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On the Motion of Gaseous Ions in a Strong Electric Field. I
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This paper applies the Boltzmann method of gaseous kinetics to the problem of positive ions moving
through a gas under the in6uence of a static, uniform electric field. The ion density is assumed to be vanish-
ingly low, but the Geld is taken to be strong; that is, the energy which it imparts to the ions is not assumed
negligible in comparison to thermal energy. Attention is focused upon the computation of velocity averages,
and the drift velocity in particular, rather than a complete knowledge of the entire velocity distribution.
It is shown in Secs. C and E that the problem so formulated is completely soluble if the mean free time
between collisions of ions and molecules is a constant; this is the case for the so-called polarization force
between ions and molecules which predominates over other forces at low temperature. A method for ob-
taining averages to any desired accuracy in the general case is developed in Sec. D. The method is applied
to the hard sphere model for the high 6eld range and mass ratio 1. An application of the resulting formula
(43) to experimental material has been published earlier.

be vanishingly low so that the maxwellian distribution
of the gas molecules is not disturbed and collisions be-
tween ions and molecules predominate over ion-ion
collisions in determining the behavior of the ions. The
task is to solve the Boltzmann equation for the ve-
locity distribution function f(c) of those ions, or if this
is impossible, to extract from the equation the values
of certain averages, notably the drift velocity of the
ions with the Geld.

A. INTRODUCTION AND GLOSSARY

A LMOST all theoretical work which concerns itself
with the drift motion of gaseous ions in an electric

Geld deals with the case in which the drift motion is
small compared to the thermal motion. ' The velocity
distribution of the ions is then almost maxwellian, and
the electric Geld acts as a perturbation upon this
distribution.

For electrons, the theory has been developed further
and we know today the nature of the electronic motion
when the energy picked up from the Geld is appreciable. '
The saving feature for these calculations is that, even
under these conditions, the velocity distribution is
very nearly spherically symmetrical, because the elec-
tron loses momentum quickly, but accumulates energy
in the form of random motion. This saving feature is
not available in the study of ionic motion. Hershey'
has made calculations for ions by making arbitrary
assumptions about the velocity distribution function.
Such a procedure throws doubt upon the results ob-
tained.

This paper develops a procedure for extracting pre-
cise values for the most important velocity averages
while by-passing the problem of the velocity distribu-
tion. It forms part of an extended study of ionic motion
which is to be published elsewhere;4 a second part is to
follow which will discuss ionic diBusion. A comparison
with experimental results has been published earlier. '

%e shall assume here that the ions form a uniform
stream which moves in a gas under the influence of a
homogeneous static Geld. The ion density is assumed to

The exposition will be preceded by a glossary explaining sym-
bols. Generally, Latin capital letters will refer to the gas molecules
and Latin lower case letters to the ions, Greek letters will have no
special relationship; exceptions will be made for generally recog-
nized symbols. Symbols whose meaning is obvious from the con-
text will not be listed. We de6ne

E=electric 6eld.
m = ionic mass.
e= ionic charge.
a =eE/m =ionic acceleration.

kT =Boltzmann's constant X absolute temperature.
s=coordinate along 6eld direction.

x, y=coordinates at right angles to 6eld direction.
b =impact parameter.

e„e„,e,=energies of ionic motion along x, y, s.
e,~=random part of above energy.

p, q, r, s= numbers to be determined in (41).
p&'&, po& ~ =various approximations to these numbers.

M =molecular mass.
X=number density of molecules.
P=molecular polarizability.
V potential energy of ion and molecule.

c, c', u, u', v=ionic velocities.
C, C', U, U'=molecular velocities.

y, y'=relative velocities of ion and molecule.
0 =collision cross section.
X=1/Ex=mean free path of ion between collisions

with molecules.
~=1/Eo.y=mean free time of ion between collisions

with molecules.
r, =same parameter for "spiralling" collisions.
w= c/(a) )& = ionic velocity rendered dimensionless.
P= 1/2kT = temperature parameter.
p=distance between ion'and gas molecule.

, 8', q, y', P, g, a=angles to be defined.
m{c)= (Pm/~) & exp( —Pmc') =maxwellian velocity distri-

bution function for ionic mass.

