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trated in Fig. j.. In the calculation given in Table II, v

was taken as 0.22, 0.7, 0.6 for Fe, Co, and Ni, respec-
tively, these values being required by the observed
values of the saturation magnetization.

The calculated ratio P/y is compared with the
empirical lV' in the last two rows of Table II. In spite
of the approximate nature of the estimates leadirrg to
the values for g/y, these values are satisfying in two

respects. As we pass from Fe through Co to Ni, P'/y
increases in approximately the same manner as does
W'. For each metal the calculated P'/y is somewhat
larger than the empirical H/", thereby allowing for a
negative contribution from the coefficient n. We con-
clude that the model for ferromagnetism proposed in
the 6rst paper of this series gives a satisfactory quanti-
tative interpretation of the Weiss constant.
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The formalism of signer and Kisenbud for nuclear reactions is carried out by means of a variation
principle. A variation principle of the Hulthdn type is derived for the R matrix and applied to trial wave
functions written in terms of the resonance functions, X)l„of the signer-Eisenbud formalism. As a result,
a 6nite level formula for the E matrix is directly obtained.

I. INTRODUCTION AND SUMMARY
'

N a paper by Wigner and Eisenbud, ' general equa-
l - tions describing nuclear reactions are rigorously
derived. The essential result of the theory is the expres-
sion which the authors obtain for a matrix which they
call the R matrix. The R matrix is a real, symmetric
matrix whose rows and columns are labeled according
to the possible alternatives of the reaction. From the
R matrix one may directly calculate the collision
matrix, which gives the cross sections of the possible
reactions according to a„.=xk. '~5,.—U., ~', where
0„ is the cross section of the reaction going from the
sth pair of particles to the s'th pair and U„ is the
corresponding element of the collision matrix. The R
matrix is related to the collision matrix of the reaction
by an equation of the form U= ca (1+ijEj )(1 ij Ej ) 'ra, —
where j and co are, respectively, real diagonal and
unitary diagonal matrices. The elements of the j and
w-matrices depend only on non-nuclear parameters, in
that they involve only constants which enter into the
solutions. of the two-body Schrodinger equation in the
regions of con6guration space where there are two
distinct reaction products. The calculation of the colli-
sion matrix from the R matrix may therefore be
accomplished in a straightforward manner without any
additional information about the compound nucleus
other than that which is contained in the R matrix.
This paper will concern itself only with the R matrix.

An expression for the R matrix will be obtained on
~ Present address: State University of Iowa, Iowa City, Iowa.
t A part of a dissertation submitted in partial fulhllment of the

requirements for the Ph.D. degree at New York University.
' E. P. %igner and L. Kisenbud, Phys. Rev. 72, 29 (1947}.

This reference will be referred to as%-E throughout the remainder
of this work.

the basis of a variational calculation. The variation
principle is of the same general type as that derived by
Hulthen' for the two-body quantum-mechanical scat-
tering problem. The derivation presented here is along
lines similar to those followed by W. Kohn' in a recent
paper.

The variation principle is applied to a trial wave
function, which is written in terms of a 6nite number of
functions, Xq, defined in W-E. These functions are
intended to represent the resonance states of the com-
pound nucleus. Upon making the variational expression
stationary with respect to variations of the coefficients
of the X&, one obtains directly an expression for the R
matrix in terms of the states used in the trial wave
function. The variationally derived expression for the
R matrix is in agreement with the rigorous expression
for the R matrix up to the order of the number of
terms used in the trial wave function. Moreover, the
variationally derived R matrix is real and symmetric
for all trial wave functions of the type considered.

The notation used in this paper will be essentially
the same as the notation of W-E. This has two ad-
vantages. First, it gives the present work all of the
generality of W-E in that arbitrary long-range inter-
actions and arbitrary angular momenta are allowed.
Second, it allows for a direct comparison between the
results of the variational calculation and the rigorous
result.

In order to carry out this work it will be necessary
to present a brief description of the Wigner-Eisenbud
formalism. This will be done in Sec. II. Section III is

L. Hulthen, Extrait, Dixieme Congres des Mathematiciens
Scandinaves, Copenhague, 1946.

'%. Kohn, Phys. Rev. 74, 1763 (1949}.
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devoted to the derivation of the variation principle for
the R matrix. In Sec. IV, the variation principle is
applied to a trial wave function and an expression for
the R matrix is derived.

II. THE WIGNER-EISENSUD FORMALISM

signer and Kisenbud divide the con6guration space
of all particles of the reacting system into an external
region and an internal region. The external region is
de6ned as the region of space where the wave function
may be written as the product of the internal wave
function of two nuclear reaction products with a func-
tion of the distance between their centers of mass, r„
and the corresponding direction, 0,. The remainder of
configuration space is called the internal region. It is
in the internal region that one speaks of the compound
nucleus as being formed, as there all particles are close
together.

