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partition, the latter has the value it would have if the
gas temperature were zero. Its properties were ex-
amined in Sec. C.

The foregoing development completely solves the
problem of intermediate 6elds if the assumption of a
constant mean free time can be made. There remains
the question what to do in other cases, particularly for
the model treated in Sec. D. It is true that, in principle,
the general problem could be solved by the method
developed there. For the gas temperature complicates
only the central term in (14), while the method of solu-
tion was based on the structure (35) of the higher out-
side term which remains unaffected, However, the

further course of the calculation in Sec. D makes the
method less desirable. We would be able to produce a
number for the drift velocity for a given numerical
ratio of the electric field and the temperature, but we
would not gain direct information about the functional
relationship. This relationship would only reveal itself
indirectly after extended numerical computations. It is
to be hoped that a more satisfactory way of proceeding
can be found.

In conclusion, I wish to thank Miss C. L. Froelich
and the computation staff of the Bell Telephone Labora-
tories for carrying out the computation mentioned in
Sec. D.
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Quantum statistical forces in ideal symmetric and antisymmetric Quids establish an ordered arrangement of
their Quid molecules in space. The coherent scattering properties of these Quids resulting from this spatial
order are studied in this paper.

I. INTRODUCTION
' 'N an earlier paper' we studied the incoherent slow
~ ~ neutron scattering by ideal monatomic symmetric,
or Bose-Einstein (B.E.), and antisymmetric, or Fermi-
Dirac (F.D.), fluids. These were presumed to represent
possible asymptotic models of liquid He4 and He', re-
spectively. We should like to complete here the theory
of the scattering properties of these Quids by an inves-
tigation of their coherent scattering, especially for slow

neutrons, resulting from the respective spatial corre-
lations of their atoms. These spatial correlations are
caused by the quantum statistical attractive and re-
pulsive forces in the phase space of these systems of
ideal dimensionless atoms.

In the wave kinematic approximation the coherent
scattering of short wave electromagnetic radiation by
atoms is similar to the coherent scattering of slow
neutrons with comparable de Broglie wavelengths. The
possible, though small, neutron-electron interaction of
nonmagnetic origin together with their electromagnetic
coupling will be neglected here. Then the linear mo-
mentum exchange, with vanishingly small energy
exchange, between these Quids and the incident slow

neutrons, which is the coherent scattering process, is
determined primarily by the speci6c slow nuclear
scattering amplitudes of the Quid atoms. These quan-
tities are, in turn, the speci6c amplitude structure
factors of the nuclei for slow neutrons. These are sup-

' Goldstein, Sweeney, and Goldstein, Phys. Rev. 77, 319 (1950}.

posed to be known, at present, only empirically, in
contrast to the atomic structure factors for radiation
which can be evaluated with sufhcient precision from
first principles. The additional difference between the
two types of radiative and neutron scattering processes
consists in the diversity of the nuclear scattering am-
plitudes for different neutron-nucleus spin con6gura-
tions. This difference vanishes for nuclei of zero spin
angular momentum, for instance, as in the case of He'.

Our problem is to investigate the statistical or cor-
relation coherent scattering structure factors of ideal
symmetric and antisymmetric Quids. The study of the
physical characteristics will then bring out a series of
remarkable analogies exhibited by B.E. Quids and
normal Quids both near and away from their respective
critical regions.

The structure factors will be defined in the next
section, while their evaluation and discussion will be
reserved for the subsequent sections.

II. THE COHERENT SCATTERING OF SLOW
NEUTRONS BY IDEAL SYMMETRIC AND
ANTISYMMETRIC FLUIDS (ASYMPTOTIC

LIQUID He4 AND Hea MODELS)

The possible practical interest of these Quids may be
associated with He4 and He' atoms with zero or half-
unit of spin angular momenta. This justifies the limita-
tion of the study of the scattering to these two spin
cases. One of the main differences in the correlation of
symmetric and antisymmetric Quids arises from the
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fact that all atoms of the ideal symmetric Quid are
statistically correlated, while an ideal antisymmetric
6uid of atoms with spin k/4s can be looked upon as a
mixture of two Quids with oppositely directed spin
momenta, with correlations existing only within each
Quid. of atoms of parallel spin directions. To the ap-
proximation of the present studies, atoms with opposite
spin directions are uncorrelated and cannot give rise to
interference of their respective scattered waves.

Let X spinless atoms, occupying volume t/' at tem-
perature T, form an ideal symmetric Quid. Further, let
Ps(r, T)dv/V be the probability of ending an atom in
the volume element de with its center at a distance r
from a given atom at the origin of the coordinate
system. Here, Ps(r, T) is the spatial probability dis-
tribution function. In a classical idea1. gas, this quantity
reduces to unity. In ideal symmetric and antisymmetric
Quids, the departures of the probability distribution
from unity are pure quantum eBects, and it is justifiable
to denote these as quantum correlations.

The coherent scattering cross section per unit solid
angle of a symmetric collection of E atoms, for neutrons
of initial and final propagation vectors k and k', may
be written as

Xa,&Ps(r;&, T)du, di&; (1).

spherically symmetrical in the relative motion and is
characterized by a unique s-wave phase shift or scat-
tering amplitude, &c, of either sign. At the low neutron
energies envisaged here, u may be said to represent the
asymptotic infinite wavelength scattering amplitude
and should thus be an energy-independent quantity.
The Ã(N —1) off-diagonal mutual interference terms
contribute all the same cross section. Thus one finds

Ss(», T)=rVo 1+V -'(N —1) cos(4lr r; r—,)

)&Ps(r... T)di&;de; . (1a)

Now, the two atom probability distribution function
can be written as

where Qs is the specific quantum correlation function of
ideal symmetric fluids. Replacing Eq. (4) into Eq. (1a)
and performing the integration on cos[Ak (r,—r;)j
leads to the structure factor of ideal Quids in a finite
volume V, assumed to be a sphere of radius R. On
evaluation of the angular integrals over the quantum
correlation term, one obtains

Ss(», T)/No.
This cross-section formula is more general than the one
used for the scattering of x-rays by atoms. ' Here, 0;;
is an elementary cross section to be defined below,

+[4m (N —1)/V»j t sin(rhk)Q, (r, T)rdr
0

[ &lr
(
=

)

k' —ir
(
= 2k sin8=4ir(sin8)/X (2) =Fs'(Ak T) x=R&k.

is the momentum loss of the neutron on scattering
expressed in units of k/2~, 28 is the scattering angle,
and X the neutron wavelength. The argument of the
cosine is the phase difference between the waves scat-
tered by the atoms i and j of separation r,; or

~
r,—r& ~.

