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The so-called effective range formula for nuclear scattering is deduced from the nuclear dispersion for-

malism for a fairly general class of potentials. It is shown that only in the case of zero angular momentum

scattering is the angular momentum uniquely determined from the low energy variation of the cross section.
The relation between the scattering length and effective range on the one hand and the parameters of nuclear

dispersion theory (resonance levels and reduced widths) is briefly discussed.

~=Z~Lvt, '/(K —&)]

in terms of which'

(1.3)

Q = —(F—RF')/(G —RG'). (1.4)

Here F/r„G/r, are the regular and irregular solutions'

of the two-particle colliding system, evaluated at r=r„
' See H. A. Bethe, Phys. Rev. 76, 38 (1949), for a full and neat

derivation of this result, which was originally surmised by Landau
and Smorodinsky, J. Phys. Acad. Sci. U.S.S.R. 8, 154 (1944), and
first proved by variational methods by J. Schwinger /see J. Blatt
and J. D. Jackson, Phys. Rev. 76, 18 (1949)j.' E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947), R is
simply the inverse logarithmic derivative of rX the internal wave
function (r&r.) evaluated at r=r, .

' See E.P. %'igner, "On the statistical distribution of the widths
and spacings of nuclear resonance levels" {unpublished).' Yost, Wheeler, and Breit, Phys. Rev. 49, 174 {1937}.

I. INTRODUCTION

OW energy nuclear collisions may be described by
~ two types of parameters. In the case of m—p scat-

tering at zero angular momentum, for instance, it is

usual to consider tanS=Q (8=phase shift), and to
express k cot5=k/Q in the form

k cot5= —1/a+ ', rok'+Pr, 'k'+-(l.1)

where a is the scattering length, ro the effective range,
etc. ' The cross section is then given by

a= (4x/k') LQ'/(1+Q') j. (1 2)

Similar formulas may also be obtained for p—p scat-
tering (see Bethe, reference 1) and for scattering at
higher angular momenta. In each case the quantity
k cotb (or something closely related) is expanded in a
Taylor series in k (i.e. , substantially in the energy), and

the cross section is characterized by various length

parameters, a, ro, p, etc. , which are in some way
characteristic of the scattering potential.

On the other hand, when rather larger energy ranges
are considered, or when the compound nucleus (formed

by the two colliding nuclei) is rather complicated, it is

also common to use certain energy parameters charac-
teristic of the compound system, ~iz. , the resonance
levels E~, and the reduced widths y~'. To this end one
introduces the so-called derivative matrix E (which is,
of course, a scalar in the case of pure scattering), given

by

r being the relative separation of the two particles. r, is
the "radius" of the compound system. For r)r„ the
system may be treated as a two-particle collision with
the well-known centrifugal and coulomb interaction
between the particles, for which the corresponding
functions I', G have been calculated by Yost, Wheeler,
and Breit. ' (However, the following treatment does not
depend on the particular forms of F and G, and can be
presumed to include a wide class of external potentials,
for which F, G have the forms given in (2.5) and (2.f).
See also (2.8).) For r &r„ the system is supposed merged
into a compound nucleus characterized by E.'

From (1.1) and (1.4) it is clear that it must be possible
to derive the right-hand side of (1.1) from the known
properties of R, F, and G. This should render it possible
to derive at once the generalization of (1.1) for all
angular momenta, for a coulomb potential, and gener-
ally for a large class of external potentials (see the
remark above). The result should be expected to illu-
minate the nature both of the energy parameters Ez,
y&P and of the length parameters a, ro, etc. (Such a
connection is also mentioned on related grounds by
Blatt and Jackson. ')

Such a relation is to be expected, not only for the
reason given above, but also from the nature of the
derivations of the two quantities k cotb and E, as given
by Bethe' and Wigner, ' respectively. Both these quan-
tities are simple fractional linear forms in the loga-
rithmic derivations of incoming and outgoing waves of
unit amplitude (with energy dependent coeKcients),
and in both cases a functional equation of the type

J(&2)—f(&~)= (&2 +&)g(@» +&) (1 5)

is obtained. In the derivation of (1.1) given by Bethe,
f= k cot8, and a solution for f is obtained as a power
series in E (i.e., in k). In the dispersion-theoretic
treatment of Wigner, f=R, and solution of the func
tional equation (1.5) (taking into account the particular
form of g(F2, E&)) yields the expression (1.3) for R. It is
thus natural to expect a fairly intimate connection

' The validity of such a model, and the changes implied by a
more rigid adherence to reality have been discussed elsewhere.
See reference 4 and also E. P. Wigner, Phys. Rev. 73, 1002 {1948);
T. Teichmann, Ph. D. thesis, Princeton (1949).

s E. P. Wigner, Phys. Rev. 70, 15 (1946).
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between k cotb and E, apart from the purely formal one
mentioned earlier.