A distinct way in which the compound nucleus may
decay is called an alternative of the reaction. An
alternative, denoted by the index s, is specified by the
composition of the resulting nuclei (the number of
neutrons and protons in each), their state of excitation,
their relative orbital angular momentum, and their
composite spin (all of this for a fixed total angular
momentum and 2, component of the total angular
momentum). For definiteness, let us say that the
hypersurface, 5, which separates the internal from the
external region is defined by r, =a, (all s), where the a,
are chosen large enough so that the above statements
about the external region are true.

Two independent solutions, in the part of the external
region corresponding to the sth alternative, are written

D,= (S,(,)/r, )f,(i., Q,), V, = (C,(r,)/r, )P,(i„Q,), (1)

where i, stands for the internal coordinates of the two
nuclei of the sth alterna, tive. The function P,(i„Q,) is
the product of the internal wave function of the nuclei
of the sth alternative with the angular part of their
relative motion. It is normalized according to

~
$,(i„Q,) ~

'di, dQ, = 1.

Furthermore, these functions may be shown to be
orthogonal to each other on 5, i.e.,

P, ~(i;, Q, )f,(i„Q,)dS=u, mb„.

S,(r,)//r, and C,(r,)//r, are two independent solutions of
the radial part of the Schrodinger equation for the sth
alternative. They are speci6ed by the boundary condi-
tions, '

S.(a,)=0, C,(u,)=(M,/h)&,
dS, (s,)/dr, = (M,/h) &, dC, (u,)/dr, =0.

4These boundary conditions are simpler than the original
boundary conditions used in %-E, vrhich signer later found to
be unnecessarily complicated.

Here M, is the reduced mass of the two reaction
products speci6ed by the index s.

If there are n alternatives, then it is clear that there
are e linearly independent solutions (corresponding to
the n-fold arbitrariness in the choice of the incident
currents for the alternatives) of the wave equation for
a given set of the constants of the motion. A set of
independent solutions may be chosen which in the
external region are written

@,=D,+ Q R„V,. (5)

=
J P,(i„Q,) grad Xq*dS. (6)

The Xz are normalized to unity within the internal
region. The corresponding eigenvalue is called Eq. It
should be noted that the boundary condition satis6ed
by X& at the part of 5 corresponding to r,=a, is
essentially the same as the boundary condition fu16lled
by t/', .

In the internal region one then writes

~8) =
internal

region

X),*p,d7..

If one applies Green's theorem to P, and X~ over the
internal region, one obtains

where
a,),= (-,'&)'V~,/(K —&),

f
yg. ——(2/h) &(h'/2M. ) Xg*V,dS.

The &z„ too, may be taken to be real without loss of
generality. Upon equating the expansion of P, within
the internal region to the value of p, on 5 given by
Eq. (5), one obtains, with the aid of Eqs. (3) and (9)

(10)

This is the fundamental result of the theory. The
dependence of the elements of the E matrix upon the
energy is exhibited, as the y~, and the Eg are energy-
independent quantities.

It shouM be mentioned that if one approximates the
E„by one of the terms in the in6nite series, the cross

The E„are the elements of the E matrix. It is shown
in W-E that they may be taken to be real without loss
of generality.

The solutions p, are expanded in the internal region
in terms of a complete set of eigenfunctions, Xy, of the
hamiltonian of the entire system, which satisfy the
hermitian boundary condition at 5:

—(1/a, ))fP, (i „Q,)Xg*dS
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section (calculated from the relationship stated in
Sec. I) takes the form of the usual one-level resonance
formula.

III. VAMATION PRINCIPLE FOR THE R MATRIX

A variation principle for the R matrix of a nuclear
reaction is derived in this section. The variation
principle is applicable to the same class of reactions to
which the Wigner-Eisenbud formalism applies.

We shall consider variations of the expression

Here we have made use of the fact that D, and V„or
f,(i„Q,), are appreciable only on the part of S for
which r, =u, . For this reason, too, the integral in the
above expression may be taken over the entire surface. '
Using Eqs. (1), (3), and (4) and summing over s",
one obtains for the surface integral

~AD„.
Equation (13) may then be written

I„=~ p. *(H E)p,d—r

for independent variations of the p, and p, * about the
corresponding solutions, given in the external region by
Eq. (5). Here, H is the hamiltonian of the entire nuclear
system and E is the total energy. The integration with
respect to ~ indicates integration over the coordinates
of all particles of the system (including spin coordi-
nates). The variations of the wave functions which
will be considered will be of a restricted type. Only varied
wave functions which, in the external region, have the
same form as the corresponding true solutions, Eq. (5)
will be considered. That is, only arbitrary variations of
the elements of the R matrix are allowed in the external
region. The variations of the wave function in the
external region are therefore written

bg, =g(bR„)V, , bP;*=+(bR;,"*)V, .*. (12)
~l I ~II

On the other hand, in the internal region, one allows
arbitrary variations of the wave function.

The variation of I„resulting from independent
variations of @, and @,* is then

h(I„——,'kR„)= by (H E)y,d—r

+Jt bp, [(H—E)p;]*dr. (14)

As the right side of the above is zero, the variation
principle is

b(I,.—xa R„)=0. (15)

As I„ is zero for the true solutions, the above is a
stationary expression for the elements of the R matrix
and may be used for variational calculations of any of
the elements. It shouM be recalled, however, that in
applying the variation principle, the trial wave functions
used must have the form stated in Eq. (5) in the external
region.

