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To prove this theorem we write
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Now, if p is in diagonal form, we have according to (3)
S1G| H1le)*(G|Hzle2) =0  (e17e2). (5)

According to (4) and (5) we see that (1) reduces to (2) if p is in
diagonal form for the states y., and the theorem is proved.

We now give an alternative expression for p by which the
meaning of p can more easily be understood than from the defini-
tion (3) of p. Consider the wave function of an arbitrary inter-
mediate state Ymeq, which can be expressed as

Ymed= Ea Ce¥e (6)

by means of the fundamental states y, chosen in (1) and (2). From
(6) it follows that

f\bmed*p'//mad =Ze1, e cer*ces(en| p|e2). )]
If we define the partial transition probabilities P;, mea? by
Pi,mea?=N'S1| (3| Hy| med) |2, ®

where N’ is a constant factor, we obtain

f‘ﬁmed *P\bmed = N”Pi, med?, (9)

where N” is a normalization constant. It is easily seen that (9) can
be used as a definition of p alternative to (3).

We want to stress that the values of P;, meqa?, when known only
for the fundamental states ¥, but not for their linear combinations,
do not yet supply complete information on the transition proba-
bilities +—e. For this we must either calculate (3), or P; meqa? for
every ¥med.

To obtain the angular correlation theorem stated by Falkoff
and Uhlenbeck! (and proved later by Lloyd? and Lippmann?®) as a
special case of our theorem, we remark that the z axis is an axis of
rotational symmetry of p, if the first of two successive particles is
emitted along this axis. This leads to a diagonal form for p if the
V. are eigenfunctions of the z component of the total angular
momentum, so that (1) and (2) are equivalent for these ..

The proof of our theorem has features in common with the
considerations of Lippmann,? but the use of the density matrix
enables us to go further. Our theorem could, namely, also be
applied if no axis of rotational symmetry for p exists, as in the case
of ¥ —~ angular correlation of aligned nuclei. We must then try to
find states ., for which p is in diagonal form.

We have used the representation of the state of a system after a
transition by a density matrix [as in (9)] in an earlier paper,*
where a partially polarized electron beam was represented by a
density matrix.® Before that, we used the density matrix to prove
another theorem on transition probabilities.®

1D, L. Falkoff and G. E. Uhlenbeck, Phys. Rev. 79, 323 (1950).

2S. P. Lloyd, Phys. Rev. 80, 118 (1950).

3 B. A. Lippmann, Phys. Rev. 81, 162 (1951).

4 H. A. Tolhoek and S. R. de Groot, Physica 17, 81 (1951).

5 H. A. Tolhoek and S. R. de Groot, Physica 17, 1 (1951).
¢ H. A. Tolhoek and S. R. de Groot, Physica 15, 833 (1949).

Intensity of Ultraviolet Radiation
from Solar Flares
R. N. SEDRrRA

Faculty of Science, Fouad 1 University, Cairo, Egypt
(Received May 2, 1951)

OLAR flares are classified™ according to their intensities in
the increasing order of magnitudes (1, 2, 3, and 34-), where

3+ represents the most intense flare. It is well established that
most solar flares are accompanied by synchronous magnetic dis-
turbances usually called “crochets.” It is natural to assume that
the change in the earth’s magnetic field accompanying the flare is
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dependent on the intensity of the ultraviolet radiation emitted.
The following calculation is based on the assumption that these
crochets are intensifications of diurnal magnetic variations.

The diurnal magnetic variations have been successfully ex-
plained by the diamagnetic theory.’ For a magnetized long free
path ion gas, the intensity of magnetization [ is given by

I=—3ukT/2H,

where T is the absolute temperature, k is Boltzmann’s constant,
n is the ion density, and H is the magnetic field. Assuming that the
solar ultraviolet flash produces an ion cloud, we may calculate its
magnetic effect by replacing it by a bar magnet. The magnetic pole
strength per unit area, o, is equal to //4w. Therefore,

o=—3nkT/87H.

Following the Maris and Hulburt® assumption in taking the end, S,
of the magnet to be 300 km thick and 1000 km wide, the magnetic
strength p of S is given by

p=—(9nkT/8xH) X 10'.

Taking the distance of the ionized layer from the earth to be 200
km and neglecting the effect of the north pole N, the field F due to
S is given by:

=—(nkT/wH)X2.81.