Of the 1P terms in Eq. (1), the N diagonal terms are the
individual contributions of the X atoms, with 0;; for all
f(1, 2, , N) being the single atom nuclear coherent
cross section per unit solid, angle. In order for a single
atom to scatter coherently, it is necessary that its elastic
cross section be the one associated with an apparently
infinitely heavy nucleus. Hence,

o,;=a.(1+A ')'=0

where A denotes the mass of the scattering Quid atoms
in units of the neutron mass, and a, stands for the slow
neutron elastic cross section of the free atom per unit
solid angle and in the relative motion. Since the slow
neutron scattering process involves only neutrons of
zero relative angular momentum, the scattering is

~ A. H. Compton and S. K. AOison, X-Rays ie Theory cod Ex-
perimen4 (D. Van Nostrand Company, Inc., ¹wYork, 1935),
second edition, pp. 17/-181.

The radial integration in the quantum correlation term
is extended to infinity, because the correlation function
Qs(r, T) vanishes, in general, quite rapidly with in-
creasing r The ratio . Ss/N&r is the intensity structure
factor per atom of the ideal symmetric Quid.

In an. ideal antisymmetric Quid of atoms with spin
k/4s, the two-atom correlations refer only to atoms of
parallel spin directions. %'ith

where the negative sign in front of Q~ expresses the
peculiar spatial repulsion between atoms of parallel
spin, one obtains, using Eq. (1) and performing cal-
culations similar to those leading to Eq. (5), the struc-
ture factor Fz'(hk, T). The latter resembles Eq. (5)
with (-N) replacing N and with a negative sign in front
of the quantum correlation integral which includes
Q~(r, T) instead of Qs(r, T). The incident neutron
beam is supposed to be unpolarized. The antisymmetric
fluid cross section per unit solid angle Sg(», T) or
NF& (», T)0„ is again determined by the in6nitely
heavy atom elastic cross section per unit solid angle 0
in spite of the fact that the scattering amplitudes in the
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=1+ (TITo)'F '(0)E/ '
l=1

Xexp[ —/u —(orr'//h')], (.7)

P (r, T(T,)=1+Q (r, T(To)

=1+ (T/T, )»F '(0)P /~ exp( sr'//it' )—
l 1

-2

+2(T/To)'F '(0)L1—(TITo)']

XP /~ exp( —orr'//A'), (g)
l=1

3 L. D. P. King and L. Goldstein, Phys. Rev. 75, 1366 (1949).
4 G. E. Uhlenbeck and L. Gropper, Phys. Rev. 41, 79 (1932).
I A. D. Galanin, J. Exp. Yheoret. Phys. (U.S.S.R.) 10, 1267

{1940}.F. London, J. Chem. Phys. 11, 203 {1943}.

triplet and singlet spin configurations are assumed to
be diGerent. Here,.-=(I+&-')'[-:(*)'+:(")'].
The nonoccurrence of the coherent cross section in the
X($—1) mutual interference terms is due to the absence
of correlation between atoms of opposite spin directions.
This eliminates the interference between the singlet and
triplet amplitudes, ('u) and ('u).

Our problem is to investigate the intensity structure
factors Fs'(b, k, T) and Fs'(/»k, T). Beside the evident
academic interest attached to the scattering properties
of these ideal quantum Quids, the possibility that these
Quids might represent asymptotic models of liquid He'
and He' would further justify the study of these
processes. Of the two Quids, the symmetric one appears
to be of considerably greater practical interest with
respect to the scattering of slow neutrons because of the
enormous slow neutron absorption cross section of the
He' nuclei. '3 The experimental investigation of slow
neutron scattering by liquid He4 could yield additional
information which might prove helpful in a better
understanding of this liquid.

III. THE COHERENT SCATTERING STRUCTURE
FACTOR OF IDEAL SYMMETRIC FLUIDS

The structure factor is determined by the two-atom
probability distribution function P(r, T), dehned above.
Both in symmetric and antisymmetric Quids the evalu-
ation of the distribution function is straightforward. It
is the coordinate space average of the probability
density of these Quids over (X—2) of their X atoms and
its momentum space average over the momenta of all
the atoms. These functions were 6rst obtained in the
limit of small degeneration. 4 The rigorous symmetric
Quid distribution and correlation functions were also
derived. ' Neglecting terms of the order of 1/X, these
are given by

Ps(r, T&~To) = I+Qs(r, T&~ To)

above and below the condensation temperature Tp,
respectively. Here

F(0)=Q /~=2. 612, A=k/(2nMkT)»,
l I

A. denotes the de Broglie wavelength of the Quid atoms
associated with their average thermal motion, 3f the
mass of the atoms; n is the negative Gibbs free energy
per atom in units of kT. One of the two atoms of the
pair, in Eqs. (7) and (8), is at the origin of the coor-
dinate system. The functions Qs(r, T) are the charac-
teristic quantum correlation functions. They vanish in
the limit h~0.

