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The fundamental equations for a nucleon cascade including ionization loss are given. Solutions satisfying
the exact boundary conditions are found in a manner similar to that used by Bhabha and Chakrabarty for
the electron-photon cascade. However, in the present treatment, second-order equations are not resorted
to and all four cases (protons producing protons and neutrons; neutrons producing protons and neutrons)
are treated simultaneously. The results are given in tabular and graphic form and can be adapted easily to
any specif}tc problem. A number of examples showing the eGect of ionization loss have been computed and
the ratio of neutrons to protons given. The calculations are carried out using the cross section formulated by
Heitler and Ji,nossy.

I. INTRODUCTION
''N a series of recent papers' ' the theory of the
~ ~ nucleon cascade has been developed and compared
with experiment. In the cited papers adequate treat-
ments have been given for the deduction of the ex-
pressions for average numbers and the fluctuations to
be expected from the average, both for homogeneous
nuclear matter and inhomogeneous matter. However,
so far no detailed treatment of the problem has been
given when ionization losses are taken into considera-
tion.

In the present paper the cascade equations are given
for protons and neutrons taking into account ionization
losses, and exact solutions are found satisfying the
correct boundary conditions. We retain the assumptions
regarding the form of the cross section, made in the
papers mentioned above. Since little is still known
regarding the exact behavior of the nucleon cross
sections at low energies, the solutions found will in all
probability be out by a large factor in this region.

When the nucleon cascade is considered as a proton-
neutron cascade with ionization loss, then the problem
immediately becomes analogous to that for the electron-
photon cascade. It is natural therefore to treat the
problem of the nucleon cascade in a manner analogous
to that which Bhabha and Chakrabarty" used for
the electron-photon cascade. There have appeared a
number of criticisms of the Shabha-Chakrabarty solu-
tion ' however, we feel that these criticisms deal with
minor points only and apply at most to the low energy
region where no theory so far can claim success.

Though the solution of the electron-photon cascade
with ionization loss obtained by Shabha and Chakra-
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barty is elegant in many respects, we feel that the
extreme simplicity underlying its derivation has been
somewhat obscured. We give a treatment which appears
to be straightforward, without resorting to second-order
equations. Numerical results and several examples are
given, showing the efFects of taking ionization losses
into account.

II. THE DIFFUSION EQUATIONS

Let S&' ")(E,8)dE be the average number of protons
or neutrons (depending on the suflix k) in the energy
range E, E+dE at a depth 0 in inhomogeneous matter,
due to a primary particle of energy E0. The sufKix

i=i, 2 refers to the primary particle and k=1, 2 to
the secondary. The number 1 always refers to a proton
and 2 to a neutron. The ionization loss P is assumed to
be independent of energy and is taken to be equal to
130 Mev per 65 g/cm' air throughout the problem.

We define V(E/E')dE/E' as the probability that a
nucleon of energy E' falling on a nucleus gives rise to
one or more nucleons, and that one of the emerging
nucleons has an energy in the interval E, E+dE. The
function V(E/E') has been determined by Janossy
and MesseP and we use their result. The fundamental
equations can now be written as

5(',e)(E 8)+5('.e)(E g)
BtI

Ig(i, e)(E& 8)+5'(&,3—k) (E~ g) I
0

dE' 8
X V(E/E') +gi, $P 5 ' "'(E, 8). (1)E' 8E

We take the Mellin transform of (1) with respect to
(E/Ee), and in order to keep the transform dimension-
less we let

(2)

There then results

8—P&' e)(s, 8)+A(s)P&' e)(s, 8)+B(s)P"' e)(s, 8)
ae

= —gr, «(P/E&))(s —1)P""(s—1, 8), (2a)
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where

V(s) = oi' 'V(oi)doi,
40

transform and 6nd

1 1 ('pEo~'
S(' "&(E, 8}=

(2b) 2 iE, &, EEJ
V(s) =2t 1—(1+Dye,) exp( —Dga, )7/(Dga, )'

A (s) = 1—)V(s), B(s)= —
~o V(s), (2c)

& P ""(s 8)( P—/Eo)" ds (8)
t

l.-o "

(1—o) oo —)w(o), oo)do)doo~
"0 40

tc(o), oo) = 15oo'(1—o)). (2e)

LSee the references given in Sec. I for details of the
cross section given in (2d) and (2e).]

