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to be negligible. Correcting for the 12.8-hour activity of
Cu~, and using the known total energy Aux, and
assuming that the absorption is strongly peaked about
an average energy of 19.1 Mev, ' it is found that
Jo„(E)dZ=(0.77&0.15)X10 " cm' Mev for Cu~.
In our opinion the above error is a fair estimate of
uncertainties introduced by such factors as counting
statistics, calibration of the counter, sensitive volume
and input resistance of the chambers, assumed thin
target spectrum, assumption of a resonance narrow
with respect to 50 Mev, extrapolation to zero chamber
thickness, Walker correction, etc.

An error yet to be mentioned is the uncertainty in
resonance energy, which is here assumed to be 19.1 Mev
but has been reported by others as 17.6 Mev."The
calculated cross section is almost exactly inversely
proportional to the assumed resonance energy.

The quantum-mechanical sum rule" predicts for

'L. Marshall, Phys. Rev. 82, 300(A) (1951); 83, 345 (1951}.
This issue.' B. C. Diven and G. M. Almy, Phys. Rev. 80, 408 {1950).' Johns, Katz, Douglas, and Haslam, Phys. Rev. 80, 1062
(1950}.' M. Goldhaber and E. Teller, Phys. Rev. 74, 1046 (1948).

J. S. Levinger and H. A. Bethe, Phys. Rev. 78, 115 (1950).

Cu~ a maximum integrated dipole cross section of
0.95 Mev barns.
Previous determinations of this cross section have

yielded the values (in Mev barns): 1.5,' 0.6,~ and 0.7.'

CALIBRATION OF VICTOREEN THIMBLE

The intensity of the beam did not vary greatly over
the area accepted by the collimator, so that its intensity
per square cm was roughly known. Hence, it was
determined that a Victoreen thimble, enclosed within
~" Pb walls and inserted into the beam, measured one
r per minute for every 2.5X10' Mev cm ' sec ' of
beam intensity.

As can be seen from Fig. 2, ~" Pb lies close to the
shower maximum, so that the exact thickness of the
wall is not critical. The Victoreen reading with ~"
walls was only 5 percent lower.

%e wish to acknowledge the help of D. %. Connor,
who advised us in the design of the experiment, and of
C. R. McKinney and his betatron crew, K. Benford,
F. Sammons, and %. Humphrey.

9 J. L. Lawson and M. L. Perlman, Phys. Rev. 74, 1190 {1948)
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The stability of static magnetic fields in an, electrically conducting liquid is investigated. The result of
the study is applied to the stability of twisted cylindric magnetic fields. It is shown that instabilities may
by caused by the twisting of a homogeneous field.

I. INTRODUCTION

N recent years several theories of the earth's mag-
-- netic 6eld have been developed by Elsasser and
Bullard, ' the essence of which is the induction due to
liquid motion in a magnetic 6eld. The interactions be-
tween motion and magnetic 6eld which they consider
are very comphcated. Some similar but simpler proc-
esses by which mechanical energy is transferred into
magnetic energy have been suggested by Alfvbn. ' One
of the most attractive of his suggestions is founded on
the hypothesis that a homogeneous magnetic 6eld
which is twisted by liquid motion becomes unstable
and will form a loop. The magnetic energy of this
loop is used to amplify the original 6eld.

This paper attempts to present a mathematical treat-
ment of the stability of magneto-hydrostatic 6elds, i.e.,
magnetic 6elds in equilibrium in a liquid at rest. The

' W. M. Elsasser, Revs. Modern Phys. 22, 1 (1950).
~ H. Alfvbn, Tellus 2, 74 (1950).

theory is applied to Alfvbn's problem. It is found that
a magnetic 6eld in a long cylinder becomes unstable
when the increase of magnetic energy due to the twist-
ing becomes of the same order of magnitude as the
energy of the original 6eld.

II. SOME PROPERTIES OF MAGNETO-HYDROSTATIC
FIELDS

For hydrostatic equilibrium it is necessary that the
force acting on the liquid be balanced by a hydrostatic
pressure. In a medium vrith the permeability p, =1, a
current density i and a magnetic 6eld H give a volume
force=iXH emu. Since i=curlH/4s, the condition for
equilibrium is

curia&8= Vp,

where p/4n is the hydrostatic pressure.
According to Eq. (1) the lines of force and current

are situated in the surfaces P= const.
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currents deforms the original field. The purpose of this
section is to derive an analytic expression for the change
of the magnetic 6eld connected with a finite displace-
ment of the liquid. %e consider an incompressible
liquid, which is an ideal conductor with the permea-
bility p, = j.. The liquid is moving with the velocity v
in a magnetic field H. The current is given by

i=(r(E+vXH)

Since the conductivity 0.= ~, we must have

K+vg8= 0.