'For a general survey, see: A. M. Tyndall, The Mobility of
Positive Ions in Gases (Cambridge University Press, Cambridge,
1938), Chapter IV.' For a general background: see Chapman-Cowling, The 3fdhe-
maIical Theory of Non-Uniform Gases (Cambridge University
Press, Cambridge, 1939),Sections 18.7-18.74. More recent papers
are: J. A. Smit, Physica 3, 543 (1937); H. W. Allen, Phys. Rev.
52, 707 (1937).' A. V. Hershey, Phys. Rev. 56, 916 (1939).

4 Bell System Technical Journal, 1952. In the following referred
to as BSTJ.' J.A. Hornbeck and G. H. Wannier, Phys. Rev. 82, 458 {1951).
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mc'+WC'=mc+3f C

mc"+WC"=mc'+WC'.
(1)
(2)

The same convention is to apply to other vector quadruples,
such as

u, U, u', U'.

For the velocities in the center-of-mass system we use

p'= c'—C'=relative velocity before the collision.
g= c—C relative velocity after the collision.

In consequence of (1) and (2) the y's obey the relation

x will be the scattering angle for 6xed center of mass in the
c-system, that is

g 'g='P cosx. (4)

e will be the scattering azimuth. The letter 8 will be used for the
angle between c and the 6eld direction, similarly 8' for c'.

The multiple integrations occurring in the theory are of the
following two types. Either they are over the three components
of a velocity in a cartesian velocity space; we shall denote such
integrations by dc, du, dU', etc. Or they are proper "collision"
integrations which classically have the form

M(C) (PM/~) & exp( —PMC )=maxwellian velocity dis-
tribution function for molecular mass.

h(c) ~ "high 6eld" distribution function for the ions (the
exact meaning of this term is to be explained in
the text).

f(c)= true velocity distribution for the ions.
b(c) =vectorial 8-function in velocity space.

A special convention will be adopted to distinguish velocities
before and after a collision:

O', C'=velocities before the collision.
c, C= velocities after the collision.

VVhen used in this fashion the twelve components of the four
vectors above satisfy the four identities

B. REDUCTION OF THE HIGH FIELD CASE:
LEGENDRE DECOMPOSITION AND

MOMENT FORMATION

The Boltzmann equation for the problem defined in
the fourth paragraph of Part A may be found in
Chapman-Cowling. s In our notation it reads

~f(c)
a —= i [M(C')f(c') —M(C)f(c)j

Bc
X[1/r(~)]drI+C. (6)

The most important property of (6) is the fact that it is
a linear equation. This fact makes possible many pro-
cedures which were barred to other investigators work-

ing on more conventional problems of kinetic theory.
Equation (6) contains two external parameters, the

Geld strength and the gas temperature. We define the
low field case as the case for which f(c) is maxwellian
to a Grst approximation, annulling identically the curly
bra, cket on the right of (6). The left-hand side of (6)
is then in the nature of a perturbation which proceeds
in powers of the Geld. This case will not be discussed
further as it is treated in many textbooks. A se'cond

limiting case of (6) arises when the thermal energy of the
molecules is negligible in comparison with the energy
the ions extract from the field. We shall call this case the
high field, tease. In the high field case, the function
M(C) may be replaced by fI(C), and the gas tempera-
ture disappears from the problem. Equation (6) be-
comes then

ah(c) 1
~

~ 1
a + h(c) =

~

b(C')h(c') d11&C. (7)
r)c. r(c) r(c')

where b is an impact parameter and e an azimuth. In most cases
these integrals depend on extraneous factors for their convergence,
but this fact is usually disregarded for convenience; we shall
follow this habit by writing the above differential in the form

The index c on dII, refers to the fact that it is the collision in-
tegral in the c, C, c', C' system of velocities. As an alternate to
this notation we shall sometimes write

1
dII,=—II(x)smxdx4r

II(x) is the probability function of scattering; it equals unity in
the isotropic case. %hen the differential (5) above is integrated
out as it stands it will equal unity by de6nition, but if any other
factor depending on x enters, the resulting integral may or may not
depend on y. In any case, the cross section o. depends on y unless
we deal with the hard sphere approximation.

Furthermore

Ei(s) =J e S/t. dt' (suppression of two minus signs).

&0{x),EI{x) Modi6ed hankel functions of order 0,1 (altera-
tion of Macdonald function by a factor 2/~. )

E,(x) Legendre polynomials.
h, (c)=expansion coefficients de6ned by (11).