In (2b) D& is the number of collisions suffered by a
nucleon on traversal of a nucleus (of atomic weight A)
along the nuclear diameter; D& was taken equal to 2.41
for air in the previous publications mentioned above.
The solution of (2a) is immediately given by
P&' o&(s, 8) =Po&' o&(s, 8) —(P/Eo)(s —1)

~8

X Po" "(s, 8—8')P"')(s—1 8')dg' (3)
Up

where Po" o)(s, 8) is the solution of the homogeneous
part of (2a), i.e., of

a—P&*' o&(s, 8)+A(s)P" "&(s, 8)
88

+B(s)P" ' '&(s, 8) =0. (4)

From (2), (4), and the initial condition

8(E Eo) for i=—k
S(i,o)(E 0)—

0

it is easily shown that

Po" "'(s 8)=IIexpL —(1—V(s))8]

plus sign for i=k
&exp( —8) } (5)

minus sign for i&k.

That (3) is a solution of (2a) is most readily seen by
substituting (3) directly into (2a) and seeing that (2a)
is satis6ed.

Next let us write

P&' "&(s, 8) =Q P &* "&(s, 8)(—P/Eo)".

The (n+1)th term of (8) is given by

1 1 I pEoq'—!"I —
}

P„&' &(s, g)(—P/E, ).d,
2siE-o "c( E)

1 1 pcs —n—(—p)" II P "&(s, 8)ds. (9)
2~i Ep ~g E'

Replacing s—n by s and shifting back the path of in-
tegration, we Gnd the (n+1)th term is given by the
expression

1 1 (' /Eo')'
( P/E—)"—'

}
—

} P ""'(s+n, 8}ds. (10)
2)riEo ~c(E&

Hence (8) can be written as

1 1 (Eo') '
S&''&(E, 8)=

2oiEo c EE)

f
ce

X Q ( P/E) "P "—"&(s+n, 8) ds. (11)
n 0

We omit here the detailed mathematical proof that (11)
is absolutely and uniformly convergent for E)P8,
since the proof is entirely ananlogous to that given
both by Iyengar" and Shabha and Chakrabarty. ~

For convenience we now write (11) as

1 1 pEoq'S( )(E g) =
2nzEo~c&E&

I'(s+n)
X P (—P/E)" Q "o&(s, 8) tI ds, (12)

n-0 F(s)

LF(s+n)/F(s)]Q„(.o&(s 8) =P„('.o&(s+n 8) (12a)

Now let us deane
n~0

g(i o)(s g) —Q)(i,o)(s 8)/Qo(i, o)(s g)

9""(s 8))"
f (i,o)(s g)= ' Q 'o (s 8P„&'"&(s, 8)

We substitute (6) into (3), equate equal powers of and
(P/Eo) and find the recursion formula

= (s—1)Jt Po" "'(s, 8—8')P )(' '&(s—1, 8')d8'. (7)
0

Keeping in mind delnition (2), we invert the Mellin

Lg" "(s, 8)]"-'—Q) ' (s 8) + (14)
(n—1)!

~ K. S. K. Iyengar, Proc. Indian Acad. Sci. AIS, 195 (1942).
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We write the integrand of (12) as follows: integration.

r(s+u) Q„&"&(s,8)
Eo'Z (—P)" g&' "&(s, 8) = &8 exp( —8) +PA, ""&(s) exp} (u, (s)8)j

1'(s) I (E+Pg(* "(s,8)) Pg—(' "(s,8)}"' e 0

and expand

I (E+Pg" "(s, 8))—Pg" "(s, 8)}"'
in powers of

Pg" "'(s 8)I(E+Pg" "(s 8))

Rearranging the resultant double series (this can be
done since the d.ouble series is absolutely convergent)
yields

where

plus sign fori =k
X I Pp" "&(s, 8) }

' (l8)
minus sign for i/k,

uo(s) = —1,

u (s) = —(1—V(s)),

up(s) = —(1—V(s+1)),

1
t ( E0

5&(,k&(E 8)
2~i E, &, & E+Pg&'»(s, 8))

P i "F(s+u)
f„&'"&(s,8) ds. (15)

~-o (E+Pg&' »(s, 8)) 1'(s)

The solution (15) is now entirely analogous to that
given by Bhabha and Chakrabarty for the electron-
photon cascade; however, in the present development
the complete four cases are covered (proton-proton,
proton-neutron, neutron-neutron and neutron-proton).
In order to find. the expression for integral spectra we
integrate (15) from E to Eo and find

V(s)+ V(s+ 1)
Ap&''&(s) = —Ap" "(s)=

4V(s) V(s+1)

2V(s) —V(s+1)
A&&P»(s) =A&&' '&(s) =

4V(s)LV(s) —V(s+1)j
A, &"&(s)=A &"&(s)

V(s) —2 V(s+ 1)

4V(s+1)(V(s)—V(s+1)3
i (18b)