Substituting T'=1000°, £ =1.372X 10716 erg per degree Kelvin, and
H=0.5 gauss, one gets
n=—F-4X102, 1)

The relation between the rate of ion production and the intensity
of incident radiation is given by?”

q=Bn'i/w,
where ¢ is the number of ion pairs produced per cm?® per sec at
height %, w is the energy absorbed in ionizing one molecule, 8 is the
atomic absorption coefficient, #’ is the number of molecules per cc
at height %, and 7 is the intensity of the incident radiation at height
h. Substituting w=14 ev=14X1.6X1072 erg, =3.2X 10717 cm?,
and »’ at height 200 km®=2.5X 108, one obtains

1=¢X2.8X1073, (2)

To test the above calculations, we shall take one of the results
observed by Newton. He observed, on the 3rd of July, 1941, a solar
flare accompanied by a crochet which gives a change in H of —137.
Calculating the ionic density # from Eq. (1), we find that its value
is 5.2X108. Also, calculating the intensity of incident radiation
from Eq. (2), we find its value to be 8.09X10% erg cm™2 sec™™.
Gledhill and Syendrei” obtained an estimate of the normal solar
radiation above the earth’s atmosphere from ionospheric data.
Their value amounts to 0.313 erg cm™ sec™. Comparing the result
obtained from this calculation with that of Gledhill and Syendrei,
we notice that our result is greater by a factor of about 2500, which
is reasonable with the intense radiation emitted during the solar
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N the analysis of the 8-spectrum of heavy radioactive nuclei it

is necessary to examine the effect of the finite nuclear radius
insofar as this effect appreciably influences the behavior of certain
of the electronic wave functions at the nuclear radius.! In fact, for
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FiG. 1. The correction factor Ai(j=3}) as a function of electron
energy W (total energy) in units mc2. The curves marked L, N

correspond to Ai1(L), Ai(M), Ai(N), respectively, and the numbers affixed
to the curves give the value of Z.

given angular momentum j, the “small” component f for k=—j
—4% and the “large” component g for xk=j+3% are sensitive to
deviations from the coulomb field.! Thus, in the correction factors
Cnx of Greuling? which are linearly dependent on the three wave
function combinations L, M, N, one would expect the greatest
influence on M and the least for L. This is, in fact, exhibited by the
results given below

The calculation of the finite size correction is straightforward
and is based on methods described elsewhere.! The smeared out
charge distribution inside the nucleus is represented by a scalar
potential

V=Vill+ax(r/ro)*+asr/r)*], r<r, 1

where the constants are fixed by continuity of V, dV/dr and by
charge distortion,? although the results are insensitive to the latter.
The internal wave functions are joined to the usual regular plus
irregular coulomb field solutions* at r=r,. Then the effect of finite
nuclear size is represented by Ax(M), etc., where

Mi=MO)[14+Aa:M)] 2)

and similar expressions for L and N Here M(0)- - -
the point nucleus value? and k= |«| =j+}.

The results for electrons’ are shown in Figs. 1 and 2 for 2=1 and
2, respectively. For £ 2 3 the A-factors are rather small. As expected
the influence of the finite size of the nucleus (a) decreases rapidly
with increasing j, (b) is important only for Z>~60 and (c) is
greatest for M, least for L. The latter fact implies an appreciable
effect on the B-decay only for nth forbidden transitions (#> 1) and
for spin change equal to # (unfavorable parity change in the case of
G—T interactions). The negative sign of Ay is due to the depression
of (V2), averaged over the nucleus.!
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Since M is the dominant term for heavy nuclei and since the
coefficients of M ,; (and N,41) vanish, the energy insensitivity of
Ar(M) and Ax(N) imply an essentially allowed spectrum shape for
first-forbidden transitions. However, some change in ff value is to
be expected when the finite nuclear size effects are included. On
the other hand, for second and higher forbidden transitions, the
spectrum shape is changed, because of the rapid k-variation of the
A-factors. Thus a relatively greater depression of the spectrum is
to be expected at the low energy end as compared to the high
energy region. The spectrum modification is, of course, greater for
the larger maximum energies Wo.

It is clear that the effect of the finite size of the nucleus is unim-
portant for the allowed transitions and the favorable parity change

T T T T T T T T T
- ]
- -
M, 83
- M, 96 -
M, 60
\ N, 83
O} ~—— 1 =
- | i
B -
|
N e |
- I A N NN N N N DO N
110 20 30 40 50 60 70 80 90 100 1.0

w

FIG. 2. Same as Fig. 1 but for £ =2, j =3/2. Note change of ordinate scale.

transitions with G—T selection rules. The only well-investigated
case for which the finite size corrections should be important is the
RaE spectrum. An attempt to fit the observed spectrum with finite
size corrections, using pure invariant B-interactions, was unsuc-
cessful. However, recent evidence (made available since the
completion of this work) points to a complex spectrum in this case.®

The authors wish to express their appreciation to Mrs. N.
Dismuke for numerical work.

* This paper is based on work performed for the AEC at the Oak Ridge
National Laboratory.
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