( )=the quantity in pointed brackets is to be averaged.
I„p a set of numbers de6ned by (16).

Three out of the Gve integrations on the right can be
carried out by the use of the 8-function. The actual
manipulation is cumbersome and will be given in
BSTJ.s It yields

c)h(c) 1 (M+ m)'
a + h(c)=

Bc, r(c) 4s.Mmc

{M~)c/ f ill~| 2m

x t'
II(x)dc' it dq'h(c'). (g)

C r(c')

Here the scattering angle entering into 1I(x) is defined

by the auxiliary equation

cosy= [(m+M)'c'c' '—M' —m']/2mM.

The integration is over the surface of a sphere in ve-
locity space (a plane when M =m) which must be known
for correct substitution into h(c'). The equation of the
sphere is

(M—m)c"+2mc' c—(M+m)c'=0. (10)

The variable vector c' is never smaller than c (which

' See reference 1, Chapman-Cowling, Eq. (18.71„1).
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is fixed) and equals it at the point c'= c. The center of
the sphere lies on the straight line joining this point to
the origin; it lies on the side of the origin from c when
vpl(M, at infinity (making the sphere a plane) when
m=M, and away from the origin if m&M. The radius
of the sphere is M0/~M —()N~. The two variables of
integration used in (8) are the azimuth 10' on the sphere
measured around c'= c, and the length of the vector c'.

We now choose the 6eld direction as polar axis and
expand k(c) in spherical harmonics about that direction:

k(c) =Q k.(c)P,(cos@).
0

Figure 1 shows a spherical triangle on the unit sphere
in vector space. The vectors c, c', and a, assumed
drawn from the origin, show up in the figure by their
piercing points. Polar angles show up as sides, azimuths
as angles. With the help of Fig. 1, Eq. (11) and the
decomposition theorem for spherical harmonics, we get

k(c')de'= 2s P k.(c')P.(cos(1)P.(cosg). (12)
0 s 0

Furthermore, we get for the derivative in (8)

00 ~ 'dk, (c) 1—Q k„(c)P„(cos(1)
~Cz I 0 dc 2u+ 1

X I (v+ 1)P~1(cos(1)+vP. 1(cos(1)}

1 v(v+1)
+—k, (c) {P, 1(cosd )—P~I(cos(9) I . (13)

c 2m+1

FIG. 1. Definition of the angles between c, c', and a;
representation by a triangle on the unit sphere.

ments. In doing this we shall assume that the angular
distribution in the scattering of ions by molecules is
independent of the velocity of approach (although the
total cross section may not be). The assumption hap-
pens to be correct for the two cases treated in detail,
the polarization force and the hard sphere model, It
is not actually a necessary assumption but it has a
certain convenience for writing down results.

We multiply (14) by d+' and integrate over c from 0
to ~. The power s must be suKciently large to permit
integration by parts on the right without integrated
out part (s~ —1 is probably adequate for this). The
integral over the integral term so obtained decomposes
rather neatly into a product of a collision integral and

Substituting (11), (12), and (13) into (8) and annulling
separately the coefficient of each Legendre polynomial ~ (Il+ ).~()s ~( k (~1)
in cos8 we get the set of equations c~'dc P„(cosg)11(x)dc'

0 e 7 (c')
(M+)01)2 (M~)c((M—m( k (0~)

P.(cosg) II(x)dc'
2%me ~, 7 ((,")

k„(c) v(1 f (fk„ l(c) v —1
k.-l(~) {

7(c) 2v —1 & dc c )

where

( +))a(dh~, (c) +2 )+ k~1(~), (14)
2v+3 dc c )

v=o, 1, 2, 3

Of the two auxiliary angles x and P, appearing in the
integral, x is defined by (9); f is obtained from Fig. 1
and Eq. (10) as

cosg= L(M+m)c' —(M—III)c"j/2m(:c'. (15}

The second step in reducing (8) consists in applying
tile Melllll tl'allsfol'Inatloll to k (c) ol' 1ntloduclng Illo-

~ (M+sls)/I M—rlsI (
"k.((;x)

P„(cosg)II(x)Ch ~' c~'dc
1 J0 0(CX)

("k„(c)
P,(cosg) II(x) ~

t c~'dc.
g8+3 7 (C)

