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Interaction between the d-Shells in the Transition Metals. IIL Calculation of the
Weiss Factors in Fe, Co, and Ni*
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Estimates are made of the gneiss factors for Fe, Co, and ¹iusing the author's previously proposed theory
of indirect coupling via the conduction electrons. In this estimate use is made of only {i) the spectroscopic
data for the coupling between the spin of the outer 4s electron and the spin of the inner incomplete 3d shell
for the isolated atoms, {ii) the Hartree solution for the isolated Fe atom, (iii) the assumption that the
conduction electrons behave as a free electron gas, (iv) the assumption that the direct coupling between
adjacent d shells is negligible. The computed gneiss factors increase in the series Fe, Co, Ni in the same
manner as do the empirical factors, but are somewhat larger. This discrepancy is in the right direction
demanded by the previously proposed postulate that the direct interaction between adjacent d-shells
always tends to an antiferromagnetic alignment.

I. INTRODUCTION

N the erst paper' of this series the author proposed
~ - that ferromagnetism in metals arises from an
indirect coupling between incomplete d-shells via the
conduction electrons, rather than from the usually
assumed direct coupling. The evidence given in favor
of this proposal was primarily of a qualitative nature.
In the present paper this proposal is subjected to the
quantitative test of the estimation of the gneiss factors
for Fe, Co, and Ni using only this indirect coupling via
the conduction electrons. The estimates, summarized
in the seventh row of Table II, are found to be con-
sistent with the empirical values of the gneiss constants
(eighth row). The estimated values are, however,
somewhat larger than the empirical values, in accord
with the previously proposed viewpoint that the
neglected direct interaction between d-shells always
leads to a negative contribution to the %eiss factors.

II. ANALYSIS AND RESULTS

The basis of the %eiss phenomenological theory of
magnetism is the assumption that the interaction
between the elementary magnetic moments may be
described by an effective magnetic 6eld, H, ff which
contains, besides the applied 6eld, H, a term propor-
tional to the magnetization intensity J. Thus, one
obtains

H, ff=H+W J.
The constant of proportionality 8' is now known as
the gneiss factor. Its values for the ferromagnetic
metals Fe, Co, and Ni are given in Table I. One of the
objectives of any theory of ferromagnetism must be the
evaluation of these gneiss factors.

In order that we may readily compare S' with
theoretical quantities, we desire 8' in an energy equa-
tion rather than in Eq. (1) for H, fq. Towards this end
we observe that, according to this equation, the energy
of interaction between the elementary magnetic mo-
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lV (in ergs)
W' (in ev)

Fe

6160a
0.028

Co

7700'
0.036

13 400a
0.065

& R. Beeker and W. Doring, Ferromagrtetismus (Verlag. Julius Springer,
Berlin, 1939), p. 27.

ments is given by

E.„=—(1/2) WJ' per cm'. (2)

If we now dehne S~ as the mean component, along the
direction of magnetization, of the spin of each incom-
plete d-shell expressed in units of a Bohr magneton p~,
we obtain

8„;= —(1/2)W'Sj per atom. (3)

The new VVeiss factor 8" is related to the original 8' by

8"=Xp,g'W,

where S is the number of atoms per unit volume. This
new %eiss factor is likewise given in Table I.

On comparing Eq. (3) above with Eq. (3) of reference
1, we obtain the following relation:

W'= (0'/v)

between lV' and the fundamental constants of our
theory of ferromagnetism. These constants are defined
as the coeKcients in the equation

E,p,„(1/2)aSd' —PSdS,+——(1/2) yS.2, (6)

where S, is the mean magnetization, in units of Bohr
magnetons per atom, of the conduction electrons.

The coefficient e is proportional to the direct ex-
change interaction between adjacent d-shells. In our
current theory of ferromagnetism we do not assume,
as is customary, that this coefFicient changes sign as the
overlap between adjacent d-shells diminishes, but
merely assume that 0. decreases continuously. Thus,
as we pass to the right along the 6rst transition period,
n becomes smaller than the 6rst term in Eq. (5). In
the absence of a direct evaluation of n we shall neglect

TABLE I. Weiss factors.
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TA.sLE II. Ferromagnetic coupling coefBcients (in units of ev}.

