided to choose a t/I/' which varies continuously
between Eqs. (Sa) and (Sb); therefore the following
form was chosen:

4'+=
(4s) & iG cos8

(12)

There is the identity

yq8q= iP—n„f(d/dr)+1/r j in—,(k/r) iP—8/8$ (11)

by means of which one can easily show that the assump-
tion (8) "separates" the linear parts of Eq. (4). If
k= &1, the nonlinear terms also separate; but if

~
k~ )1, then the difFerential equations indicate that F

and G depend on angle, which is contrary to our initial
assumption. We therefore consider only the solutions
for which 0= &1; these are the solutions having the
simplest angular dependence. Then we have

(6—).) (2+X)' &

lo'+ P(4'vA)',
8

(6)
Io (G' F—'—)/4—7r,

iG sin8e'~

(13a)

and the results studied as a function of X. (Because
of the quadratic identities existing between the dif-
ferent Dirac tensors, W'q can also be expressed as a
linear combination of invariants different from Io and

Z(4'yA)' )
1

a„Qp= Qp,

ka, =~(j+-,')n„
where

k= PL—~(rX ~)+1),

(»)
(9b)

(«I /0 a) ( cos8 sin8e '~q
(10)

I r ] (a OJ (sin8e'~ —cos8)

SEPARATION OF THE FIELD EQUATIONS

The field equations are a set of partial diGerential
equations. The time separation may be made by the
substitution,

P= e'«'&p(x, y, s).

The angular separation is, in general, not possible; but
we shall assume the following form for f:

0+=' '"l(F+ G)D +(F 'G)Pfl I, —'(g)
where Ii and G are functions of r only, and Q+ are
functions of angle only, and