II. DERIVATION: GENERAL METHOD

The method of deriving the "efII'ective range" formula
(1.1), or its analogs, from the expression for Q is very
simple, though some of the details may be a bit messy
in the general case (arbitrary external potential) if the
functions Ii and G are rather complicated.

To begin with, one writes

cot8 = 1/Q = —(G RG')—/(F RF')—

coulomb, exponential, Yukawa, and gaussian satisfy
this requirement.

4 and 0' may both be expressed in the form'

where the p„(r), m=0, 1, 2, are independent of k,
and satisfy

Clearly (r/p)4'(r)+4'(r) =4 (r) has a similar form, and
hence so have the functions M=+/4, .7=1/44,
4=1/4, and T=4/4. Thus

G k k/F"
+

F FF' (F/F') —R

O' G k
(2.1) —=—— =A(logr+g)+C '(kr) '"+'

2p+1 p

This follows from the usual normalization adopted for
Ii and G

F'G —FG'= k,
cot5 = —A (logr, +g)

M E r A/y'
C '(kr)—2m+—' +

2p+1 p (r,T/y, )—R

P= 2K+ 2g

where ~g' is the k-independent part of g, one readily
6nds that

the'dash denoting differentiation with respect to r, not
with respect to kr. The form (2.1) is used in order to
avoid mixing the irregular function G (with its often glriting
displeasing properties for small values of the argument),
and expressions involving E. One also has

where

(2.3)
1 (kr) '"+' 3E 1U r,A/II, '—cotb+-,'g+ ——+

AC' 2p+1 p (r,T/p) —R

(2.4)

F=C(kr)&4, p&0, (2.6)

G= [(2y+1)C$ '(kr) "+'%+A(logr+g)F. (2.7)

Here C= C„(k), A =A„(k), and 17
= f7„(k) depends at most

on p. and k, but not on r, while C, + are power series in
kr, beginning with the term I, whose coefficients may
also involve k. A particular example is given by the
coulomb wave functions (see reference 4).

It should be noted that the assumption of the forms
(2.6) and (2.7) for F and G, respectively, implies a
certain restriction on the potential W(r). Roughly
speaking, this means that W(r) must satisfy the con-
dition'

Since F and G are solutions of a second-order dif-
ferential equation of the type

I"(r)+[k'—W(r)fu(r) =0 (2.5)

and satisfy the linear independence (wronskian) rela-
tion (2.2), they are expressible respectively in the forms

Equations (2.3), (2.9) and the subsequent remarks
ensure that the expression in the brackets in both
(2.10) and (2.11) may be expanded in a power series in
k', which will in general be of the form

—a+ 'grok'+ pro'k'+ (2.12)

where the coeKcients a, ro, p. depend on r, and the
various R;, but not on k. (2.10) and (2.11) thus yield
respectively, the formulas

k'& 'C'[cotb+-', Ag —APj

= —r, ' '&[—n+ grok'+ pro'k' j (2.13)

= —(logr, +-',g') (2.10)

is independent of k, and hence of energy. If A =0, i.e.,
if both solutions of the differential equation (2.5) are
expressible as a power series (about kr=0) times some
power of kr, one 6nds instead

(kr,) '"+' M LV (rcpt/ ')
cotb= — ——+ . (2.11)

C' 12p+1 p (r,T/p) R—

r W(r)-+constant& ~, as r—4. (2.8)

Of course, all the usual potentials, such as centrifugal, k'" 'C' cotb= r, ' 'I'[ a+ ~rok2+—pro'k4 —~ ~ j. (2.14)

7See P. M. Morse and M. Feshbach, Methods of Theoretic'aI 'Such an expansion has been given explicitly (for 4) in the
Phys& s (Technology Press, Cambridge, Massachusetts, 1946), for case of a coulomb and centrifugal potential by J. G. Seckerley,
full mathematical details. Phys. Rev. 6?, 11 (1945).
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The coefFicients C, 2, g, P, a, ro, p, , etc. , may be
evaluated as described above, but it is not of very
great interest to do this in general. The particular cases
usually treated are discussed below. Before leaving the
general discussion it is perhaps not unimportant to note
that for certain particular internal potentials (r&r,),
R p may have a value such that the term independent
of k in (r,T/ii) —R va, nishes, and in this case the ex-
pression (2.12) must be augmented by a term in 1/k'.
(See Eq. (3.8).)