Conhguration
Po

QKE
Yex

v
W/v
W'

3d'('F) 4s
0.104
0,34
7.8—5.5
2.3
0.050
0.028

Co

3d8(4F)4s
0.125
0.41
5.5—2.7
2.8
0.060
0.036

Ni

3d'('F) 4s
0.148
0.48
5.9—3.0
2.9
0.081
0.065

we thereby obtain that P, is equal to 0.104 ev. In a
corresponding manner we 6nd that the coupling coe%-
cients Po appropriate to Co and Ni isolated atoms are
0.125 and 0.148 ev, respectively. In the isolated atom
the 4s electron spends the major part of its time outside
of the 3d shell. When the atoms condense to the solid

it entirely. We thereby obtain an upper limit to the
theoretical value of 8"'.

An estimate of P may be obtained from spectroscopic
data of the isolated atoms, and from a knowledge of
how the outer 4s electron is constrained to spend more
time in the vicinity of the 3d shell as the atoms condense
from the vapor to the solid phase. The con6guration
of the isolated Fe atom is 3d'4s'. On demotion of one
of the 4s electrons the state becomes 3d'(4F)4s Corre-.
sponding to the remaining 4s electron having a spin
parallel or antiparallel to that of the core, we have a
'Il or a 'Il state. The former state lies lower than the
latter by 0.624 ev.' If we now represent the spins, in
units of pz, of the 3d and 4s shell by S& and S„and
their coupling energy by

phase, the 4s electrons become conduction electrons,
and spend a greater fraction of their time within the
region of the d shells. The coupling coefficient P between
the spins of the conduction and the 3d electrons is
correspondingly increased over the coupling coe%cient
Po characteristic of the isolated atoms. In order that
we may estimate the ratio P/Po, we inquire as to what
fraction, f, of the time a 4s electron in an isolated atom
spends within a spherical surface of such a radius r, as
to enclose a volume equal to the atomic volume of the
condensed phase. We shall then set

p= po/f

This fraction f may be obtained directly from the
Hartree self-consistent calculations for the function
Z4, (r). Thus, in the case of Fe, with two 4s electrons,

f= (1/2) I 2 —Z4.(') I

On using the value 2.66uo for r„we 6nd from the tables
for Fe given by Manning and Goldberg' that Z4, (r,) is
1.39, and hence f is 0.305. For Fe we shall therefore take

P/Pp =3.28.

In the absence of Hartree solutions for Co and for Ni,
we shall take a similar ratio for these metals. The
values of P so computed are given in Table II.

Two distinct factors contribute to the coefFicient y.
The first factor arises from that increase in the Fermi
kinetic energy which is associated with a polarization
of the conduction electrons. This 6rst factor gives the
positive contribution

yEE = (10/9) 4x/v,
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where ez is the average Fermi kinetic energy, and e is
the number of conduction electrons per atom. The
second factor arises from that change in the correlation
energy of the conduction electrons which is associated
with their polarization. The dominant part of this
correlation energy is the exchange energy' between
electrons of like spin. This exchange energy gives the
negative contribution

y, =(4/9)4, /v,

where e, is the exchange energy per conduction
electron. In computing y we shall adopt the model of
a free electron gas for the conduction electrons, and
therefore take'

EKE= 21.82N& ev, e, = 10.81m& ev,

NUMSFR OF CONDUCTION ELECTRONS PER ATOM

FIG. 1, Illustration of the insensitivity of y to the number of
conduction electrons per atom. Computed for example of Fe.

~ R. F.Bacher and S. Goudsmit, Atonzic Energy States (McGraw-
Hill Book Company, Inc. , New York, 1932).

where n is the number of conduction electrons per A'.
Whereas both EKE and y, are sensitive to the assumed
value of e, their sum y is quite insensitive, as is illus-

' M. Manning and L. Goldberg, Phys. Rev. 53, 662 (1938).' F. Seitz, Modern Theory of Solids (McGraw-Hill Book Com-
pany, Inc. , 1940), p. 341 ~

P. Gombas, Die Stutistische Theoric des Atoms (Verlag. Julius
Springer, Mien, 1949), pp. 7 and 25.
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trated in Fig. j.. In the calculation given in Table II, v

was taken as 0.22, 0.7, 0.6 for Fe, Co, and Ni, respec-
tively, these values being required by the observed
values of the saturation magnetization.