V(s) —V(s+1)
Ap&' "(s)= —Ap&"'(s) =

4V(s) V(s+1)

with

X&*'&(E 8)= P X ""&(E 8)
n~0

V(s+1)
A, &"&(s)= A&(&'&(s) =

4V(s)LV(s) —V(s+1)j
1 (Ep)' '

X &"&(E 8) =
2&ri & q s+n 1( P )—

P ) s+n.—1 p(s+I)
X I }

f„&*"&(s, 8)ds. (17)
EE+Pg&' »(s, 8) & r(s)

The integration of (17) is carried out along a line parallel
to the imaginary axis running from sp i po to—so+i pp

with s0&1.
The solution is now complete and appears in the form

of a series. However, as was shown by Bhabha and
Chakrabarty, it suKces for all practical purposes to
take the first two terms of the series, and for many
cases where we are considering particles above a given
energy E, which is not too small, the 6rst term sufBces.
It should be noted that at present we are not justified
in considering particles with energies which are very
low, because it is precisely in this region that we know
little of the true behavior of a nucleon cross section.

III. DETERMINATION OF g&'~)(s, 8) AND f„& ')(s, 8)

From the definitions (13) and (14) and the recurrence
relation ('7) explicit expressions for the g«»(s, 8) can
easily be obtained. %e give here only the results of the

Ap&"&(s) = A p&P '&(s)

—V(s)

4V(s+1)LV(s) —V(s+1)),
For real s greater than 0.1 the terms proportional to
exp( —8) are negligible for all except very small 8; hence
to a good approximation the first two terms of (18)
can be dropped. Using this simplifying approximation
we 6nd

g(i, k&(s 8) —2}A (ik&(s)+A , (i,k&(s)

Xexp( —
} V(s) —V(s+1)$8)}. (19)

The values of f„"'&(s, 8) can also be easily obtained by
simply using the recursion relations. The work involved
in finding f, &' "'(s, 8) is not as great as would appear
since one can readily utilize the numerical work com-
pleted in finding Q&&*' &(s, 8). We do not carry out the
evaluation for the second term of the series, since at
present we do not feel that such a re6nement is justified.

IV. EVALUATION AND NUMERICAL RESULTS

In Tables I and II we have tabulated the functions
g&"&(s, 8) and g&"&(s, 8) for a wide range of s-values
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TABLE I. The quantity g(")(s, 8) as a function of s for various
constant values of the depth in air, 8. 8 is measured in units of 65
g/cm'.

TABLE II. The quantity g&'"(s, 8) as a function of s for various
constant values of the depth in air, 8. 8 is measured in units of 65
g/cm'.

s+8 1

e"'&(s, ~)
6 10 15 20

g(1,2)(s 8}
s +8 1 2 4 6 8 10 15

0.1
0.2
0.3
0.4
0.5

0.318 0.308
0.462 0.467
0.587 0.654
0.682 0.847
0.752 1.024

0.307 0.307 0.307 0.307 0.307
0.458 0.458 0.458 0.458 0.458
0.640 0.638 0.637 0.637 0.637
0.850 0.844 0.843 0.843 0.843
1.083 1.069 1.073 1.072 1.072

0.307
0.458
0.637
0.843
1.072

0.1
0.2
0.3
0.3
0.5

0.033 0.032 0.031 0.031 0.031 0.031
0.062 O.Q69 0.065 0.065 0.065 0.065
0.095 0.118 0.118 0.117 0.117 0.117
0.130 0.179 0.193 0.191 0.190 0.19Q
0.162 0.243 0.287 0.289 0.288 0.288

0.031 0.031
0.065 0.065
0.117 0.117
0.190 0.190
0.287 0.287

0.6
0.7
0.8
0.9
1.0

0.802 1.177 1.325 1.328 1.326 1.325
0.839 1.303 1.565 1.595 1.598 1.599
0.867 1.405 1.791 1.864 1.882 1.889
0.889 1.488 1.998 2.130 2.174 2.192
0.905 1.556 2.185 2.385 2.464 2.501

1.325 1.325
1.600 1.600
1.895 1.895
2.209 2.212
2.538 2.548

0.6
0.7
0.8
0.9
1.0

0.192 0.306
0.219 0366
0.244 0.420
0.265 0.469
0.285 0.513

0.393 0.409 0.411 0.410
0.505 0.545 0.557 0.558
0.615 0.690 0.720 0.727
0.720 0.837 0.896 0.916
0.819 0.983 1.077 1.113