FIG. j.. Displacement of Aux tube.

From Maxwell's equations we know

curl E= —BH/Bt.

Combining Eqs. (6) and (7), we obtain

(7)

A special type of field are those which give no force
at all on the medium. They are given by

curlH &(8=0. (2)

H, =A Jp(nr)

and the tangential component

H „=A J,(nr).

A fuller discussion was given in a previous paper. '

III. MOTION OF THE LINES OF FORCE
IN AN IDEAL LIQUID

(4)

A motion of a conducting liquid in a magnetic field

is, in genera1, connected with induction eftects which
cause induced currents. The magnetic 6eld of these

These force-free 6elds may exist in a compressible
medium of uniform density. Hence, we may expect
them to be a type of magnetic held that can exist in
interstellar space, where a pressure gradient would give
an increased density accompanied by increased re-
combination. DifTusion of the neutral atoms would then
tend to decrease the pressure gradient. A solution of
Eq. (2) for an infinite cylinder is a field with the axial
component

BH/N= curl(vXH). (g)

A discussion of this equation where 8 is replaced by
the vorticity vector, curlv, will be found in any text-
book on hydrodynamics. 4

Equation (8) means that the flux of H through any
closed curve moving with the liquid is constant. Con-
sidering an isolated Qux tube we see that this will move
with the liquid. This is true even if the tube is not iso-
lated and hence for each line of force, as the following
discussion, originating from Helmholtz, will show.

The Aux through any element of a surface wholly
composed of lines of force is zero. This property is
conserved when the surface moves with the liquid,
according to Eq. (8). Hence, the surface will always
be composed of lines of force.

Also, their intersection will be a line of force. Hence,
we infer that the lines of force move with the liquid.

From this conclusion we may obtain the wanted
expression for the change of H. ' Consider a small part
of a Aux tube with the length= Arp fpHp and the cross
section dSp. After displacement, it has the length
bri ——piai and the cross section dsi (see Fig. 1).As the
volume is the same, we have epHp dSp ——e&H& dS&. The
constancy of Aux implies Hp. dSp=H& dSI, and hence,

This means that H~ is obtained from Hp in the same
way as M& from harp. Since

Ari ——Drp+(harp V)(, (9)

(see Fig. 2), we obtain

Hi ——Hp+(Hp V)g. (10)

Equation (10) is spot limited to small g but is valid
for any 6nite value.

Ke complete this discussion by giving a direct
analytic proof of Eq. (10). Using the vector identity

curl(aXb)=(b V)a—(a V)b+a divb —b diva (11)

Fzo. 2. Geometry of displacement.

~ S. Lundquist, Arkiv. fysik M. 2, 35 {1950).

4H. Lamb, Hydrodynamics {Dover Publications, ¹wYork,
1945), p. 203.' This was kindly pointed out to me by Professor T. G. Cowling.
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and. the relations

we write Eq. (8)

divH=0,

divv=0, (curlH) XH (H v)H —v(—,'H') =vp, (20)

01

The field H is an equilibrium 6eld, and hence, from
(12) Eq (1),

(13)

(aH/at)+(v v)H=dH/ct=(H. v)v. (14) (H v)H=vp, (21)

with
iP =C+-',H'+ const. (22)

Transforming 6$"» by two partial integrations we 6nd

(15) hwt —— H Hp(ap„/axp)dr=)t H (H dSv= dg/—Ct= ag/—at (v v—)g

This equation may be integrated. We introduce the
displacement g(r, t) as the vector which moves the
point r into its original position rs ——r+g (see Fig. 3).
The position vector of a point moving with the liquid
is, accordingly, r=re —g(r, t), and hence,

IV. THE CHANGE OF MAGNETIC ENERGY AT
AN ARBITRARY DISPLACEMENT

We consider a magnetic 6eM 8 given in a volume V.
At an arbitrary deformation given by the displacement
vector (, the field changes to Hi in the region Vt. The
change of magnetic energy connected with this dis-
placement is

DS'=- I IJ»2dr» ——
i EPdr,

2~ v» 2& v'
(18)

where d7 means an element of the liquid in V, and
dz. » the same element in V».