IV. VARIATIONAL CALCULATION OF THE R MATRIX

In this section the R matrix is calculated on the basis
of the variation principle stated in Eq. (15). In the
internal region the trial wave functions are written in
terms of a finite number of the resonance functions Xq.
We write the trial functions

bI„= bg, ~(H E)P,dr+ P—, *(H E)bP,dr. (13—)
aJ 4,&&& = Q ag, Xg (internal region), (16a)

X(bR„V,") —(hR. , V, )
r~« =a~» s"

X(D" b"I-+R";*Vs-*)
r&ti ~ggg

dS.

As (H E)D,=(H E)V—,=O, the ab—ove integrals, in
view of the restricted nature of the allowed trial wave
functions in the external region, may be taken over the
internal region alone. In order to obtain a stationary
expression, the order of P, * and 5p, must be reversed
in the second integral of the above equation. This may
be done by applying Green's theorem over the internal
region. There will be contributions from the surface
integral over S which may be evaluated from the
boundary values of the functions D, and V,. The
contribution to the surface integral from the part of S
corresponding to the s" alternative is

k2 a
(D. *h, ;+R. ;*V; *)

4.~8 = D+P „R'&&V, (external region). (16b)

The a~, are unknown parameters to be determined from
the variation principle and $, the number of resonance
functions used in the trial wave functions, will be
called the order of the trial wave function. In Eq.
(16b), the R., &&' are the trial values for the elements of
the R matrix. They are expressed in terms of the
coeKcients, a&„by equating the expression for the trial
wave function in the external region to the expression
for the trial wave function in the internal region at the

'This, of course, is also the explanation of the orthogonality
relation on S, Eq. (3), which for indices corresponding to alter-
natives of different compositions is actually only approximately
true. It becomes rigorously true only if one allows the surface S
to become inde6nitely large. In spite of this, the variation principle
will be rigorously, not approximately, true. This may be seen
by applying Green's theorem to a larger surface geometrically
similar to S. The orthogonality relations then become rigorously
true and the evaluation of the surface integral yields the same
result.
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surface, S. One obtains The contribution to I„ from the interior is

Q ug, Xg=+R„&nV,. (on S), volume term of I„=P aq;*aq, (Eq E)—. (20)

where use has been made of the fact that D, is zero on
S. Multiplying Eq. (17) by V,* and integrating over S,
one obtains with the aid of Eqs. (1), (3), (4), a,nd (9)

~2q &
&

x-i
(18)

This additional contribution to the integral, I„, is
therefore,

f~ 8
surface term of I„=— --

I p, &"* D,dS
2M, ~ Br,

k
, y, (g)*y dS

thy& &

= —
(

—
[ Po~. *V ..

E2&
(19)

At this point a word should be said about an apparent
peculiarity of this trial wave function. As it is written,
the trial wave functions has a discontinuity in its first
derivative at S. As the V, match the X) at S, and as
they both satisfy the same boundary condition there,
it is clear that they will match in their Grst derivatives
as well. Therefore, the 6rst derivative of D, at S will
not be matched. The discontinuity is of course a
consequence of the fact that all of the Xz satisfy the
same hermitian boundary condition at S. Therefore,
if one wishes to use only the X~ in the internal region,
the discontinuity is unavoidable in view of the fact
that the trial wave functions must have the form that
they do in the external region. The operation of the
second derivative in the hamiltonian on such a trial
wave function will give a finite contribution to the
integral in the stationary expression in an infinitesimal
volume element about the surface S. Such a contribu-
tion is evaluated according to

~a+a Pf df r=o+e

lim dr =lim-
a—e d» e~ d» r=a—e

Using Eqs. (18), (19), and (20), the stationary expres-
sion, written as a function of the c)„and c)„*is

thy& ~

I., ——&„=Z o),.*a~.(Ei—E)—
~

—
I P ~)„*».

X~1

phd& ~—
I

—
I Z oi.»*" (21)

E2)

Setting the partial derivatives of the above expression
with respect to a&, and u&, equal to zero, one obtains

o.=(l&)'7 */(E —E) & "*=(l&)'7 "/(E —E) (22)

Inserting these results into the stationary expression,
Eq. (21), one obtains

g„,(8 = Q
X=1 g),—g

(23)

which is the same as the rigorous result up to the order
of the trial function used. The variationally derived R
matrix is also seen to be real and symmetric, as is the
true E matrix, for all orders.
It is also interesting to note that the coefIicients u~,

are equal to the expansion coefficients of the X& in the
rigorous expansion of the wave function in the internal
region. The variational procedure is thus seen simply
to generate the rigorous expansion of the wave function
in the internal region.

It is thus seen that one may derive directly a con-
sistent hnite-level formula for the E-matrix from a
variation principle. It is also hoped that this work will
lead to greater insight into the application of variation
principles to continuum problems, in that the applica-
tion presented is seen to lead to a process which con-
verges to the true solution.
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