0.410 0.410
0.559 0.559
0.733 0.733
0.931 0.935
1.151 1.161

1.1
1.2
1.3
1.4
1.5

0.918 1.611 2.350 2.627 2.749
0.929 1.656 2.496 2.850 3.024
0.937 1.694 2.625 3.056 3.286
0.944 1.'?26 2.737 3.243 3.534
0.950 1.752 2.836 3.414 3.768

2.809 2.879 2.901
3.113 3.226 3.268
3.407 3.574 3.644
3.689 3.920 4.026
3.959 4.258 4.409

1.1
1.2
1.3
1.4
1.5

0.302 0.552
0.317 0.588
0.331 0.619
0.343 0.647
0.355 0.673

0.910 1.122 1.257 1.317 1.387 1.409
0.993 1.253 1.433 1.522 1.635 1.677
1.069 1.375 1.602 1.723 1.890 1.960
1.137 1.488 1.762 1.917 2.147 2.253
1.199 1.592 1.911 2.102 2.402 2.553

1.6
1.7
1.8
1.9
2.0

0.955 1.7'?5 2.923 3.569 3.986
0.959 1.794 3.000 3.709 4.191
0.963 1.811 3.068 3.837 4.381
0.966 1.826 3.128 3.952 4.559
0.969 1.839 3.182 4.057 4.724

4.213 4.586 4.790
4.454 4.905 5.165
4.680 5.210 5.531
4.892 5.501 5.887
5.090 5.778 6.231

1,6
1.7
1.8
1.9
2.0

0.365 0.696 1.255 1.687 2.050 2.278
0.374 0.716 1.306 1.774 2.180 2.443
0.382 0.735 1.352 1.854 2.299 2.597
0.389 0.752 1.394 1.927 2.408 2.741
0.396 0.767 1.432 1.993 2.510 2.876

2.651 2.854
2.894 3.154
3.128 3.449
3.351 3.737
3.563 4.017

2.1
2.2
2.3
2.4
2.5

2.6
2.7
2.8
2.9
3.0

0.971 1.850 3.230 4.153 4.879 5.276
0.973 1.860 3.273 4.240 5.023 5.450
0.975 1.869 3.312 4.319 5.157 5.613
0.976 1.876 3.347 4.392 5.283 5.766
0.9'?8 1.884 3.379 4.459 5.401 5.909

0.979 1.890 3.409 4.520 5.512 6.045
0.981 1.896 3.434 4.576 5.615 6.170
0.982 1.901 3.459 4.629 5.713 6.289
0.983 1.906 3.480 4.677 5.805 6.401
0.984 1.910 3.501 4.721 5.891 6.506

6.041 6.563
6.290 6.880
6.525 7.184
6.749 7.474
6.958 7.751

7.165 8.014
7.343 8.264
7.520 8.502
7.687 8.727
7.844 8.941

2.1
2.2
2.3
2.4
2.5

2.6
2.7
2.8
2.9
3.0

0.402 0.782
0.408 0.794
0.413 0.806
0.418 0.817
0,422 0.827

0.427 0.837
0.430 0.845
0.434 0,853
0.437 0.860
0.440 0.867

1.467 2.055 2.603 3.001
1.498 2.111 2.689 3.116
1.528 2.163 2.768 3.223
1.555 2.210 2.840 3.323
1.580 2.254 2.908 3.416

1.603 2.295 2.970 3.503
1.623 2.332 3.027 3.582
1.644 2.368 3.081 3.656
1.661 2.400 3.130 3.726
1.679 2.429 3.176 3.790

3.765 4.287
3.955 4.546
4.135 4.794
4.307 5.031
4.464 5.257

4.623 5.472
4.754 5.675
4.888 6.869
5.012 6.052
5.129 6.226

J"(s., 8) = I O'J(s, t&)/Bs'Is-s. . (21a)

(22)

The saddle point, s„,is determined by the relation

BJ(s, 9)/Bs=0

and eight diff'erent values of the depth 8. The evaluation
for small depths was carried out using the exact expres-
sion (18); however, for e) 10 we used the simplified ex-
pression given by (19).It will be noted from (18), (18a)
and (18b) that the value of g

&' "&(s, l&) remains finite for
all positive s and 8 values.