Substituting Eq. (7) into Eq. (5) and performing the
calculations, one 6nds the following intensity structure
factor formula per atom:

Fs'(&k, T&To)=1+O'P(Rhk)+F '(a)Q Q (/+m)~
l 1m 1

Xexp[ —(/+m) Oi (/m//—+m) (A/»k)'/4m]. (10)

Here C P(Rhk) is the ideal Quid structure factor deQned
by the second term on the right-hand side of Eq. (5).
In the specific quantum statistical term, (X—1) was
replaced by cV, since $)&1. Below the condensation
temperature one obtains, with Eq. (8),

Fs'(/»k, T& To) = 1+O'P(R&k)

+(~(T)i~)Z Z (/+m)-»
l=1 m=1

Xexp[ —(/m//+ m) (A/». k) '/4n. ]
+2(E,(T)/A') [(exp[(h hk)'/4or]) —1] ', (1l)

where

iV (T)/N = (T/To)» /t (T)//»/ = 1—(T/To)» (12)

denote the fractions of the excited and condensed atoms,
respectively.

The ideal Quid structure factor C,s(Rhk) is negligibly
small for all 6nite values of hk or 6nite scattering angles.
It has the limit (X—1) or X in the forward direction
associated with hk or (4or sin8)/X~O. In this ideal limit
all atoms scatter in concordance of phase. Ke shall,
however, omit this term from the structure factor for-
mulas (10) and (11).This is justiQed because all limiting
small angle scattering considered below will be asso-
ciated with directions or propagation vector changes d k
such that for these CP is still negligible.

The preceding symmetric Quid structure factors, with
the classical term omitted, have been derived by
Galanin' in connection with his formal studies on the
density Quctuations and scattering of x-rays and visible
radiation by ideal B.E. Quids. The independence of
the structure factor from the type of waves is, of
course, evident. The physical discussion of the scat-
tering phenomenon together with the analogies in the
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qualitative behavior of ideal symmetric and normal
Quids have not been given by this writer. Furthermore,
some of the conclusions reached by him in a more
recent work on the scattering properties of a modified
B.E. Quid model' do not appear to be free from objec-
tions. %e shall return to this point later.

It is possible to obtain a rigorous lower bound for the
double sums in Eqs. (10) and (11)and to derive thereby
practically rigorous analytically closed structure factor
formulas. Indeed, the running factor bn/(1+m) in the
exponents of the exponentials in the double sums has
its extreme value l. The exponent with the double index
will be approximated with the help of the inequality

Plm/(f+ m) & P/; P= (h.hk)'/4s;
3m=1 2,

4~P being the square of the neutron momentum change
on coherent scattering expressed in units of the mo-
mentum associated with the average thermal motion
of the atoms. In thus stripping the factor bn/(L+m) of
the index m, the double sums can be reduced to a simpler
approximate expression, their rigorous lower bound.
One thus obtains, after a somewhat lengthy calculation,
the following lower limits of the structure factors

F8, ; P=[1—F(n+P)F '(n)](1—e &) ' T~&To, (14)

Ss, r'= [1—(T/To)'](e~ —1)—'

+[1—(T/To)&F(p)P '(0)7(1—e-~)—' T & To (15)

F(n) =P l &exp( la)—-
1

Approximate upper limits of the structure factor result
from the lower limits on substituting P/2 for P in the
preceding formulas.

The resemblance of the preceding approximate
coherent structure factors' or coherent symmetric cross
sections per atom to the rigorous incoherent or inelastic
cross sections obtained previously' is evident. It should
be remembered, however, that this similarity concerns
mainly the incoherent cross section in the relative
motion. The coherent cross sections (10) and (11) or
(14) and (15) are evaluated, necessarily, in a fixed
coordinate system. Also, the incoherent cross sections
have been obtained under the condition that the neu-
tron kinetic energy is larger than the kinetic energy of
thermal motion of the Quid atoms. No such restrictions
have been imposed here.

Using Eqs. (14) and (15), simple expressions can at
once be derived for the limiting values of the lower
bounds of the structure factors. Keeping the tempera-
ture constant, one obtains in the limit of large P, that
is, for large angle scattering or large momentum loss of

' A. Galanin, J. Exp. Theoret. Phys. (U.S.S.R.}19, 175 {1949).
'I The function F{x}should not be confused with the structure

factors which we always write in the form of squares.

the scattered waves,

hmFs, ;„f'=1—F '(o.) hmF(a+P)
p» i p»s

=1—F—'(a)e & T) To, (16)

which is practically unity. Since our discussion will be
based on the lower bounds Eqs. (14) or (15), we shall
henceforth omit the subscript inf of the structure factors.
It is seen that at large angles the angular dependence of
the structure factor tends to vanish leading only to the
diGuse coherent scattering expressed by the self-inter-
ference term or unity on the right-hand side of Eq. (16).

At a constant value of the scattering angle, for given
incident waves, the structure factor increases with
decreasing temperature because of the increasing range
of the correlation function Qs(r, T). The structure
factor reaches a maximum at the condensation tem-
perature, where its value is

Fz'(Dk, To) [1—F(P)F '(0)](1—e &) ' (17)

In the limit of very small momentum changes or P«1,
one obtains, expanding both the numerator and
denominator,

limFs'(hk, To) = lim[ —dP/dP]F '(0)
a« i p« i

=s~P ~F '(0) (18)

which may become very large for small P-values. One
might object here, on analytical grounds, to the passage
to the limit of small P-values in Eq. (17).This, however,
could be obviated by writing F(-', P+-', P) for F(P) and
expanding around (P/2). Or one might divide the
interval P into two parts and expand around the larger
value. This would only introduce a numerical constant
in the limiting structure factor (18), while the cha, rac-
teristic P & behavior would, of course, be unchanged.