~ (M+m)/) M—mls) dg

Here x is defined as c'/c and ))t and x are functions of
x only as is seen from (9) and (15). Thus, the last line
is a product of two independent integrals. Ke write
for the first factor I, „; it is a collision integral not
involving the velocity distribution. This can be made
explicit by using p as integration variable. We get
from (9)

x= c'/c= (M+m)/(kP+m'+2Mm cosx) &,

and from (15)

cosg = (III+M cosx)/(M'+ Ivl'+ 2Mm cosy)&,
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s=1, v=1,
M+ no a~

(c,)=
M (1—cosy)

(18)

s=2, v=0,

s=2, v=2,

(M+m)' (ar)'
(c')= (19)

M'm (1-cosy)'

(c'P2(cos6) )

4(M+ m)'(ar)'

M'(3M sin'y+ 4m(1 —cosy) )

parity with the restriction s—v. One verifies easily
that this set is equivalent to the set of all products of
integer powers of the velocity components.

We shall now explicitly follow for a certain distance
the path outlined in Fig. 3. It so happens that the
most important averages are the first three obtained
in this manner:

FIG. 2. Interconnection between the averages (c'P„(cos) )
through the equation system (17); case of constant mean free
time.

so that I,, „becomes

~

(3P+m'+2Mm cosy)» '
I,, „=

M+m

X&,
m+M cosy

t . (16)
(M'+m2+ 2Mm cosy)»

With the help of these numbers I,, „, the iritegrated
equation (14) takes the form,

c'P„(cos8)
(2+~)n-l. ..)(

'

)ar(c)

= v(v+s+1)(c' 'P„ i(cosd))

+ (v+ 1)(s—v) (c 'P~ i(cos8) ). (17)

C. VELOCITY AVERAGES FOR CONSTANT MEAN
FREE TIME; THE POLARIZATION FORCE

For the case r(c) =const, Eqs. (17) permit computa-
tion by recurrence of the averages of all products of
integer powers of the velocity components. This is
shown in Fig. 2. Each average (c'P„(cos8)) is marked
in this figure as a dot in an s—v-plane if s is integer.
Equations (17) connecting these averages are shown as
lines with diBerent equations leading to the same dot
shown in difI'erent outline. These equations generally
have the shape of a V; there are two notable exceptions
to this rule, however, which make the recurrence method
possible: the equations v=0 have no left leg and the
equations s= v have no right leg. Starting out with the
average s=0, v=0, which equals unity by definition,
one can thus proceed systematically, as shown in Fig. 3,
to get other averages. The averages reached are the
ones for which s and v are non-negative integers of equal

or more conveniently with the help of (19)

(M+ m)'(M' sin'y+4m(1 —cosy) )(ar)'
(c')= (20)

M'm(1 —cosy)'(3M sin'y+ 4m(1 —cosy) )

s=3, v= 1, etc.

The three equations (18)—(20) give the drift velocity,
the total energy, and the energy partition of the travel-
ling ion. Formula (18) can actually be derived from a low
field theory. Equation (18) thus states that, for problems
involving a constant mean free time, the high field and
low field mobilities are numerically identical. One would
suspect that the intermediate field value would have to
fall in line too. This is indeed the case and led to the
discovery of the theorem in Sec. E.

FIG. 3. Order to be followed in calculating by recursion the aver-
ages (c'P, (cosa') ); case of constant mean free time.
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e:e„:e,=M:M: (M+6m) (25)

A convenient interpretation of (19) may be had by
combining (18) and (19) in the following way

(mc') =m(c.)'+M(c.)'. (21)

The left side is the total energy of the ion, the first
term on the right is the energy visible in the drift mo-
tion; it follows therefore that the second term is the
"invisible" or random part of the mean energy. For-
mula (21) thus states that

random energy/visible energy
=molecular mass/ion mass. (22)

Formula (20) is best interpreted by writing out the
partition of the energy between the three translational
degrees of freedom. This can be done in two ways;
either the total or the random energy may be parti-
tioned. In the first case we get

e, :e„:e,=(M sin x):(M sin x):(4m(1—cosy)
+M sin'x). (23)

In the second case

e, :e„:e,*=(M+m)(sin'x): (M+ m)(sin'x):
(2m(1 —cosx)'+M sin'x). (24)

For small ion mass (electrons) both formulas give
equipartition for any law of scattering. But generally
this is not so. For instance we get from (23) for iso-
tropic scattering

(1/r)(1 —cosy)~(1/r, )X 1.1052,

and we computed in this laboratory

(30)

(1/r)(sin'x)~(1/r, ) X0.772. (31)

With the help of the identifications above, formula
(18) for the drift velocity becomes

two kinds of orbits: orbits like hyperbolas for large
angular momentum and spirals for small angular mo-
mentum. ' The critical impact parameter b separating
the two kinds of orbits is given by

b4= 4e'P(M+m)/Mmy'. (28)

This leads to a mean free time v, between spiralling
collisions which is given by

r, = (1/2n. eS) I Mm/P(M+ m) I ~. (29)

This is indeed a constant mean free time, because the
formula does not contain the velocity of encounter y.