0+——-a I';~, ~ a= (j+m/2j)&, a'+k'=1,

b I';~, ~, e=(j rrl+1/2j+2)&, —

c'+d'= 1, (Sa)

~~~, ~- Q-=VsQ+

These angular dependent spinors, Q+, are common
eigenfunctions of the commuting operators n„and k:

I, [GF'—F=G' —2FG/r —(u(F'+G') j/4s (13b)

I '= (G'+F' —2F'G')/16lr' (14a)

P g+y IP)'= (G'+F'+6F'G')/16m' (14b)

F'j(p, co)G+y(2G—'+XGF') =0, (16a)

G'+(2/r)G+(p+~)F y(2F'+XFG') =0—. (16b)

Since F and G are time-independent, it is necessary to
assume that co also does not depend on t. The invariant
equation is

where
pIO+Ig+SxyW), =0,

y =g/4m.

BOUNDARY CONDITIONS

(16c)

(16d)

We impose the b.c. that the functions Ii and G be
everywhere finite and regular and that all the observable
integrals also be finite. Singe Eq. (16a) contains the
term 2G/r, the finiteness condition can be met at the
at the origin only if G vanishes there. (It follows from
Eq. (16b) that F' also vanishes there. ) Equations (16)
are two differential equations of the first order, so that
there are only two boundary conditions; these may be
taken to be the values of Ii and G at the origin. Since G
necessarily vanishes there, the solutions bounded at
the origin depend on the initial value of F only. It turns
out, however, that these solutions usually do not vanish
at infinity, and that the only solutions which satisfy
the b.c. everywhere correspond to a discrete set of initial
values for P.

Wg= (F'+G4+X F' G)/1 6's.

In l& we have written' for d/dr and cv for df/dt By Eqs. .
(4a), (11), and (15) the equations of motion become
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THE NONLINEAR SCALAR FIELD

In order to motivate the procedure for solving the
eigenvalue problem corresponding to Kq. (16), let us
first consider the nonlinear scalar field described by the
lagrangian:

~= (~.~)(~.~*)+.V~*-(y/2)(~~*) (»)
The quartic coupling has been chosen in order to
simulate the spinor case. The equations of motion are

f=uV v(Ã—4)0. (18)

We try to find spherically symmetric solutions having
harmonic time-dependence

4(r, t) =e"'y(r) (19)

where y, as indicated, is a function of r only, and satisfies
the total difI'erential equation,

y"+(2/r)y'+ (~'—u')y+ vy'= o. (2o)

We assign y'= 0 at the origin and look for quadratically
integrable functions; it will turn out that the solutions
corresponding to a given or form a discrete set. They
exist only when p&0. Note first that the equation has
the three trivial special solutions,

y= constant= A; A =0, &[(u' —co')/y]&. (21)

Let A += &[(u'—oP)/y] &. Linearize in the neighborhood
of the special solutions by writing

y=A+u (22)

and regarding u as small. The linear equation satisfied

by uis
u"+(2/r)u'= (u' —ca')u, near A =0, (23a)

= —(u' —aP)u, near A =Ay. (23b)

The solutions are the spherical bessel functions. We
want the eigensolutions to approach the axis exponen-
tially in order to have quadratic integrability, and
therefore take

p' —(u'&0. (24)

But. then other solutions getting into the neighborhood
of the special solutions A~, will approach these lines
as r~~ according to [sin(u' —cv')'r]/r. The different
behaviors near A+ and the axis correspond to the dif-
ferent natures of these special solutions, as we shall
now see more clearly by going to the phase-plane: the

y, y'-plane.
If one lets y and y' correspond to position and velocity

of a representative point, then the differential equation
describes a nonconservative, one-dimensional motion,
since r ("time") appears explicitly. The energy for the
corresponding conservative motion (defined by Eq. (20)
after the 1/r term has been deleted) is

&=l(y')'+~(y) (25)
where

l'(y) = (y/4) y' —[(u' —~')/2]y' (2-'a)

The equilibrium points of this motion, defined by

I'IG. I. Phase-plane for scalar equation.

BV//By=0, correspond to the special solutions y=A+
and y= 0; and it is clear that A + are stable equilibria,
while the other is not. Figure 1 summarizes the situation
in the phase plane. The point representative of the con-
servative motion moves on the curves of constant E.
The curve E=O is a figure-eight through the origin;
the curves E&0 enclose both A+ and 0, but the curves
E(0 enclose only one equilibrium point; the origin is
a saddle point. The nonconservative motion, which
corresponds to our actual problem, may now be de-
scribed. For it we may calculate K from the exact
equations of motion, and we find

dE/dr = —2(y')'/r (26)

Hence E' is never positive, and the representative
point of the actual motion will ahvays move inward
across the lines of constant E. Such a trajectory must
terminate at either A~ or the origin, no matter where it
starts. In particular, if we denote the two parts of the
area enclosed by the curve E=O by 8+ and 8, then
it is clear that any trajectory getting into the region
Q,+ must terminate on A+,. any curve entering 8
mustendat A .

The dashed trajectory e0, shown in Fig. 1 is an eigen-
solution. An eigensolution may be located by starting
on the y axis and continuously increasing the initial
ordinate g. At first when 0(y([2(u' —&g')/y]&, all
trajectories are certain to terminate at A+. For y slightly
greater than this critical value, the situation is still
unchanged and such a trajectory, starting at a+, has
been shown in Figs. 1 and 2. If the initial ordinate is
increased to a, a trajectory is found. which terminates,
in the other lobe of the figure-eight, on the special