At temperatures T&TO, the structure factor (15)
leads to the following limiting behavior:

lunFs'(hk T&TO)=1+e &[1 (T/To)&(—1+F '(0))]
p&»

(19)

which is similar to the large P-limit above To, Eq. (16),
in so far as the angular dependence or P-dependence
vanishes exponentially. In the opposite limit of small P,
one finds, using the expressions (12) of the condensed
and excited fractions of the atomos,

limFs'= (N, (T)/1VP)+ (I'(s')N (T)/NF(0) P~), (20)

where the first term on the right-hand side is the
dominant term. This shows that in the condensation
region the coherent scattering process at small angles is
due mainly to the condensed atoms. As the temperature
increases toward the condensation temperature To, the
importance of the second term on the right-hand side
associated with the excited atoms increases; and at To,
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expression (20) becomes identical with (18), the latter
limit being reached from above Tg. This proves the
continuity of the structure factor at the condensation
temperature, a result which was seen to be valid in the
incoherent scattering process' also. It can be shown,
furthermore, that the temperature derivative of the
structure factor is discontinuous at the condensation
temperature. This discontinuity is due to the inter-
ference between the waves scattered by condensed and
excited atoms. The interference term is given by the
first term on the right-hand side of Eq. (15).It does not
appear in the incoherent process whose cross section is
continuous together with its 6rst temperature derivative
across the condensation line.

Since in the scattering of visible light the charac-
teristic quantity p is very small, one would expect, in
the He II or condensation range, the structure factor
(20) to reduce to its first term which is then quite large.
This result for visible radiation was obtained recently
by Galanin' using a modi6ed B.E. Quid model. How-
ever, in the limit P))1, this model still leads to a rela-
tively large structure factor, varying essentially as P &.

Physically, in this limit the coherent scattering should
become independent of the momentum change and the
mean correlation distance characteristic of the scat-
tering Quid, which, in the ideal symmetric Quid, is A. or
h/(2mMkT)&. This behavior is clearly exhibited by our
formulas (16) and (19), which reduce essentially to the
diGuse scattering term corresponding to unity on the
right-hand side of these relations. It is worth noticing
that Galanin's model' resembles somewhat the one used
by Brillouin in his investigations of the coherent scat-
tering of electromagnetic radiation of any wavelength
by transparent solids and liquids. However, Brillouin s
theory leads to the correct physically expected variation
of the structure factor, namely, exp( —P&), if one rein-
terprets our A. as the wavelength of the elastic waves in
the medium which reQect the incident electromagnetic
waves in Brjtllouin's dynamic model of the scattering
medium.

IV. ANALOGIES BET%ZEN THE COHERENT
SCATTERING OF RADIATION OR SLOW

NEUTRONS BY IDEAL SYMMETRIC
AND REAL FLUIDS

In the preceding discussion. of the B.E. coherent
structure factor we have limited ourselves purposely to
the condensation region and the vicinity of the con-
densation temperature or the saturation line in the
single phase modification of this Quid. %e should like
to study now the coherent scattering at temperatures
T& To, e.g. , throughout the single phase region.

Let the Quid. be at some temperature distinctly higher
than its condensation temperature To. The parameter
0, is then large; i.e., it is of the order of unity. It is to be
remembered that near To, this parameter is extremely
smal1, of the order of S ', E being the total number of

L. Brillouin, Ann. phys. (9), 1?, 88 (1922).

atoms of the fiuid. At T) To, one finds with Eq. (14),
for small values of P,

limFs2(P T) To) = PF—(a)j '(dF/d~)
p&&j.

=Q l &e-'~ Q l~e ' . (21)
L=l l=1

In this limit the scattering structure factor becomes
independent of P. This result is the same as the one
obtained with the center-of-gravity coordinate system
incoherent structure factor. ' The structure factor (21),
although derived by using the lower bound (14), turns
out to be exact, the lower bound becoming identical
with the rigorous structure factor in this limit of small P.
The proof of this is simple and will be omitted here.
Recalling now the expression (13) of the scattering
parameter p, it is seen that small p means:

) &A; or X))A, 8 finite,

) =A. ; or X&A., 8 small.

In case (a), the wavelength of the incident radiation is
large in comparison with the mean correlation range A.

of the correlation function Qs, Eqs. (7) and (8). Since
the B.E. Quid might be considered to represent some
asymptotic model of liquid He', numerically, the ap-
proximate correlation range A is about 10 ~ cm at 3'K.
Hence, in liquid He, case (a) is realized for visible
light at all scattering angles. Case (b) corresponds
to the small angle scattering of slow neutrons, thermal
or subthermal, and to that of x-rays. Equation (21)
expresses the result that both for radiation of the
visible region and of short wavelength and slow neu-
trons, but with small momentum change on scatter-
ing, the structure factor becomes independent of the
details of the scattering process, that is, of X and 8
as well as of the molecular characteristics of the Quid,
such as the correlation distance. Under these condi-
tions, the structure factor depends only on the over-all
thermal properties of the Quid. Indeed, with the equa-
tion of state of B.K. Quids, one obtains, without dif-
hculty,

F'( )dF/d —= NkTV '(BV/Bp—)r=XkTxr/V,
(22)

where p& stands for the isothermal compressibility of
the fluid. Now, the right-hand side of Eq. (22) is X
times the relative mean square Quctuation of the par-
ticle concentration (X/V) or e, or that of the number
of particles X,

F'(a)dF/dn—=N(he')A, /e'=(61V')A, /1V (23).
Consequently, the coherent intensity structure factor
in the limit of P((1 becomes

limF8'(P, T)Tp) =)VATxr/V=(6)V')A/E. (24)
p&&i
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This shows that in this limit the ideal B.E. Quid
scatters coherently as would a normal monatomic Quid
far from its critical region, according to Einstein and
Smoluchowski. This, of course, is just as it should be
physically, because for visible light of wavelength ) far
exceeding the molecular correlation length and for
x-rays or slow neutrons whose phase change on scat-
tering is also very small at small or moderate scattering
angles, the spatial arrangement of the molecules, as
described by the distribution or correlation functions,
can have no explicit eftect whatsoever on the scattering
process, since large groups of atoms scatter essentially
in phase. A more complete theory valid both for visible
light and x-rays in transparent media, solids, or liquids
has been proposed by Brillouin. ' The proportionality of
the coherent structure factor of x-rays to the com-
pressibility of the scattering medium is fully contained
in Brillouln s work. That this ploportlonallty fo1 x-Iay
scattering should exist only at small scattering angles
was erst shown by Zernike and Prins. "These writers
have outlined the formalism of the coherent scattering
phenomena of x-rays by liquids by introducing ex-
plicitly, in a formal way, the normal Quid distribution
or correlation functions in the theory of these processes.
The absence of a satisfactory theory of such correlation
functions in normal Quids prevented them from ob-
taining any explici:t liquid structure factor.

