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will not yield very reliable values for the liberation
energy, and it is probable that the figure found by the
author for j.-Mev beta-rays is somewhat nearer the
true value. Fina11y, as was pointed out by Freeman and
van der Velden, e pulse counting methods are more
likely than current measuring methods to yield accurate
results for measurements of kT and the energy per
electron-hole pair. Current methods give a value for
kT which is the average over all the electrons in the
current. If, owing to the presence of a mechanical Qaw

or some other cause, some electrons are unable to
contribute to the current to the extent that they would
be able to if in a normal lattice, the measured current
will be less than the value it mould have in a normal
lattice. This in turn would lead to a higher value for
the energy per electron-hole pair. In pulse counting
methods it is not necessary to assume that all the
electrons and holes produced by ull the beta-particles
travel in a normal lattice. It is necessary only to assume
that all the electrons and holes produced by some

beta-particles travel in the normal lattice, and this is
obviously a much more reasonable assumption. Sum-
marizing, it seems fairly safe to assume that the maxi-
mum observed pulse heights do represent the motion
of the electrons and holes i'n the normal diamond lattice.

CONCLUSIONS

It is hoped to extend the foregoing types of investiga-
tion to a number of diamond crystals, and in this way it
may be possible to correlate the possible variation in trap
density or energy per electron-hole pair with some other
physical property. In particular, it has sometimes been
suggested that the response of the crystal depends on
its structure, i.e., whether it is a laminated, mosaic, or
perfect crystal lattice. The degree of imperfection of
the structure of the crystal can be determined by means
of the divergent beam x-ray technique developed by
Lonsdale12 and such studies may yield information as to
whether trapping sites mainly exist at the boundaries
of mosaic blocks or laminations; i.e., if the traps do
occur at the boundaries, then the trap density should be
greater for those diamonds which show the better
divergent beam photographs.

The author wishes to express his appreciation to Dr.
F. C. Champion for his encouragement and interest
during these investigations. He is also grateful to the
late Professor %. T. Gordon for the loan of the
diamonds.
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The equations for electron motion in a plane diode under the influence of space charge are integrated. The
solution is expressed in terms of four dimensionless numbers, normalized so that their range is from zero to
unity. The gradient at the cathode is expressed as a function of the current density as it varies from zero to
space-charge-limited values. Space distributions of potential and gradient are given in terms of the location
of the plane of interest between the cathode and the anode for a number of speci6c current densities.

Evidence is shown of the existence of a plane for which the gradient is essentially independent of the
current density.

INTRODUCTION

q XPRESSIONS for the complete description of the
potential and gradient distributions in parallel

plane diodes under conditions of emission-limited
currents are given in terms of four dimensionless
variables. ' Others' 6 have given equations for the same
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phenomena, but those of which the author is aware all
make use of parameters whose physical significance is
very obscure. The variables used in this derivation
represent current density, voltage, distance, and
cathode gradient; normalization is such that these
variables range between zero and unity as the current
density varies from zero to space-charge-limited values.
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POTENTIAL AND GRADIENT DISTRIBUTIONS

Ke de6ne our variables as

current density
p=

space-charge-limited current density i 8 g

voltage at distance x from cathode V
)

voltage at anode, at distance x, from cathode V

distance from cathode x

anode-cathode spacing x,

gradient at cathode under inQuence of space charge
7=

gradient at cathode in absence of space charge

= (../v. ) (dv/d. ~,-,).
The usual assumptions of zero velocity of the par-

ticles at the electrode of their origin, motion of the
particles in the x-direction and conservation of energy,
when combined with Poisson's equation yield

01

d'V/dx'=4m(w/2ve) I

d e/dP=4~(m/2e)~x. 'V. 4e e-gpss

As is well known,

Hence
ie c z=L(2e/m)&/9n7V &/x 2.

