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The connection between the S matrix and causality suggested by Kronig is analyzed, and it is found that
the condition of causality implies that the poles of the analytical functions S(k) are either on the imaginary
axis or in the lower half-plane. The possibility of a close connection between the properties of the derivative
R matrix and causality is also analyzed. Although all the properties of the R matrix could not be deduced
from the requirements of causality, it is considered as an encouraging preliminary result that: (1) The
referred distribution of the poles of S(k) can be obtained from the properties of the R matrix. (2) These
properties of the corresponding R matrix are unchanged under a transformation S(k)be'+S(k), with )
positive, which preserves the causal nature of the theory.

' T has been suggested recently' that the imposition of
~ - the causality condition on the scattering matrix
(S matrix) formalism' for the scattering of particles
would result in a supplementary condition for the S
matrix. "Causality condition" in this connection means
that there can be no scattered wave before the incident
wave reaches the scatterer. It seems also natural to
surmise that this causality condition is the deeper cause
of the properties of the R function' (the reciprocal
logarithmic derivative of the wave function) found
recently by Wigner and Eisenbud. ' According to the
latter, the E matrix is a single-valued analytic function
of the energy E. It is real for real E, its poles are all on
the real axis and have negative residues. It follows from
this condition that, if R(E) is regarded as a function of

complex E, its imaginary part has the same sign as the
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imaginary part of E; we shall call any function with
this property an "E function. "

We have not succeeded in deriving all the above
properties of the E matrix from the requirements of
causality. However, we have derived a consequence of
these properties, for the S matrix, which may be of con-
siderable interest, since it permits one to understand the
behavior of the cross sections within not too wide

ranges of the energy. ' This property is the analog of
the one discovered by Foster, Campbell, and Zobel' for
radio amplihers and by Kronig and Kramers' for the
scattering of light on atoms. ' For these cases the above
authors have shown that the poles of the scattering
function S are all in the lower half-plane of E.

We shall restrict ourselves in what follows to the
S-scattering of nonrelativistic particles by a scatterer
of Gnite radius c, and shall derive 6rst the property in

question from the properties of the E. function. In the
case in question, the connection between the scattering
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function S and the derivative function R is'

S(k)= e "-)o(1+ ikR)/(1 i—kR),

It is convenient to express first the integrals in (5)
and (5a) in terms of the energy:

(1)

1 5(k)e""'—1
R(k) =-

ik 5(k)e"'~+1 (1a)
~,(» t) f g(E)e i(s—t+kr)dE

0

(6)

1+Rikm+ R2ki =0,
kiRi —k2R2= 0,

Elimination of R~ gives

(3)
(3a)

ki+R2(k p+ k22) =0. (3b)

It follows that k~ and R2 have opposite signs at the
poles of S.Since the sign of R2 is the same as that of k~k2,
it also follows that S can have poles only where either
k~=0 or k2&0.

It is this consequence from (1) and the properties of
the R matrix which we shall now derive from the re-
quirements of causality.

For this purpose we form a wave packet of incident
S"waves

where
4*(» «)=('(» t)/», (4)

where k is the wave number of the incident particle and
a is the point at which the reciprocal logarithmic
derivative is taken. It follows from (1) immediately that

5(—k) = 1/S(k) (2)

and from the real nature of R, i.e., from R(k*)=R(k)~
that

S(k*)= 1/S(k)*. (2a)

Both these equations are well known and have general
validity; they can be derived also directly from the
properties of the 5 function. Equation (2a) corresponds
to the unitarity condition for real k.

It follows from (1) that 5 can have poles only where
1—ikR=O. Let us write k=ki+ik2 and R=Ri+iR~,
the sign of R2 is then the same as that of the imaginary
part of E, i.e., that of k~k2. From 1—ikR=O we then
obtain the following two equations:

q, (r, t)= f LS(k)—1)g(E)e "~'—'")d—E, (6a)
0

where g(E) =f(k)M/k, 3E being the mass of the particle.
It should be observed here that since in general

5(k)WS( —k), the analytical continuation of the func-
tion 5(E) is a two-valued function. As a result, we have
to make use of two riemannian sheets in the energy
plane. Ke make the cut along the positive real axis and
proceed in the continuation in such a way that the
upper and lower half-planes in the first sheet cor-
respond, respectively, to the 6rst and second quadrants
of the k plane, and those of the second sheet correspond
to the third and fourth quadrants.

We consider then the function 5(E) in the first sheet
and de6ne the quantity

+CO

(»(», p)= —
~ LS(E') —17e " " '&'dE' (7)

2K (o

where p&2c. If there is any pole on the negative real
axis (poles on the positive axis are excluded by the
unitarity of the S(k) matrix for real k), the expression
(7) is to be understood as the limit of the corresponding
integral taken along a line in the upper half-plane when
this line approaches the real axis. Here we should be
careful and analyze the behavior of the integrand of
the expression (7), since it is known that the function
5(E) has in general a singularity of the type e '"'/E'
at the point —00 of the real E axis, which might "blow
out" the integral. The presence of the factor e~t' with
p&~2u is, however, enough to remove that singularity.