Let us consider again the limiting B.E. coherent
structure factor (21) or (24). As the temperature of the
Quid decreases toward the condensation temperature,
the concentration or density Quctuations increase
without limit, an anomalous situati'on quite similar to
what obtains in the critical region of normal Quids. A
large increase in the intensity of the coherently scat-
tered radiation by ideal B.E. Quids should be expected,
the loss of validity of the Quctuation formalism not-
withstanding, as pointed out by us sonic time ago."
Ideal B.E. Quids should exhibit a critical opalescence
type of eGect near their saturation line. It is seen that
this conclusion is valid also for the small angle scat-
tering of slow neutrons or x-rays, whose structure factor
becomes highly asymmetrical. The scattered slow
neutrons or x-rays should appear essentially in the
forward direction with considerably reduced relative
lateral scattering as the symmetric Quid approaches its
transition temperature. It should be noted, in this con-
nection, that the saturation curve of ideal symmetric
Quids is the geometrical locus of points of infinite com-
pressibility or vanishing slopes (Bp/r) V)r of their
isothermal curves. Since (8'p/r) V') r (0, the isothermals
have their maximum" along the saturation or transition
line in the pressure-volume diagram. These isothermals,
when extrapolated into the two-phase or condensation

~ A. Einstein, Ann. Physik 33, 1275 (1910);M. v. Smoluchow-
ski, Ann. Physik 25, 205 (1908).I F. Zernike snd J. A. Prins Z. Physik 41, 184 (1927)."L Goldstein, P. hys. Rev. 7, 241, 457 (1940).

n L. Goidstein, J. Chem. Phys. 14, 276 (1946).

region from the single phase low density or vapor
region, take on the physically excluded behavior of
decreasing pressures with decreasing volume. As a
result, the ideal B.E. Quids undergo a smooth condensa-
tion process" whereby supersaturation is prohibited.
This type of condensation is quite similar to the con-
densation of ordinary Quids in their critical region
where the isothermals appear also to reach the vapor
saturation line with small slopes tending to vanish in
the vicinity of the critical point. The similarity in the
thermodynamic behavior of ideal B.E. Quids, with
attractive statistical forces but no interatomic forces,
and of normal Quids, with attractive intermolecular
forces but no statistical forces, extends thus into their
respective coherent scattering properties near their
critical transition regions. However, in ideal symmetric
Quids the difBculty of the Quctuation theory of scat-
tering in the vicinity of the saturation line is averted by
the rigorous structure factor formulas (10) and (11) or
by their lower bounds (14) and (15). Indeed, the pre-
ceding discussion of the structure factors (21), (22),
and (24) helped to show how the molecular theory of
scattering joins with the thermodynamic statistical
theory in the limit of small momentum changes of the
waves on coherent scattering. In order to obtain the
rigorous scattering law near the transition line in this
same case of small momentum changes, one has to
evaluate Fa'(Pp, Tp) with (14) and then obtain its limit

1iinFs'(po, To)= ipo 1F '(0); pp= Ao'(Ak)'/4, (18a)
po&(I

which may be quite large but 6nite. In the condensation
region, as shown already above, the small momentum
change structure factor is also finite (Eq. (20)), although
it may become quite large. This, then, proves the
general validity of the rigorous structure factor for-
mulas or of their simpler lower bounds both as far as
the state of the symmetric Quid and the details of the
scattering process are concerned.

V. ANALOGIES BETWEEN THE MOLECULAR
CORRELATIONS IN IDEAL SYMMETRIC

AND REAL FLUIDS

It appears to be of interest, at this juncture, to
discuss the classical intuitive solution of the critical
opalescence problem for visible light proposed by
Ornstein and Zernike. " These authors were the 6rst
to recognize the fundamentally incomplete character of
Einstein and Smoluchowski's' statistical theory of light
scattering in the vicinity of the critical state of normal
Quids. The normal Quid structure factor per atom in
the Ornstein-Zernike theory can be written for long
wave radiation in the form

FNsP~, T) =(NkTxr/V)(1+(NkT7(rP~/V) j ',

PN= (s sine/Xsr)', (25)
"L. S. Ornstein and F. Zernike, Amsterdam Proc. 17, 793

(1914);Physik. Z. 19, 134 (1918);and 2?, 761 (1926).
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where e stands for the short range of the intermolecular
forces, and XN or X/e is the wavelength within the
scattering Quid, n denoting its refractive index. Clearly,
at the critical point the structure factor behaves as
P~ '. This is similar to the structure factor of ideal
symmetric Quids below the transition temperature for
small values of P (Eq. (20)).

For a brief study of the analogies between normal
Quids and the ideal symmetric Quid, let us return to the
distribution functions Fs(r, T) or the correlation func-
tions Qs(r, T) contained in Kqs. (7) and (8). The sums
appearing in these correlation functions can be evalu-
ated to a fair approximation by transforming them into
integrals. One thus obtains, at once,

Qs(r T&-Tp)

=F '(a)( 1-&expL-—la —(nr'/lcV)7dl (

1r t'"

region, the correlation function is a very long-range
function, since for all. significant distances it varies as
r '. It is to be noted that both the rigorous and ap-
proximate symmetric Quid correlation functions, though
continuous, have a break at the saturation line; i.e.,
their temperature derivative is discontinuous. It is also
of interest to note that the long range, 1/r, quantum
correlation in the condensation region is proportional
to the product of condensed X, and excited atoms ST
and is due to the statistical attraction of these atoms.
The statistical forces between excited atoms give rise to
spatial correlations decreasing, at best, as 1/r' at or
below the saturation line.