From Eq. (11) we have dri dr From Eq. (10——) we.

obtain H» as a function of the original coordinates of
dri. Hence, the first integral in Eq. (18) may be trans-
formed into an integral over the original volume, giving

1 t
b,W= itH (H v))dr+ ~'L(H v)Q'dr. (19)

V 2Jv

for any g, small or not.
We introduce Eq. (15) into Eq. (14) and write the

equation in suKx notation (summation over equal
sufFices in the same term):

dH a (a$ ap q= —H„
Bxp E 8$ 8$&]

(a a$( a$$=-
I
—+" I I

Hp I
t Bt 8x~) E Bxp&

(aHp aHp amp ) a$
+I +v. —H. I

. (16)
l. at ax, ax, & axp

The last term vanishes according to Eq. (13), and
hence,

cH/dt= (d/dt-)[(H v)gj
Integrating and putting )=0 when 8=Hi, we obtain
Eq. (10):

Hi ——Hs+(Hs v)g
as before.

I it) dS+ t tPdivgdr, (23)

where d S denotes an element of the surface of V, and
the integrals are taken over V.

In most cases the surface integrals of Eq. (23) vanish,
due to the fact that it, H dS or H. g is zero. If so, we

+/jj yf d'or/fcle skrrfincr ot r

Fio. 3. Definition oi displacement g.

are left with the expression

1
ttW=)t mdiv(dr+ ~~ L(H v)Q'Cr.

2~
(24)

v= (ag/at)+(a(/at v)(, — (25)

Putting /=0 at infinity, we see that P= p+vH' —p„
is usually positive. The second integral is always posi-
tive. Since a negative AW means instability, we infer
that the deformation g of an unstable field is such that
div( is negative. The first integral of Eq. (24) is ap-
parently of the first order in (, but actually both in-
tegrals are of the second order. The exact expression for
div$ may be calculated from the incompressibility
condition that the functional determinant for the
transformation from r to r+(, a(r+()/a(r), be equal
to one. However, since we only need div( to second
order in g in order to treat initial stability, we may
obtain it more easily from Eqs. (13) and (15).

Regarding $ as a small quantity of first order we
obtain from Eq. (15)
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and hence, from Eq. (13)

8$ 8 ( 8$ p
divv= — + { $p

— }=0
Bx. Bx. E Bxp) (35)

Bxp)(8/p/Bx) -,'(8& '/Bxp)(8/p'/Bx ) to second order
Further, [(H V)gj'=[(H V)g'j' to the same order.
Accordingly, Eq (.28) together with

divg= 0

or, finally,
8$ 1 8$ Bgp

divg=
(AX~ 2 Bxp Bxts

correct to second order. Hence, we write

8 f' 8$, 18$ 8)p) gives 65' correct to the second order.+-
at& ax 2ax ax &

%e study a simple displacement of the form
Xrs Xp Xtr

g= [c cosbx sinaz, 0, c' sinbx cosaz$. (36)

(27) It is easily seen that the surface integrals of Eq. (23)
vanish, provided u is chosen so as to give a whole
number of full arcs in the s direction.

From Eq. (35) we obtain
1 r ( 848pp 8484&

hW=- ~'
{ P +H Hp }dr, (28)

24 ( Bxp Bx~ Bx(g Bxp~

bc+ac'= 0.

The deformation tensor is

(37)

which is the required expression for the change of
magnetic energy.

We see that fields with /=const are stable. Since

VP= (H V)H= H(BH/Bs)t+ (H'/E) n, (29)

—bc sinbx sinus,
Bg.

Bxp
bc' cosbx cosa',

0,

0, ac cosbx cosaz

0
~

(38)

0, —ac sinbx sinus

divg= zi(S pS p
—A pA, p), (30)

the right-hand side of the equation being the diGerence
between two sums of squares.

Since
A pA p=z(curl))', (31)

a negative value of divg or a decrease of energy is due
to the rotation of the elements of the liquid.

where t and n denote unit tangent and principal nor-
mal, and E. the radius of principal curvature of a line
of force, we see that /=0 means that the lines of force
are straight lines.