In order to evaluate S&"' "'(E, e) we may use a single
saddle integration on the E„('~&(E, 8), yielding:

E„~"&(E,e) =[—2s J"(s„,8)] & exp" J(s„,t&)], (—20)

where

J(s, 0) = (s—1) ln(E, /P—)

+(s+n 1) 1n[P/—E+Pg&' "&(s, 0)]
—In(s+ &s—1)+lnI'(s+ e)

—1ni'(s)+In[f„(i,k)(s, t&)], (21)

i.e., from

2 8
ln(ED/P) — +—[lni'(s+ &s) —lnI'(s)]

s+s—2 8$

r+—ln[f &' ~&(s, tt)]+ ln
Bs I E+Pg&' "'(s, e)

8—(s+&s—1) —g&' "&(s, 8) =0. (23)
E+Pg&' "&(s, 0) Bs I

In carrying out the evaluation of (23) it will be noted
that for E»p the second term in the last set of brackets
in (23) can be neglected without appreciable error;
however, for E equal to or of the order of P, it cannot be
neglected. This difBculty is remedied by noting that the
saddle point, s, varies only very slowly with E and thus

I p/[E+Pg'"'(s e)]I*+" '

can be treated as a slowly varying factor (in comparison
with f ~' ~&(s, e)). It can thus be removed from the ex-
pression for J(s, 0) and treated as a purely multi-
plicative factor, evaluated at the points s=s„,where s„
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Fig. 1.The logarithm of the average number of protons above a

given energy E at an atmospheric depth of 8 g/cm' due to an
incident primary proton of energy Ep. In curve (1), Ep/E=10f',
P=O; curve (2), Sp/E=19', Ep=13X10"ev, E=10P; curve (3),
Ep/E=10, Ep= 13X10~ ev, E=p; curve (4), Ep/E= 10, p=O;
curve (5), Ep/E= 10, Ep= 13X10'P ev, E= 10P; curve (6),
Ep/E=10, E,=13X1Qp ev, E=p.
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FIG. 2. The logarithm of the average number of neutrons above
a given energy E at an atmospheric depth of 8 g/cm' due to an
incident primary proton of energy Ep. In curve (1), Ep/E=19',
P=O; curve (2), Ep/E= 10', Ep=13X10'3 ev, E= 10P; curve (3),
Ep/E= 10, Ep=13X10'~ ev, E=p; curve (4), E /E=1(P, p=O;
curve (5), Ep/E=10' Ep=13X10 P ev E=10P; curve (6), Ep/E
=10', Ep=13X10' ev, E=P.

is now determined from (23) by neglecting the factor
in the curly brackets.

As was mentioned in Sec. II, for all practical purposes
it su%ces to take the 6rst two terms of the series for
S""'(E, 8) and if we do not consider energies less than
the ionization loss P, then a fair approximation to
X"~'(E, 8) is provided by Xo&'~'(E 8)

Thus for E=P, Eo))P,

g.B

I W~~
0 Rlo gp(7 040 gy ~ lO gg 700 @y $44e ~

2%i

&
rEDq'-' ds

X
t

—
t fo" "(s, 8) . (24)"o( P) s—1

(Note that on the right we now simply have a correction
factor multiplying the solution neglecting ionization
loss. )

In Figs. 1, 2, and 3 we have given the results of a
calculation using (24)."Several different primary ener-
gies were chosen and the values of E considered vrere
E=P and E= 10P. We have considered the cases i =1
and k=1 and 2.

V. DISCUSSION OF RESULTS

In Fig. 1 we have plotted the average numbers of
protons above a given energy E in a cascade developing
in a 6nite absorber, due to a primary proton of energy
Eo, both vrhen ionization losses are neglected and vrhen

they are taken into account. Various values of the

"At small depths the calculation is out by a small factor due
to the neglect in the numerical vrork of the second exponential
occurring in fp(' ~){s,8). Due to this fact S("&(E,8) is slightly
greater and 1V'&'~)(E, 8) slightly smaller than given by the curves
for depths 8=0 to 200 g/cm'. As a consequence the ratio of
neutrons to protons in the same depth range is exaggerated.

Fro. 3. The ratio of the number of neutrons to protons above a
given energy E, at an atmospheric depth of 8 g/cm~ due to an
incident primary proton of energy Ep. In curve (1), Ep/E=10,
Ep=13X10 ev, E=P; curve (2), Ep/E=iP', Ep=13X10~ ev,
E=P; curve (3), Ep/E= 19', Ep=13X10'P ev, E= 10P; curve (4),
Ep!E=10, Ep=13X10'3 ev, E=10P.

primary energy E0 and of the energy E were chosen, in
order to show how the effect of ionization loss varies
according to the energy range in which vre are interested.
Similarly, in Fig. 2 the average numbers of neutrons due
to a primary proton for the same energy ranges are
plotted. Finally, in Fig. 3 the ratio of neutrons to
protons is given.

It is seen from Figs. 1, 2, and 3 that the effect of
ionization is by no means negligible when E=P; how-
ever, vrith increasing energy E, the effect readily falls
off and already for E= 10/ is practically negligible.

Comparison of the theory (with ionization loss) and
experimental data is being made in a subsequent paper.
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