In normal liquids, the functional form expressing the
correlation between a molecule at the origin and one at
a distance r is given, asymptotically, by the correlation
density

g(r, T) =[3F(T)/2mP7 exp( —r/r)/r;

=A'F-'(a)r —'exp~ —r/(A/4(ma)&)7, (26) F(T, p)=)I' f(r, p, T)dv, (30)

Qs(r, T&-Tp) =(2Nr1V, N —'F—'(0)A)r —'

+(1VrN-'F —'(0))PAPr —'. (27)

It is clear, of course, that these approximate correlation
functions lose their validity at small distances r, since
the integrals over the sumrn. ation index l tend to
diverge at vanishing separations. However, these func-
tions are probably better than asymptotic in the sense
that they should approximate fairly well the rigorous
correlation functions (7) and (8) beyond distances
r,(T) which are the roots of the transcendental equa-
tions obtained by equating Qs and Qs, in the two
temperature regions, respectively. The remarkable dif-
ferences in the quantum correlations (26) and (27)
above and below the transition temperature are more
clearly exhibited by the functions Qz thanby the rigor-
ous but unwieldy correlations Qs, (Eqs. (7) and (8)).
Above the transition temperature, one is confronted
with a rather short-range correlation function varying
as exp( —r/r)/r', the range being, at T) Tp where a
is of the order of unity, somewhat less than A, or

r(T) =A/4(xa)&. (28)

As the Quid temperature decreases toward its condensa-
tion temperature, the range r(T) increases and may be
said to become very large, of the order of the linear
dimensions of the vessel, at the condensation tern-
perature, since ~~X '. The divergence of the correla-
tion range in the condensation region can be proved
rigorously using the exact function Qs(r, T&Tp) (Kq.
(8)). Along the saturation line the correlation function
behaves as a long-range function, or

Qs(r, Tp) =cVF-P(0)r—'. (29)

where f(r, p, T) is the local distribution function, whose
mean range e has been defined in connection with Kq.
(25). It isseenthat g(r, T) corresponds to(N/V)Qs(r, T)
in ideal symmetric Quids. The range r is given here by

(r(T p)/p)'=(1/6)L1 —F(T p)7 ' (31)

Assuming further that for very large volumes the clas-
sical concentration fluctuation formula (24) remains
valid, it can be shown that

F(T&T,)(1, limF(T)~1 and limr(T)~~.

As the critical state is approached, the correlation
function (30) tends to become the very long range
function 3/(2xer).

The analogy between the distance dependence of the
asymptotic quantum correlation function Qs(r T) Tp)
and the corresponding real Quid correlation density
(30) at liquid temperatures distant from the critical
one is thus quite close. The important behavior is the
exponential one in both cases, and the difference in the
r ' and r ' factors in the two cases is of no importance.
However, the asymptotic 1/r dependence of the cor-
relation functions in the critical region of normal Quids
and in the condensation region of the ideal symmetric
Quid is identical.

We should like to conclude this section by noting that
with Kqs. (5), (10), (21), (22), and (24) the particle
concentration Quctuations in a volume V of the ideal
symmetric Quid, in equilibrium with a reservoir, may
be written as

(~P)p„——1V 1+(N/V) I Qs(r, T)4-rPdr; (32)

Below the condensation temperature, in the two-phase a formula which was first derived by Ornstein and,
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Zerniire. "Actually, the rigorous expression (32) is due
to Zernike and Prins. "Again the complete formalism
of ideal symmetric Quids accounts fully for this mo-
lecular type of formula. It shows further that the
Quctuations are finite for T& TD, where the range of the
correlation function is small, while at the saturation
line or below it, in the condensation region, the Quctu-
ations are also finite, though large, provided only the
integration in (32) is extended over finite distances.
This condition is necessary, of course, in view of the
diverging range of the correlation function. These finite
but large Quctuations give rise precisely to the coherent
scattering processes, resembling the classical critical
opalescence phenomenon at and below the saturation
line of ideal B.E. Quids.

VL THE COHERENT SCATTERING OF SLO%'
NEUTRONS BY REAL FLUIDS IN THE

CRITICAL REGION"

The preceding studies of coherent scattering phe-
nomena in ideal symmetric Quids show that the struc-
ture factor depends essentially on the scattering
parameter P or hk, the momentum change on scattering.
The molecular theory of coherent scattering of normal
Quids leads to a similar result. As was pointed out. above,
these results are valid both for electromagnetic and
de Broglie waves. This suggests the possibility that
slow neutrons might be used in the experimental inves-
tigations of the coherent scattering by normal Quids, in
particular, in their critical region.

The normal Quid diGerential coherent cross section
per atom for small momentum changes on scattering in
the critical region may be written as

ap(X, 8, m, T) =a, (X, 8, e)FN'(P, T). (33)

For visible radiation, 0, is essentially the induced dipole
scattering cross section, and Fg(P, T) is the fluid
structure factor defined by (25) valid for small P and for
any type of radiation. In the case of an atom or molecule
one finds, for unpolarized incident radiation,

0,(X, 8, e) =rt'f(n)(1+cos'(28))/) ', (34)

where e= V/N is the volume per molecule, and f(n) is
some function of the refractive index of the scattering
Quid whose precise form is of no particular interest here.
This function originates in the molecular polarizability
of the scattering medium. It is seen that the Quid cross
section, Eq. (33), is a rather complicated function of
both X and 8 in the critical region. As a matter of fact,
the experimental data in the critical region seem to
confirm neither the wavelength nor the angular de-
pendence of the scattering cross section, Eq. (33). This
situation prompted Rocard" to elaborate a scattering

"This problem was reported on at the Chicago meeting of the
American Physical Society, Nov. 24-25, 1950.