There is no mean free time definable for "hyperbolic"
collisions, because small angle de8ections are infinitely
probable. However, the actual expressions entering
into (18), (19), and other formulas are always of the
form,

(1/r")(e (x))",

and become equal to 0/0 if very weak encounters are
taken into account. There are standard ways of making
these expressions definite. ' We find in Hasse

and from (24)

e, :e„:e,=(M+m):(M+m):(M+4m). (26)

0.9048 ( 1 1 l ~

I
—+—

}
2w (M mJ MP&

(32)

This gives for equal masses the ratios

e:e„:e,= 1:1:7
e, :e„:e,*=1:1:5/2.

The formula for the total energy needs no discussion
for a special model; it does not involve the angular
distribution when written in the form (21) or (22).

For the partition of the energy we get from (23)

e, :e„:e.=M:M: (M+5.73m) (33)

e, :e„:e,=(M+m):(M+m):(M+3. 72m). (34)

For heavy ions the unbalance is even greater, most of
the ion's energy being in its drift as can be seen already
from (22). No limiting 6nite partition of the total energy and from (24)
exists therefore; the partition formula (26) becomes

l'= k(e'Plc') (27)

Classical theory is usually applicable to the scattering
problem, because angular momentum quantum num-
bers run as high as 30 or 50 in normal situations. v

The solution of this scattering problem gives rise to

7 H. S. %. Massey and C. B. O. Mohr, Proc. Roy. Soc. 144A,
554 (2932). Theodore Holstein, private communication.

e e„:e,*=i 1 4

The theory developed in this section applies exactly
to the polarization force between ions and atoms. This
force is occasionally preponderant at room tempera-
ture; if it is not then it may predominate over others
at low temperature, because it has a cross section vary-
ing inversely as the velocity The inte. raction potential
equals

There is an obvious similarity of (33) with (25), or
(34) with (26). The reason for this is that the polariza-
tion force scatters very nearly isotropically, that is (31)
is about -', of (30). Tracing this feature back we observe
that the contribution of the spiralling orbits to (30)
and (31) predominates; in these orbits the two par-
ticles very nearly "forget" the direction whence they
came. '

D. GENERAL METHOD FOR DETERMINING VELOCITY
AVERAGES; APPLICATION TO THE HARD

SPHERE MODEL AND m=M

The results obtained in Sec. C are in the nature of a
lucky accident. Generally we can expect neither a dove-

' P. Langevin, Ann. de Chim. Phys. 5, 245 (2905).
9 H. R. Hassle, Phil. Mag. I, 1939 (2926).
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Fra. 4. Interconnection between the averages {c'P,{cos~))
through the equation system (17); case of constant mean free
path.

tailing of equations as it occurs in Fig. 2, nor that the
computable averages contain the physically important
quantities. As an example of a more normal situation
we see in Fig. 4 the analog of Fig. 2 for the case of a
constant mean free path, Only two averages are seen to
be directly computable, namely (c'cosC) and (c').
Neither one of them has any physical importance.

A method will be described in this section which
permits computation of averages under very general
conditions, allowing in principle even the inclusion of
temperature eGects. A test application of the method
to a case in which the distribution function was known
by other means (Monte Carlo method) will be described
in BSTJ. In this article the numerical work will be
restricted to a case obeying the following assumptions:
(a) that we deal with the high field case, (b) that the
mass of the ions and. molecules are equal, and (c) that
the ions and. molecules interact with each other like
hard spheres. This specialization has in view the ex-
perimental work of Hornbeck' on He+, Ne+, and A+
travelling in the parent gases.