We split the deformation tensor 8$ /Bxp into a sym-
metric part S p=-', (8$ /Bxp+8&p/Bx ) and a skew part
A.p=-,'(8$./Bxp —8/p/Bx. ). In this way Eq. (27) be-
comes

1 8$ Bgp = —(bc)' cos'az
2 Bxp Bxcak

in which we have used Eq. (37).
Further,

(40)

(H V)(= [H.ac cosaz, 0, H„(y/r)bc' —cosazj (41)

and

18$ Bep = (bc)'{sin'bx sin'az —cos'bx cos'az}. (39)
2 Bxp BX~

Assuming hZ&&1, i.e., the 6eld long compared with
the radius, we obtain

[(H V)Q'=H, '(ac)' cos'az
+H „'(bc')' sin'qr cos'az. (42)

V. STABILITY OF A TVGSTED CYLINDER FIELD

Integrating over rp and z (whole number of periods),
we obtain

(32) hW- (ac)'){ ,'H,'rdr—
0

H= [ H„(r)y/r, H „(r)x/r—, H(r)),

In this section we investigate the stability of the
magnetic 6eld in a long cylinder of radius E. and length
I.. In cartesian coordinates the magnetic field is sup-
posed to be

where r'=x'+y', cos=zxr/. The lines of force are
helical. The magnetic force F = (curlH))&H, is radial,
alid

H„g BH, 8&
(rH „) H, — —

Br Br Br

R ~B
+ (bc')2J iH rdr (bc)2 ~ hard—r. (43)

0 0

Observing that acbc'= —(bc)' and putting

Hence,
8 p H„'+H, 'q H„'—=—

{ ~+ }=-
Br Br ( 2 ) r

(34)

R R R

zH, rdr=a, jt Prdr=P, t 4H„2rdr=y,
0 0 0

the condition for a negative 58' is
In order to simplify the calculation we put g= g'+ g",

with div('=0, (" of the order (', and div("= is(8$ / p'&4'. (44)
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Since

or

R R

j
I'

H„rdr&2 ~ H, ,d,
0 p

~R ~R
P= ~ frdr= —

~

pr'(a$/ar)dr
p 0

~R
H, 'rdr =2y, (45)

2 p

the condition becomes

I"zo. 4. A twisted mag-
netic Geld {a) where (II„')A&
&(2P,')A„ is unstable and
will be deformed according
to {b). Thin lines indicate
cross sections.

(H „'),&2(H,') „ (47)

the symbol ()A, standing for a mean value over the
cross section. The result may also be stated as follows:
the field becomes unstable when the magnetic energy
due to the twisting exceeds double the energy of the
non-twisted 6eld.

For the uniformly twisted field considered by Alfven,
H„=fpH, r/R and (H„'&„„=(H,'&A,k'/4, and hence, the
6eld is unstable if k&2. This is of the same order of
magnitude as Alfvhn found by considering the initial
and 6nal states at the forming of a loop.

For the force-free 6eld given by Eqs. (3) and (4),
we find

ahab
H H& dr=const=hlVp.

Ox' Bxp
(50)

This is equivalent to making

aS. aS aS„a&„
I(g) = ~ f +7iH Hs dr= min. (51)

Bxp Bx Bx Bxp

(H, '&Av= (K'&Av. (48) The variational equations for this problem are

VI. THE MOST CRITICAL DISPLACEMENTS

The simple disturbance considered in Sec. IV is cer-
tainly not the most critical one. The coeKcient 2 in
inequality (47) should probably be less. A better
value might be obtained by considering a more general
displacement containiqg a larger number of adjustable
coefficients. This is rather laborious, however. By
means of a variational principle the problem of sta-
bility may be given a diBerent form.

We try to find a g that makes

r ahab
dr =min

Bxp Bx~
(49)

This 6eld is accordingly stable for this displacement.
The geometry of the disturbance is seen in Fig. 4.

The rotation of the cross sections is obvious. Here we
have neglected the inQuence of the fieM outside the
cylinder. It is possibl. e to take account of this by con-
sidering a 6eld and a displacement, radially distributed
according to a gaussian function. The result is that a
harder twisting is required if E and I. are of the same
order. The main displacement will occur in the central
part of the field.

This result makes a little doubtful the assumption
by Bullard' of the existence of a strong tangential
magnetic field inside the earth.

a p ass~ 1+p ag.
I+-- =o 5=1, 2, 3) (52)

ax, E ax. & ) ax. exp

in which Eq. (35) has been used. Multiplying Eq. (52)
by Ps s,nd integrating over the volume, we 6nd

ahabo= j'
Bxp Bx~ Bx~ exp

(53)

and the total change of energy is then

AW= (1—X)EWp. (54)

Hence, if Eq. (52) has a solution with an eigenvalue
~= 1/X, where 0&~&1, the 6eld is unstable. This ques-
tion is rather complicated, however, owing to the weak
boundary conditions for g. The method would probably
be to put Eq. (52) in the form of an integral equation.

The facts of main physical interest seem to be given
by inequality (47), and there is therefore no reason to
use more elaborate methods at present.
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