Dual Decay of the 50-Day In¹¹⁴ Isomer and Angular Momenta of the Excited States of Cd¹¹⁴

ROLF M. STEFFEN

Department of Physics, Purdue University, Lafavette, Indiana* (Received May 11, 1951)

CCORDING to recent measurements^{1,2} the 72-sec ground A CCORDING to recent measurements β^{-1} emission into Sn¹¹⁴ but state of In¹¹⁴ decays not only by β^{-1} emission into Sn¹¹⁴ but also by K-capture and β^+ emission into an excited state of Cd¹¹⁴, from which two successively emitted gamma-rays of 0.548- and 0.715-Mev energy lead to the ground state. A very weak gammaray of 1.26-Mev quantum energy has been interpreted as caused by a cross-over transition. Using the measured energy difference between the ground states of In^{114} and Cd^{114} of 2.07 ± 0.2 Mev,³ the ft value of the K-decay from the In¹¹⁴ ground state into the 1.26-Mev level of Cd¹¹⁴ comes out to be \sim 1200. This small value would indicate a superallowed transition, which seems to be improbable in this case. Thus, the question arises as to whether this K-decay originates from the 50-day isomeric state of In¹¹⁴. Since this decay process would require an angular momentum of 4 or 5 for the 1.26-Mev level of Cd¹¹⁴, whereas the K-capture from the In¹¹⁴ ground state is only compatible with I = 1 or I = 2, a determination of the angular momentum of this Cd level would give decisive information.

By measurement of the angular correlation of the two successively emitted gamma-rays the angular momenta of the two excited levels of Cd¹¹⁴ have been investigated.⁴ The result of the correlation measurements, obtained with the previously described apparatus,⁵ are shown in Fig. 1. The measured points follow. within experimental error, the angular correlation function $f(\theta) = 1 + 0.125 \cos^2\theta + 0.042 \cos^4\theta$, which is characteristic for two quadrupole transitions between states of angular momenta of 4, 2, and 0. The angular momentum 4 of the 1.26-Mev level supports strongly the assumption that this level is reached directly from the 50-day isomer. The ft value, 3×10^8 sec, of this K-decay suggests a first-forbidden transition.

The ft value, 3×10^4 sec, of the β^- decay gives evidence of an

FIG. 1. Angular correlation of the gamma-rays emitted from the Cd¹¹⁴ nucleus. The points at $\theta = 170^{\circ}$ and $\theta = 180^{\circ}$ are corrected for the small number of positrons present in the In¹¹⁴ decay.

allowed transition to the ground state of the even-even nucleus Sn¹¹⁴ of zero angular momentum and presumably even parity. Hence, I = 1 and even parity must be assigned to the ground state of In¹¹⁴. The observed positrons must be due to the beta-transition from the ground state of In¹¹⁴ to the ground state of Cd¹¹⁴. The ft value ($\sim 10^6$ sec) suggests an allowed transition, indicating again even parity and I=1 for the In¹¹⁴ ground state. In order to determine the angular momentum and the parity of the 50-day

isomeric state, the multipole character of the isomeric transition must be known. Since the previously measured conversion data are not conclusive, the conversion of the 0.192-Mev isomeric transition has been measured in two ways: (a) by comparison of the conversion lines and the β^- -spectrum in a spectrometer and (b) by comparison of the absolute number of β -transitions determined in a calibrated spectrometer with the absolute intensity of the 0.192-Mev gamma-radiation using calibrated scintillation and GM-counters.⁶ The result is shown in Table I. Besides the theo-

TABLE I. Conversion data and half-life of the isomeric transition in In114.

	Experiment	el. 24	Theory magn. 24	el. 25
$\alpha_K = N_{eK}/N\gamma$	(a) 2.4 ± 0.4 (b) 2.2 ± 0.2	2.5	11	57
α_K/α_L	1.10 ± 0.05	2.4	5.5	1.0
$T_{1/2}^{\text{gamma}}$, sec	2.1 ×107	3.3×104	3.2×107	8.7×1010

retical conversion data7 the table also contains the half-life values of the isomeric state with respect to gamma-emission calculated from Weisskopf's formula.8 Since the relativistic calculations for α_K are the most reliable, it is concluded that the isomeric transition is an electric 24-pole, indicating an angular momentum of 5 and even parity of the isomeric state. The Weisskopf theory gives about 1000 times too large a transition probability for the electric

FIG. 2. Disintegration scheme of In114.

24-pole. The presumably first-forbidden transition to the 1.26-Mev level of Cd114 makes it necessary to assign an odd parity to this level.

Our assignments (Fig. 2) would give for the cross-over transition to the ground state of Cd^{114} a relative intensity $<10^{-7}$, whereas a relative abundance of a few percent has been reported.² This makes the interpretation of the 1.26-Mev γ -ray as a cross-over transition doubtful. The final parity assignments to the Cd114 levels involved will be made by polarization-correlation experiments which are in progress at this laboratory.

- Supported in part by the AEC.

- ¹ F. Boehm and P. Preiswerk, Helv. Phys. Acta 22, 331 (1949).
 ² Mei, Mitchell, and Zaffarano, Phys. Rev. 76, 1883 (1949).
 ³ C. L. McGinnis, Phys. Rev. 81, 734 (1951).
 ⁴ The In¹¹⁴ source has been obtained by the Isotopes Division of the ^a C. L. McGinnis, Phys. Rev. 81, 734 (1951).
 ^a The In¹⁴ source has been obtained by the Isotopes Division of the U. S. AEC, Oak Ridge.
 ^a Rolf M. Steffen, Phys. Rev. 80, 115 (1950).
 ^a Hart, Russell, and Steffen, Phys. Rev. 81, 460 (1951).
 ^a Rose et al., Tables of K-Shell Internal Conversion Coefficients (privately distributed); N. Tralli and I. S. Lowen, Phys. Rev. 76, 1541 (1941).
- ⁸ V. F. Weisskopf and J. M. Blatt, privately circulated notes, to appear as part of a book on nuclear physics.