solution A; this is also shown in both Figs. 1 and 2 and
is seen to node in the y —r plot. By narrowing the in-
terval a+a the eigensolutions may be determined with
arbitrary accuracy. '

SOLUTION OF THE SPINOR EIGENVALUE PROBLEM

There are three special solutions of the set (16):
G = constant =0, Fo a[(u+(o)/4y]', ——

(27)
F= constant= Fo, ~&0.

' Ke are indebted to Professor F. Bohnenblust for a rigorous
pnxif of this together with a demonstration of the analyticity of
y in a neighborhood of r=o. 'A'e ivish to thank him for an ex-
tremely helpful discussion.
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tional equation, namely,

hZ=0, where Z=~~ Lr'dr (31)

14 J-
Fy

I'"rc. 2. Radial solution for scalar case.

I.inearizing in the vicinity of the special solutions by
putting

G=g, 1'=Fo+f, (2g)

where f and g are small, we obtain

f"+(2/r)f' (t" ~')f—= o

near Fp ——0, and

(29a)

f"+(2/ )f'+23(~'- ')+(~+ )'(l /2)]f=0 (29b)

Fo= ~L(~+~)/4vj'.

According to Eq. (29a) we require c0(p in order to
guarantee exponential solutions. According to Eq.
(29b), sr is also limited by the condition,

a)(2 —X) &y(2+X), (30)

to force oscillatory behavior near the other two constant
solutions; it turns out that there are eigensolutions
if (30) is satisfied. These conditions again become
clearer in the phase plane to which we now turn. One
sees from the asymptotic form of the difI'erential equa-
tions that G behaves like the derivative of F; in the
special solutions where F is a constant, G plays the same
role, since in these cases it vanishes. The FG plane is
therefore chosen as the phase plane.

It is possible, and it is now convenient, to obtain the
differential equations from a one-dimensional varia-

L= pIp+I j+gt t p,.
The corresponding Euler-Lagrange equations are

(d 2y aL 8I.
+ I, —=0,

t dr rJ BF' BE~

(d 2) BL BL
I

—+- I,—,=o
t dr r3 8G' 8G

It can be verified, by use of Eqs. (13) and (15), that the
set (32) is equivalent to the set (16).

These differential equations may be regarded as de-
scribing the nonconservation motion of a point having
position Ii and momentum G. It is again convenient to
study the conservative motion described by the same
equations without the 1/r term. To do this a pseudo-
hamiltonian, H, is constructed as follows:

H= (BL/BF—')F'+—(BL/BG')G' L, —(33)

where L is obtained from the lagrangian density by
dropping the term which contains r explicitly. Thus, we
have

4irL = GF' FG' 2FG—/r —(u—(F'+&)
+p(G' F')+ y(F'+G-4—+XI"'C') (34a)-

4irL = 4+L+ 2FG/r. (34b)

Explicit calculation of H according to Eqs. (33) and
(34) leads to

4mH = (y+co—)F' (p—(u)
G'-' —7—(F4+G4+XF'G'-'). (35)

The representative point in the FG plane moves on
curves of constant H, when its motion is governed by
the set (16) simplified by omission of the term 2G/r.
On the other hand, in the actual (nonconservative)
motion, H will vary according to the exact Eqs. (16)
in the following way:

( d 8L 't ( d BL t-4-H'=I — ., IF'+I ——„ IG'
&dr BJ"J &dr BG'J

BL BL
+ P"+—G"—L'

BI" BC'

2 (BL BL q BL BL
=—

I

—F+—~ l+—F+ -'
p I BI' BG' ) BI' BG

BL aL -
d (3+—I"+ G"—I'+—

I
-FG

IBF' BG' dr t r

2 (BL BL ) 2 d
F'+—G'

l
———(I G),rtBF' BG' ) rdr

Fic, 3. Phase-plane for spinor equations. 4~8'=+ (4/r) t.'I"
(36)



NON LI NEAR SP I NOR F I EI. DS

and by Eq. (16),

4s8'= —(4/r) I (p —&o)G'+yG'(2G'+XF') I. (37)

It will now be shown that the exact Eq. (37), describing
the variation of expression (35), is sufficient for a dis-
cussion of the solutions.

In the P'G'-plane the level lines of H are confined to
the first quadrant and are conic sections. If

~
X

~
)2, they

are hyperbolic; if ~X~(2, they are elliptic; and if
~X~ =2, they are parabolic. The corresponding curves
in the IiG plane are topologically the same but must be
completed by reQection in both axes. If X&0, then H'
is negative definite, and the situation is qualitatively
the same as with the scalar field already described: the
representative point must ultimately arrive at A+, A,
or, if it is an eigensolution, at the origin. If X&0, then
there are always two regions in the IiG plane, separated
by a hyperbola, in each of which H' is definite. The
equation of this hyperbola, 3'., is 2G'+XF'+(p —o&)/y
=0. In Fig. 3, K is shown for X= I. An eigenfunction
may lie entirely between the two branches of 3'., as
C~ does, or it may resemble either C2 or CI. The actual
numerical solutions of the di6'erential equations, ob-
tained with a di6'erential analyzer, displayed all the
features to be expected from this analysis. Figure 4
illustrates the appearance of typical radial solutions.

Suppose p, fixed; then the solutions form a two-
parameter (s& and X) family. However,

~
a

~ (p and
Eq. (30) must be satisfied. The necessity of Eq. (30)
follows from fact that all curves in the phase plane
leading from (F, O) to (0, 0) violate the equations of
motion when Eq. (30) is not satisfied. The condition
(30) confines solutions to the shaded region in Fig. 5.
For the range of initial values investigated with the
differential analyzer, no eigensolutions could be found
outside of the interval —2&X&0. The solutions ob-
tained are indicated in Fig. 5 except for some members
of the family at ) = —2. From the point of view of the
results the most interesting value of X is X= —2, since
a family of polynodal solutions was obtained there. The