The way of computing averages from a diagram such
as Fig. 4 is closely tied up with certain special features
of the equation system (14). At first sight (and this
first sight lasted in the author's case for many months)
it seems that it is a recursion system permitting sub-
stitution of an arbitrary function lee(c); the "zeroth"
equation then gives a derived h, (c), the first equation
Iee(c), etc. However, a closer examination shows a

pC

c"+'h~, (c)= ~ (known material) dc. (36)

The left-hand side is such that it must vanish both at
c=0 and c= ~. It follows that the right hand integral,
when taken between the limits 0 and 00, must equal
zero. The recursion system is therefore of such a struc-
ture that, at each stage, it imposes a condition upon
the Ie„'s already determined if the new h„+i(c) is to
exist at all.

The integrability conditions whose essential feature
was indicated in (36) were already written out earlier.
They are the ones among the set (17), for which s= v;
it was remarked at the time that these equations have
no "right leg". Thus they connect averages which
could be computed by other means if he(c) were known.
We shall refer to these relations as "singular relations".

The method which can be based on this feature is
fairly straightforward. An initial trial function he(c) is
improved step by step through the adjustment of free
parameters using the singular relations. It will be
shown in BSTJ that each singular relation is always
reducible to a relation between averages involving he(c)
only by the use of a fairly obvious process of elimina-
tion. In our case the elimination procedure may be
read o6' from Fig. 4. Using the dimensionless variable

(aX) &

(37)

we shall write down the first few of these relations. We
obtain from the singular relation s= v= 1

(we) = 10,

from the singular relation s= ~= 2

3(w') = 112(w'),

and from the singular relation s= v= 3

(38)

(39)

(295/56)(w6) = 27(we)+ (17/330)(w' e) (40)

With the help of Eqs. (38), (39), and (40) and the
normalization condition a succession of improved func-
tions he(w) can be constructed which will lead to suc-
cessive approximations to any average desired. This
procedure resembles somewhat the Ritz method of
quantum mechanics. Just as in that method a good
choice of triaL functions greatly improves the approxi-
mation. In the choice of the trial functions below use
has been made of the fact that the true function he(w)

quite di6'erent situation. Suppose we have obtained
somehow functions ho, h~, - h and we are trying to
use the nth equation to determine h~&. This equation
is of the form

dhoti/dc+ [(n+ 2)/cjh~i(c) =known material. (35)

We solve for h~& by multiplying with c"+' and inte-
grating. This gives
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has a logarithmic singularity at w=0 and that it van-
ishes at infinity as

w' expL ——,'w'g

the power k being unknown. No proof will be given
here of these facts, which are useful rather than essen-
tial for the success of the method. A thorough discus-
sion of this point will be found in BSTJ.

On the basis of this information we write down the
following trial function for ho(w):

ho ——P Ei(-',w')+qEo(-,'wo)+r exP(—~ow')

+su'X)(-,'w'). (41)

The best zero-order function is Eo(s'w'). We 6nd in
zero order, from normalization only

No zero-order value exists for (w,'); the other orders give

(w,o) &'& = 1.8006 (46a)

glvlQg

(w ') &'& = 1.7696

(w,o) &'& = 1.7685

(w,')= 1.768.

(46b)

(46c)

(47)

Interpretation of (43), (45), and (47) proceeds the
same way as of (18), (19), and (20). From (43) and
(45) we get

(w') = 1.790(w.)'. (48)

According to (21) this factor is equal to 2 for all mean
free time models. The energy partition equals

q&o) 1 04605 P&o) r&o) s&o) 0
21"(o)

or
e, :e„:e,= 1:1:6.04

e, :e„:e,=1:1:1.54.

(49)

(5o)

in 6rst order, using (38) In the last formula, the change from the mean free
time formula (26) is most strongly noticed.

P "&= —0.46543
q(') = 1.45285.

ro) =s(') =0
E. THE PROBLEM OF INTERMEDIATE FIELDS;

A CONVOLUTION THEOREMin second order, using (38) and (39)
It was pointed out in Sec. 8 that the solution of the

general problem (6) of ionic motion contains two ex-
ternal parameters, the gas temperature and the electric
field. Since that time, all e6'orts were dealing with the
"high field" Eq. (8), in which the gas temperature is
taken to be zero and the electric field often scales out,
as in (37).