"Y.Rocard, J. phys. radium 4, 165 {1933).The experimental
dBBculties in this problem are clearly shown in some recent work
on the wavelength variation of the critical opalescence. H. A.
Cataldi and H. G. Drickamer, J. Chem. Phys. 18, 650 {1950);
A. L. Rabb and H. G. Drickamer, J. Chem. Phys. 18, 655 (1950).

law in which the Quid structure factor is independent
of the scattering angle; therefore, the asymmetry
included in Eq. (33) does not appear in his theory. It is
interesting that the assumptions of Rocard leading to
these results are compatible with the generalized Orn-
stein-Zernike formalism developed by Klein and Tisza."
The Rocard theory yields a structure factor at the
critical point which depends on the local or molecular
characteristics of the Quid but remains independent of
the details of the scattering process, i.e., of X and 8. It
is apparently intermediate between the Einstein-
Smoluchowski and Ornstein-Zernike theories.

In view of the rather unsatisfactory status of the
experimental verification of the opalescence formula, it
seems that the use of s1.ow neutrons, through their
small angle coherent scattering by normal Quids near
the critical state, might possibly yield further informa-
tion on the validity or invalidity of Kq. (33) or more
exactly the structure factor (25). Here the elementary
or nuclear scattering cross section of slow neutrons is
independent both of the neutron wavelength and the
scattering angle (s-wave scattering). Hence, all wave-
length and angular dependence of the Quid cross section
per atom should be ascribed to the Quid structure
factor. Let us, indeed, assume for a moment that the
Quid correlation function is known, and let it be denoted
by QN(r, T). Then the rigorous molecular theory of
coherent scattering leads to the Quid structure factor,
per atom or molecule, omitting the ideal Quid term,

FN (rM, T) =1+(4'/Vhk))t sin(rhk)Q~(r, T)rdr.

(35)

The intermolecular interference term is omitted
throughout this paper; also only zero spin nuclei are
considered. For nuclei with spin, Eq. (35) would be
modified, because the disuse coherent term is the
bound atom elastic cross section and the mutual inter-
ference term is proportional to the bound atom coherent
cross section. Equation (35) becomes, rigorously, for
small dk values

lim F„'(ak T)

=1+(4mN/V) I Q~(r, T)r'dr=(AN')A, /N. (36)
D

Again, small b,k means that hkr&(i, r denotes the
range of the correlation function Q~. The very general
result Eq. (36) proves that the coherent structure
factor of normal Quids is independent of the type of
waves, i.e., of their momentum change on scattering, or
of the local molecular arrangement of the Quid, pro-
vided only that this momentum change is small. The
structure factor, under these conditions, is determined
by the particle or density Quctuations. Also, it is clear
from Eq. (35) that at larger angles, with hk becoming

"M. J. Klein and L. Tisza, Phys, Rev. 76, 1861 (1949).
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large, the high frequency sine factor of the integrand
cannot but reduce the integral with a subsequent
decrease of the structure factor at these angles. This
condition is imposed physically; that is, large momen-
tum exchanges between interacting systems without
energy exchange. , in coherent scattering or di6'raction,
become increasingly prohibited. when compared with
the small momentum exchange processes.

Ke consider 6nally the approach to the critical
region. First of all, it is seen that the small angle slow
neutron coherent scattering should. increase with the
Quid temperature as the latter increases toward the
critical temperature, the compressibility, to which
(hX )A, is proportional, increasing as it approaches the
critical region. Now, the compressibility law loses its
meaning in the critical region, since the conditions
under which Eq. (36) is valid. do not exist there. For a
rigorous derivation of the structure factor, the explicit
expression of Q~(r, T) is necessary, However, the
Ornstein-Zernike theory of the critical opalescence of
visible radiation can be considered to be an asymptotic
type of solution of the critical state scattering for small
momentum changes. This is justi6ed because the modi-
6cation to be applied to the scattering law far from the
critical region in order to extend its validity to the
latter region, for small momentum change processes, is
valid for any type of wave. Beside the small momentum
change limitation, this modi6cation involves only the
fundamental relation of the Ornstein-Zernike theory
connecting the fiuid correlation function g(r, T) with
the local distribution function f(r, T). One finds thus
with Eq. (25),

iim E~'(P, T) =P '= X'/(o' sin'8). (37)
~C

Here the quantity ~, the mean range of the local dis-
tribution function, is not so well de6ned, since the
latter is unknown. But the variation in the neutron
wavelength available over the spectrum of the thermal
column of 6ssion piles is large enough to allow one to
explore a reasonably wide angular range. The structure
factor (37) cannot be expected to be valid for large
values of P. It is realized, of course, that the inco-
herently scattered neutrons may complicate the inter-
pretation of the experimental results. However, their
eGect should be small precisely in the region of validity
of the limiting structure factor (37).

It is not without interest to note that the validity of
the slow neutron limiting normal Quid structure factor
(37) could have been inferred also from the formal
analogy, demonstrated above, of the small momentum
change scattering processes between ideal symmetric
and normal Quids.