physical discussion will be based on this family.

DISCUSSION

The lagrangian employed in this paper has been
introduced mainly because it is simple; but even if
physical justification should be found for it, one still
cannot discuss these results without reference to the
quantum theory. On the other hand, it seems clear that
the quantization ought not be attempted according to
the canonical formalism, since the singular commutators
thereby introduced lead to new divergences and am-
biguities. Furthermore, a spinor field quantized in the
usual way (by anticommutators) has no classical limit.
The case considered here is therefore the "abnormal"
one but it cannot be excluded by arguments based on
the negative energy states, because, as we shall see, the

%. Pauli, Phys. Rev. 58, 716 (j.940).

G

FIG. 4. Radial solution for spinor case.

nonlinear lagrangian may be so chosen that there are no
localized solutions having negative energy. Finally, one
may remark that the usual quantum theory of fields
employs a formalism, which, although applicable,
appears unnatural for describing the localized solutions
characteristic of unitary theories.

Lacking an adequate formalism, one may nevertheless
quantize in a very crude way by postulating that the
coupling constant, e, with the electromagnetic field has
its usual value, namely, e/hc, and by requiring that the
total charge be an integral multiple of e. Then the
lowest charge state is described by

or

e= (e/hc))j f*Pdx

~1P~Pdx= hc.

(38a)

(38b)

The z-component of the angular momentum is now

c ' ' s*~ i +—$~, ~fdx=(2c) ' Pfdx=h/2 (39), I, (
aq i

~ e

e xiii e i i i x x i' ll i i i i i i i i i i i i i
-I

I'zG. 5. Each point corresponds to an eigensolution obtained on
the diGerential analyzer; co is frequency and X speci6es coupling.
No eigensolutions can exist outside the shaded region if X(—2.

for a field having the angular dependence (12). (The
x and y components will vanish. If the quantization is
done correctly however, the components of angular
momentum are, of course, subject to the usual com-
mutation rules. )
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mess wph/c
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I

l05

FIG. 6. Spinor mass spectrum for X= —2. The solutions cor-
responding to &&1 were integrated by the analyzer. For the
M & 1 solutions an asymptotic form was used. The mass spectrum
in the intermediate region (dotted curve) is slightly uncertain.

3EC2= —kco+g t W mdx.

The results are shown in Fig. 6 where the mass is given

Now assume that the fundamental length p. ' is
assigned and that ) = —2. Then consider three eigen-
functions having zero, one, and two nodes. Each is
characterized by a value of op which may be varied
within limits without spoiling the eigensolution, although
the initial value of Ii (and therefore the complete
solution) must be varied simultaneously. Each of these
solutions may now be completely fixed by choosing co

so that Eq. (38) is satisfied. Then Eq. (39) is also satis-
fied and each of the three field structures in question
carries the same charge, e, and the same spin, 5/2.
Since the charge quantization fixes the solution

uniquely, it foHows that the masses of these three par-
ticles are also fixed (by the equation)

as a function of g, the coupling constant. The mass
spectrum terminates and the number of particles car-
rying the charge e is small and depends on the value
chosen for g. There are no solutions corresponding to
co&0. As a result all masses are positive; the nonlinear
term in this case excludes the negative energy solutions
of the Dirac equation, as mentioned before. The exis-
tence of a discrete spectrum is a joint consequence of
the classical eigenvalue problem and the charge quan-
tization condition (38).

For a particular g those solutions having a mass
greater than ph/c are unstable against expanding to
infinity, while the amplitude approaches zero; the
nonlinear term then becomes negligible and the Ii and
t" functions form the usual 5-wave solutions of the
Dirac equation. Those solutions which correspond to
masses less than p,h/c are stable: when perturbed they
will not spread to infinity because of the (rigorous)
conservation of charge and total energy. '

The mass ratio between the lightest stable particle
and the heaviest unstable one can be made of the order
of j.0 ' if g is chosen sufBciently large, but such a g ought
to be in agreement with the rates of the various insta-
bilities and with the strength of nuclear forces. Although
the nonlinearity leads to ordinary and tensor forces
having diGerent ranges, the theory is too simple to
provide neutrons and, therefore, a description of
nuclear forces. In addition, although the "nucleons"
(the two-nodal solutions) quite properly bind to form
heavier nuclei, the nodeless solutions, which ought to be
identified with electrons, also bind. It is entirely possible
that difhculties of this nature may be avoided with
other nonlinear invariants, but even in that case a
satisfactory appraisal of the whole approach waits upon
a natural quantization procedure.

9 All the particlelike solutions of the nonlinear scalar equation
(18), with y&0, when normalized to unit charge, have masses
greater than pk/c and are unstable. Unlike the spinor case, there
are an infinite number of masses corresponding to a given g.