%henever the mean free time condition of Sec. C
is satisfied, the problem of intermediate fields is taken
care of by the following convolution theorem:

Given the general Eq. (6') for constant mean free t&ne,

P "&= —0.80856
q(»=1.88127
~()= -OO98O4

s(2) —0

in third order, using (38), (39), and (40)

p(') = —1.15071
q(»=2.37034
r(»= —0.29016
s(') =0.02062.

No convergence feature is visible or expected from
these coeScients. Numerical convergence is observable,
though, on the actual function (41) or on the averages
derived from it. Through the intermediary of (w') we
find for the drift velocity

(51)

and the "high field" equation derived from it,

&&h(c)
ar +h(c) = h(C')h(c')dIIodC, (52)

(42c)

(42d) and the maxwellian equation derived from (51) by dropping
the field term

glvlDg
(w') &'& =2.3531

(w') = 2.353.

(w,)"'= 1.04605

(w )&'& = 1.14256

(w )&'& = 1.14616

(w,)&'& = 1.14661

which gives a limiting value

(u,)= 1.1467.

For the total energy we find

(w') &o) = 2.1884

(w') &'& =2.3395

(w') &'& =2.3511

m(c) = )") M(C')m(c')dIIQC,

(54)

%'e carry through the proof by constructing ex-
(45) plicitly the equation satisfied by the convolution. We

then the solution f(c) of (51) is the convolution of the
solution h(c) of (5Z) and the solution m(c) of (53):

(44b)
f

(44c) f(c)=
) h(u)m(c —u)du.

(44d)
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Kith the help of the convolution theorem, all ve-
1.ocity averages known for the high fie1.d case by the
method of Sec, C become now known for the inter-
mediate and low field range as well. The calculation
proceeds as follows. Suppose we wish to compute the
velocity average,

replace the running variables c, c', C, C' in (52) by
u, u', U, U' and multiply in m(c —u). We get

cjh(u)
ar m(c —u)+h(u)m(c —u)

r
,

b(u')h(u')m(c —u)dH„dU.
J a

(cg cv cN") = J~c~ cv"c~~f(c)dc,
We now define f(c) by the relation (54), and integrate
the above equation over u. The second member on the

for m, n, p integer. We apply the convolution theorem
e comes ou o ef(c). or e rs mern er, we carry

out an integration y parts:

au,

r cl(m(c —u))=+ h(u) du
Bc,

t Bh(u) Bm(c—u)
m(c —u)du= —

J~ h(u) du
Bu,

c."=[u,+ (c.—u.)j", c„=[u„+(c„—u„)j",
c,"=[u.+ (c,—u, )j&,

and expand each of them by the binomial theorem.
Ke find

ac Ac P

&f(c)
* " ',= = =oem& &ui &p&

CjC,
h(u)m(c —u)du=

ac,&

h( u)u, & „u" u, duJ~m(v)v, " e„"-"v,& -dv —
(59. )

t

For the right-hand member we observe that we have
the eightfold integration

drr„dUdu.

This is an integration over the collision angles and all
final velocity components. By a general principle of
kinetic theory' we can replace in this integration the
final velocity components by the initial ones and write

drl„d Udu= drI„d U'du'.

This puts us in a position to eliminate the 8-function

by integration. Ke find

af(c)
ar—+f(c)=

J
h(u')m(c —u)dII„du'

Bc,

with the side condition that u, U, u', U' form a quad-
ruple of vectors in the sense discussed in Sec. A, for
which in addition

U'=0.

The second integral is a thermal average, the first a
high Geld average computable by the method of Sec. C.
Thus the average (59) is a finite sum of products of
computable averages and is itself computable.

From (18) and (59) we get for the drift velocity (c,)

&+I ar
(c,)=

M (1—cosy)
(60)

(M+ m)' (ar)'
(mc') =3hT+

M' (1—cosy)'
(61)

and for its s component

This means that Eq. (18) holds independently of the
temperature as was stated then. For the total energy
we get, from (19) and (59),

Equations (51) and (55) agree, provided we can prove
the identity (M+m)'(M sin'x+4m(1 —cosx))(ar)'

+ (62)
3P 1—cos )'(3M sin'y+4m(1 —cosy))x

Jl m(c —u)dII„= t
J

"M(C')m(c' —u')dlI, dC. (57)

Equation (57) expresses an identity connecting ele-
mentary functions of known arguments. In this sense

(57) itself can be considered an elementary relation.
The actual proof of it is very complicated and will be
given in BSTJ. Thus the theorem (54) may be con-
sidered proved.