VII. THE COHERENT SCATTERING STRUCTURE
FACTOR OF IDEAL ANTISYMMETRIC

FLUIDS. CONCLUDING REMARKS

The discussion in Sec. I of the coherent scattering by
antisymmetric Quids led to the general structure factor

formula resulting from Eq. (5) by some modifications
outlined above. This will now be studied here brieQy.
In contrast to the incoherent scattering case, ' here one
must consider separately the two temperature intervals
T&~Tp and T&~Tp Tp being the degeneration tem-
perature. The distribution functions are given here by
the following expressions

Eg(r, T&~ To) = 1—Qg(r, T&~ To) =1—(gV/Sh. ')'

orn~ -'
X P(—)' 'l~—exp~ lu — ~, (38)

1 /A. 'J

I'g(r, T«To) =1 Qg—(r, T«Tp)

(9o/2)[f 1 (~2/24)x2(T/T )2IJ)(x)/xf)2 (39)

where g is (2s+1) or 2; x stands for Kr, K being the
length of the longest propagation vector, i.e., the
propagation vector at the top of the Fermi distribution;
and the Q~'s are the antisymmetrical correlation func-
tions. In the 6rst of these two relations a distance inde-
pendent term of the order of N ' has been omitted. The
antisymmetric Quid distribution functions express
clearly the remarkable repulsion in coordinate space
between particles of parallel spin. There is a hole in the
particle distribution around any chosen particle.

With Eq. (5) properly modified for antisymmetric
Quids and the preceding distribution functions, one
obtains, after a somewhat lengthy calculation,

F~'(hk, T&~To) =Sg/Eo. (1+2 ')'=ox/o, (1+A ')'

=1+4 '(Rhk) —y-'(n)P P( )'+ (—1+m)~
1 1

XexpL —(f+m)a Plm/(—3+m)$, (40)

for the structure factor per atom, S~ being the cross
section of the whole Quid and 0& the antisymmetric
fluid cross section per atom. Here P is defmed by Eq.
(13) above, and

4( )= '/g =2(—)'+'
1

Also in the derivation of Eq. (40) (isa—1) has been
replaced by (X/2). As was the case with the sym-
metric Quid, the unwieldy double sum may be approxi-
mated with its analytically closed lower bound. One
again 6nds, using the method outlined in the sym-
metric Quid case, omitting the ideal gas structure factor
Cs in Eq. (40),

Fg, g'(hk, T&~ Tp)

= I1—L4(~+P)/&(~) jI(1—o ') ' (42)

This lower bound is identical with the rigorous inco-

'7 See K. signer and F. Seitz, Phys. Rev. 43, 804 (1933), for
absolute zero, and P. L. Bhatnagar and K. S. Singwi, Phil. Nag.
40, 917 (2949), for all temperatures,
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and, in the opposite limit,

limFg'(P, T&~ To) = —p '(n)(dp/dn)
P«1

(44)

which 1s 11gorous.
Below the degeneration temperature, essentially at

T«TO, one obtains with the properly modified Kq. (5)
and Kq. (39), after a rather long series of elementary
inte rations,

Here,
y=hk/X=4s sin8/EX,

(45)
7=2

y&2

(46)

where ) is the wavelength of the incident waves, and
(28) the scattering angle in the coherent process. One
notices the slight discontinuities near the limit at
which coherent scattering or mutual interference may
occur at all. The last of Eqs. (45) shows that coherent
scattering through mutual interference is an ideal
highly degenerate antisymmetric Quid is only possible
as long as the wavelength of the incident waves is
smaller than the minimum de Broglie wavelength asso-
ciated with the Quid, namely, the wavelength at the top
of the Fermi distribution. Explicitly, with E being
2s/X;, one finds that the mutual interference terms
vanish fo1

sin8& X/X;,
or as soon as X is equal to X; . This is simi~~r to the
optical condition for diGraction or the one associated
with the occurrence of Bragg scattering. The coherent

herent structure factor expressed in the center-of-
gravity coordinate system of the neutron and target
atom. ' The preceding structure factor, as a result of
the repulsion in phase space and coordinate space, is
less than unity. The cMuse coherent and mutual
interference terms are of opposite sign, the former being
necessarily positive. Limiting values of Eq. (42) can be
obtained at once. First, the large angle limit is, omitting
the subscript inf,

limF~'(P, T~&To) =1 $e—' +s&/P(a)7=1, (43)
P»1

scattering structure factor of ideal Fermi-Dirac Quids at
complete degeneration is thus characterized by a re-
duced forward scattering, increasing at larger angles or
for larger momentum losses on scattering and tending,
from below, toward its diGuse coherent limit. The cor-
rection term proportional to (T/To)' considerably
modifies this behavior at small y-values, that is, at
values

v & (+/16) (TITO)'

where the forward scattering becomes more important
because the linear extension of the hole in the spatial
distribution around a given atom, at the absolute zero,
becomes smaller at finite temperatures.

It may be noted here that, in line with the conjecture
states in our previous paper, ' the incoherent and co-
herent cross sections per atom of the ideal quantum
Quids are about the same in an energy or wavelength
interval of the incident particles or waves where the
theory of the scattering processes is valid. The result
concerning the energy and Quid state independence of
the slow neutron diGuse coherent cross sections might
be questionable. The diffuse coherent term of the
structure factors is their high energy limit. In contrast
with the scattering of x-rays, which give rise to no dif-
ficulties, the preceding result for neutrons would mean
that at high neutron energies the total, coherent plus
incoherent, neutron scattering cross section is about
twice the low density ideal gas scattering cross section.
This inconsistent result stems from the fact that the
present formalism does not seem to provide any mecha-
nism by which faster neutrons would be prevented from
exchanging momentum only with the Quid as a whole
through the diGuse coherent scattering process. Physi-
cally, one would expect at higher neutron energies to
observe only incoherent scattering processes through
the ordinary exchange of energy and momentum of the
neutrons with the individual Quid atoms. Further
studies should clear up this difhculty. According to the
present formalism of scattering processes, the same dif-

ficulty is present in the theory of coherent scattering
of neutrons by normal Quids.

Liquid He4 and He' are the only liquids which may
be thought of as being represented, in some asymptotic
way, by ideal symmetric and antisymmetric Quids, re-
spectively. The experimental investigation of the slow

neutron scattering properties of these Quids, subject to
the limitations mentioned above concerning liquid He',
might disclose certain features which could be inter-
preted with the help of the scattering properties of the
ideal quantum Quids investigated in this work.