&Ip/dP=(4/9) pe '
Integrating once

(dq/d$)'= (16/9) py +CI. (1)

Integrating again

(gpss' —9c')Lpv'+(9/16)c'7'= gp'(k+c2) (2)

Now let us examine our constants of integration, C&

and C2. They are constants in that they are independent

of the variable of integration, $, and are to be evaluated
by the boundary conditions imposed on the variables.
It is customary and convenient to set

x= V=O (3)

at the cathode, and our method of normalization
requires this. When applied to Eq. (1)

c,=
t'd&

Ed( t, &

(4)

This concludes the derivation of our general ex-
pressions. From Eqs. (5) and (6) one can learn every-
thing about potentials and gradients in the space
between plane parallel diodes.

CATHODE GRADIENT UNDER EMISSION-LIMITED
CONDITIONS

One of the interesting relations which follows from
(5) is that between the current density, p, and the
cathode gradient, y. For all space-charge-limited diodes,
p= 1 and p=0 by definition. Similarly, when voltage
is applied and zero current (emission limited) is being
drawn, p =0 and y = 1. These limiting values are ob-

by our definition. Equations (2), (3), and (4) can be
solved for C2'.

C2= —(2&/32) (v'/p').

%hen we substitute these values of Cj and C2 into
Eq. (2) and re-arrange the terms, we And

16(p v '—pV) = 2&(v v' —$v')

By differentiation of (5)
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FIG. 1. Cathode gradient as function of current density.
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FIG. 4. Gradient at plane 27/64 of cathode-anode spacing from
cathode as function of current density.
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Pro. 3. Gradient in space between cathode and anode for several
current densities.

SPACE POTENTIAL

For a speci6c current in a given diode the cathode
gradient y, and the current density p become constants,
yp and po. If these values are inserted into Eq. (5), a
relation between qr and $ results. Because $ appears to
the second power and y to the third power, it is easier

vious; all intermediate values can be obtained by setting
q = )=1 in Eq. (5). This is equivalent to saying that
the voltage is anode voltage and that its location is the
anode plane. Equation (5) then reduces to

16((' ~) =27(v' v')—
or

u =5+(k—3v/4)(3m+1)'. (7)

Equation (7) is plotted in Fig. 1. This is a general
relation which shows the unique dependence of the
cathode gradient on the fraction of space-charge-
limited current being drawn from the cathode. The
rapid rise of cathode gradient as the current is decreased
from space-charge-limited values to emission-limited
conditions is quite striking. A 10 percent reduction of
current from space-charge saturation causes the gradient
to increase from zero to more than 25 percent of its
value in the absence of space charge.

to solve for $ as a function of q. We find:

27vo' (8pov' & (16pos'
1+I -1)i +1

I

32po 4 9yo I & 9yo

Plots of Eq. (8) for four conjugate values of po and yo
are given in Fig. 2. The maximum depression of the
space potential for space-charge-limited conditions
(p= 1) occurs at )=27/64, where the normalized slope
is unity.

ELECTRIC FIELD

%'hen we have the data of Fig. 1 and have solved
Eq. (8) for the selected po and yo, we may turn to Eq.
(6) for the gradient at any point. At the anode, y= $= 1
and the gradient is a function of p and p or, by the use
of Eq. (7), a function of either alone.

For any plane between the diode boundaries, Eq. (6)
includes all four of our dimensionless variables. Using
the data obtained in calculating the curves of Fig. 2,
the gradient as a function of position for several current
densities is given in Fig. 3.

The data of Fig. 3 suggest that the normalized.
gradient is equal to unity in the plane )=27/64, inde-
pendent of the current density p. This is only an
approximation, however, as is shown in Fig. 4. Here we
have a plot of the gradient in the plane )=27/64 as a
function of p. The maximum deviation from unity is
only 0.6 percent as the current is varied from zero to
space-charge-limited values.

The help of Dr. J. Slepian in the reduction of Eq. (7)
to its simplified form is appreciatively acknowledged.