'0 Reference 6, Sec. 3.52.

(mc,')=hT

(M+ m)'(sin'x) (ar)'
+ (63)

M'(1 —cosx)'(3M sin'x+4m(1 —cosy) )

Little has to be added for interpretation. In all energy
formulas the thermal and the high field contributions
add. The former has the gas value and obeys equi-
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partition, the latter has the value it would have if the
gas temperature were zero. Its properties were ex-
amined in Sec. C.

The foregoing development completely solves the
problem of intermediate 6elds if the assumption of a
constant mean free time can be made. There remains
the question what to do in other cases, particularly for
the model treated in Sec. D. It is true that, in principle,
the general problem could be solved by the method
developed there. For the gas temperature complicates
only the central term in (14), while the method of solu-
tion was based on the structure (35) of the higher out-
side term which remains unaffected, However, the

further course of the calculation in Sec. D makes the
method less desirable. We would be able to produce a
number for the drift velocity for a given numerical
ratio of the electric field and the temperature, but we
would not gain direct information about the functional
relationship. This relationship would only reveal itself
indirectly after extended numerical computations. It is
to be hoped that a more satisfactory way of proceeding
can be found.

In conclusion, I wish to thank Miss C. L. Froelich
and the computation staff of the Bell Telephone Labora-
tories for carrying out the computation mentioned in
Sec. D.
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Coherent Scattering Processes Arising from Quantum Correlations
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Quantum statistical forces in ideal symmetric and antisymmetric Quids establish an ordered arrangement of
their Quid molecules in space. The coherent scattering properties of these Quids resulting from this spatial
order are studied in this paper.

I. INTRODUCTION
' 'N an earlier paper' we studied the incoherent slow
~ ~ neutron scattering by ideal monatomic symmetric,
or Bose-Einstein (B.E.), and antisymmetric, or Fermi-
Dirac (F.D.), fluids. These were presumed to represent
possible asymptotic models of liquid He4 and He', re-
spectively. We should like to complete here the theory
of the scattering properties of these Quids by an inves-
tigation of their coherent scattering, especially for slow

neutrons, resulting from the respective spatial corre-
lations of their atoms. These spatial correlations are
caused by the quantum statistical attractive and re-
pulsive forces in the phase space of these systems of
ideal dimensionless atoms.

In the wave kinematic approximation the coherent
scattering of short wave electromagnetic radiation by
atoms is similar to the coherent scattering of slow
neutrons with comparable de Broglie wavelengths. The
possible, though small, neutron-electron interaction of
nonmagnetic origin together with their electromagnetic
coupling will be neglected here. Then the linear mo-
mentum exchange, with vanishingly small energy
exchange, between these Quids and the incident slow

neutrons, which is the coherent scattering process, is
determined primarily by the speci6c slow nuclear
scattering amplitudes of the Quid atoms. These quan-
tities are, in turn, the speci6c amplitude structure
factors of the nuclei for slow neutrons. These are sup-

' Goldstein, Sweeney, and Goldstein, Phys. Rev. 77, 319 (1950}.

posed to be known, at present, only empirically, in
contrast to the atomic structure factors for radiation
which can be evaluated with sufhcient precision from
first principles. The additional difference between the
two types of radiative and neutron scattering processes
consists in the diversity of the nuclear scattering am-
plitudes for different neutron-nucleus spin con6gura-
tions. This difference vanishes for nuclei of zero spin
angular momentum, for instance, as in the case of He'.

Our problem is to investigate the statistical or cor-
relation coherent scattering structure factors of ideal
symmetric and antisymmetric Quids. The study of the
physical characteristics will then bring out a series of
remarkable analogies exhibited by B.E. Quids and
normal Quids both near and away from their respective
critical regions.

The structure factors will be defined in the next
section, while their evaluation and discussion will be
reserved for the subsequent sections.

II. THE COHERENT SCATTERING OF SLOW
NEUTRONS BY IDEAL SYMMETRIC AND
ANTISYMMETRIC FLUIDS (ASYMPTOTIC

LIQUID He4 AND Hea MODELS)

The possible practical interest of these Quids may be
associated with He4 and He' atoms with zero or half-
unit of spin angular momenta. This justifies the limita-
tion of the study of the scattering to these two spin
cases. One of the main differences in the correlation of
symmetric and antisymmetric Quids arises from the