The calculated ratio P/y is compared with the
empirical lV' in the last two rows of Table II. In spite
of the approximate nature of the estimates leadirrg to
the values for g/y, these values are satisfying in two

respects. As we pass from Fe through Co to Ni, P'/y
increases in approximately the same manner as does
W'. For each metal the calculated P'/y is somewhat
larger than the empirical H/", thereby allowing for a
negative contribution from the coefficient n. We con-
clude that the model for ferromagnetism proposed in
the 6rst paper of this series gives a satisfactory quanti-
tative interpretation of the Weiss constant.
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The formalism of signer and Kisenbud for nuclear reactions is carried out by means of a variation
principle. A variation principle of the Hulthdn type is derived for the R matrix and applied to trial wave
functions written in terms of the resonance functions, X)l„of the signer-Eisenbud formalism. As a result,
a 6nite level formula for the E matrix is directly obtained.

I. INTRODUCTION AND SUMMARY
'

N a paper by Wigner and Eisenbud, ' general equa-
l - tions describing nuclear reactions are rigorously
derived. The essential result of the theory is the expres-
sion which the authors obtain for a matrix which they
call the R matrix. The R matrix is a real, symmetric
matrix whose rows and columns are labeled according
to the possible alternatives of the reaction. From the
R matrix one may directly calculate the collision
matrix, which gives the cross sections of the possible
reactions according to a„.=xk. '~5,.—U., ~', where
0„ is the cross section of the reaction going from the
sth pair of particles to the s'th pair and U„ is the
corresponding element of the collision matrix. The R
matrix is related to the collision matrix of the reaction
by an equation of the form U= ca (1+ijEj )(1 ij Ej ) 'ra, —
where j and co are, respectively, real diagonal and
unitary diagonal matrices. The elements of the j and
w-matrices depend only on non-nuclear parameters, in
that they involve only constants which enter into the
solutions. of the two-body Schrodinger equation in the
regions of con6guration space where there are two
distinct reaction products. The calculation of the colli-
sion matrix from the R matrix may therefore be
accomplished in a straightforward manner without any
additional information about the compound nucleus
other than that which is contained in the R matrix.
This paper will concern itself only with the R matrix.

An expression for the R matrix will be obtained on
~ Present address: State University of Iowa, Iowa City, Iowa.
t A part of a dissertation submitted in partial fulhllment of the

requirements for the Ph.D. degree at New York University.
' E. P. %igner and L. Kisenbud, Phys. Rev. 72, 29 (1947}.

This reference will be referred to as%-E throughout the remainder
of this work.

the basis of a variational calculation. The variation
principle is of the same general type as that derived by
Hulthen' for the two-body quantum-mechanical scat-
tering problem. The derivation presented here is along
lines similar to those followed by W. Kohn' in a recent
paper.

The variation principle is applied to a trial wave
function, which is written in terms of a 6nite number of
functions, Xq, defined in W-E. These functions are
intended to represent the resonance states of the com-
pound nucleus. Upon making the variational expression
stationary with respect to variations of the coefficients
of the X&, one obtains directly an expression for the R
matrix in terms of the states used in the trial wave
function. The variationally derived expression for the
R matrix is in agreement with the rigorous expression
for the R matrix up to the order of the number of
terms used in the trial wave function. Moreover, the
variationally derived R matrix is real and symmetric
for all trial wave functions of the type considered.

The notation used in this paper will be essentially
the same as the notation of W-E. This has two ad-
vantages. First, it gives the present work all of the
generality of W-E in that arbitrary long-range inter-
actions and arbitrary angular momenta are allowed.
Second, it allows for a direct comparison between the
results of the variational calculation and the rigorous
result.

In order to carry out this work it will be necessary
to present a brief description of the Wigner-Eisenbud
formalism. This will be done in Sec. II. Section III is

L. Hulthen, Extrait, Dixieme Congres des Mathematiciens
Scandinaves, Copenhague, 1946.

'%. Kohn, Phys. Rev. 74, 1763 (1949}.