It is clear then that the scattered wave given by ex-
pression (6a) can be expressed as

The corresponding scattered wave is

e ,(», t) = $5(k) —1jf(k)e "e' "'dk, (5a)
0

these formulas being valid for r& a, and 5(k) be)ng the
5 matrix (here an ordinary function). We use natural
units: c= k= i. Vfe then postulate that if q; vanishes
at the boundary of the scatterer (r=a) for all times
t& to, the same shall hold also for y, at all points outside
the scatterer. This is equivalent, in view of the con-
tinuity equation, to the condition that there will be no
scattering before the incident wave reaches the scat-
terer.

y, (r, t) =~~ a(t—t'; r+r') v;(r', t')dt'

for r, r'~&u. In particular for r'= c we have

e,(r, t) = Jf o(t —t', a+r) e);(a, t')dt' (9)

q), (r, t) =0 for r &~a and t(0 (10)

Equation (9) expresses the fact that if (p, is known at all
times at the surface of the scatterer, then the scattered
wave p, is determined for all times at any point outside
the scatterer.

It is clear that the causality condition referred to
before implies that
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lf we have
y;(a, t)=0 for t&0. (11)

As Eq. (10) should hold true regardless of the type of
time dependence of the incident wave q; for times larger
than zero, it follows from Kq. (9) that

a(r, r+a)=0 for r&0, r&~a (12)

or, on account of the definition (7):

of y, (r, t) for t&10, r~&a follows. Thus we have shown
that the necessary and sufhcient condition for the
S matrix to be causal is that S(k)ea&(p&~2a) be regular
in the upper half of the E-plane (first riemannian
sheet).

Now since e~" for X)0 is regular in the upper E-plane,
we see that the "causal" nature of S(k) implies the
causal nature of the function

Si(k) =S(k)e~". (14)

J LS(E)—1]e '~e' ~'+'&~dE=O (13)

for all r&0 and r &~a. It is clear that, since S(E)e"'"+'
is regular at infinity in the upper half-plane of the 6rst
sheet, we can close the path of integration on (13) by
the upper half-circle at in6nity, as both e '8', for ~&0,
and e@&"+ ' (a and r are positive) are regular in this
half-circle. Since (13) is to be satis6ed for any negative r
and for r~&a, we see that the analytical function S(E)
should have no poles in the upper half-plane of the 6rst
riemannian sheet (except the negative real axis).
Translating this from the E to the k plane, we see that
the causality condition requires that S(k) have no pole
in the 6rst quadrant, the positive imaginary axis ex-
cluded. This condition on the S matrix is both neces-
sary and sufBcient in order to assure the causality.

From here on we continue the analysis by means of
the k plane [i.e., use S(k)j, since the fact that S(E) is
tmo-valued makes the analysis in the E plane more
cumbersome.

If we take into account the fact that S(k) satisles
the relation (2b), we find that S(k) will have no poles
in the second quadrant either. We have thus obtained
from the causality condition the same result mhich was
obtained before from the properties of the R matrix:
that the poles of S(k) are either on the imaginary axis
or in the lomer half-plane.

Although the results of the above analysis seem to
indicate that there is a connection between causality
and the properties of the R matrix, we were not able
to derive all the properties of the R matrix from the
causality requirements alone. We think, however, that
the following example seems to be an even stronger
indication of a deeper connection between causality and
the properties of the function R (say, that of being an
"R function") and may be of some help for the under-
standing of this relationship.

I.et us call a function S(k) "causal" if from the
vanishing of «, (r, 5) of (5) for t &lo, r= a, the vanishing

Thus it is natural to ask whether the condition that the
function R(k) which is related to S(k) by (1a) be an
"R function" will entail a similar property for the
function Ri(k) which is related to the new "causal"
function S&(k) by

Rg ———
ik S)e"~~+1

In other words, we ask whether the transformation (14),
which preserves the "causal" nature of the S matrix,
does not change the "R function" nature of the cor-
responding function R. This question mill indeed be
answered in the afhrmative.

Let us 6rst express R~ in terms of R:

k 'tan(H, )+R(k)
Ri(k) =

1—k tan(k) )R(k)
(15)

Now we observe that the homographic transformation,

k-' tan(kX)+Z8'= P)0,
1—k tan(kX)Z

(16)

is such that:

(a) If the imaginary part of k' (or of R) is positive,
any number Z with positive imaginary part goes into a
number W with positive imaginary part.

(b) If the imaginary part of k' is negative, any
number Z with negative imaginary part goes into a 8'
with negative imaginary part.

This proves that, if R is an "R function, " then R~ given
by (15) is also an "R function. "

We understand that Professor John A. Wheeler has
found, using a somewhat diferent approach, some of
the results given in this paper.

We wish to express our thanks to Professors E. P.
Wigner and V. Bargmann for many helpful discussions.