and thus

F(r,) =sinkr„G(r, ) = coskr, (3.2)

k cotta= k tankr, (1+tan'kr—,)/(k ' tankr, —R)
= —a '+-,'rok'+ pro'k4+

One then finds directly that

(3.3)

III. NO EXTERNAL INTERACTION

Consider first the case where there is no external
interaction between the two colliding particles, so that
the potential W(r) has the form

IV(r) =1(1+1)/" (3 1)

if the system has l units of angular momentum. The
case l=0 contains nearly all the essential details, and
is treated at some length here, and the corresponding
results and changes for /&0 will merely be stated at the
end of this section.

For /=0

tive, and that rp &0 only if

(r,—Ro)' Roo
Eg& — +

3 3
(3 6)

This of course implies a certain restriction on the poten-
tials. Examples of potentials for which rp &0 have been
given previously but even in the case of the square
well rp may be less than zero for certain choices of Vpf, '
(Vo=depth of well).

Since in this case

Ri=(k'+a') & tan[(k'+g')&r, j, «'=2mVo/ko,

one can readily calculate that rp (0 if

()i+-', )w- ~xr, ~(X+-,o)7r
(X+-,o) x(1—1/V3)

(3 2)
(X+-o,)m (1+1/VS)

X=O, 1, 2, . Qualitatively this means that ro will be
less than zero" if there is at least one bound state and
the 6rst virtual state is just a little above zero energy.
A little consideration shows that this result is also to
be expected from the forms (2.4) of Ro and Ri combined
with Eq. (3.6).

If Ep should be fortuitously be equal to rp, then the
right-hand side of (3.3) must be replaced instead by the
expression

~= ~c ~pp (3.4)
where

—1/(Pk') —no+ haik', (3.8)

,'ro r.—r,'/a+(-,'r, '—R——i)/a' etc. (—3.5)

Equation (3.4) shows that if the scattering length a is
greater than the radius r, of the compound system, then
the latter must have at least one strongly bound state
Ei, such that

I 2 (v~'/R. )l & 2 hi'/E~)

Since 8 (or the collision matrix U) is invariant to any
changes made in the assumed radius r. of the compound
system, provided only that the total potential is not
changed, Eqs. (3.4), (3.5), etc. , are to be regarded as
expressing necessary relations which must hold between
the parameter r, (which may be varied) and the various
R„. It has been pointed out elsewhere (Teichmann,
reference 5) that the behavior of the "external" func-
tions F and G, and that of the derivative function R just
so compensate as to render 8 (or U) independent of the
choice of r, (or even of the boundary conditions on the
internal system). The present treatment is interesting
in that it shows much more plainly (though only in the
case of pure scattering) the effect on R of specific
choices of r, . (For instance if r,= a (provided a &0), then
Ro=0.)

Equation (3.5) shows that ro is not necessarily posi-

p =-,'r, o—Ri.

Since the cross section is given by

(3.9)

0 = (4x/k') sin'b =4ir/(k'+ k' eot'8), (3.10)

this means that while in the usual case (3.3) the cross
section tends to the constant value

(3.11)

(3.12)

even though the scattering is at zero angular mo-
mentum (see the remarks below on scattering at l&0).
In the case of the square well such a condition obtains

' See V. Bargmann, Revs. Modern Phys. 21, 488 (1949), The
author is indebted to Dr. Bargmann for this remark.' Functions of the forms of R, whose imaginary part is positive
in the upper half-plane and negative in the lour half-plane, and
whose only singularities are poles, are known as R functions, and
have been considered in some detail by E. P. Wigner, Ann. Math.
53, 36 (1951). He showed, for example, that a fractional linear
transformation (aR+b)/{cR+0), with positive determinant
ad —bc&0 is also an R-function. The above simple example shows
that Q is not in general an R-function, though it may be approxi-
mated by one in any energy range in which the variation of F
and G may be neglected.

for zero energy, it may, under suitable conditions (viz
for potentials for which Ro ——r,) go to zero as k' at low
energies; i.e.,

a~4vrg k4
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when

i.e., for
tanKfq = Kt'q&

xr. (X+-,')m —L(!N+-,')xj '

(3.13)

which lies between the limits given in (3.7) above.
Equations (3.8) and (3.12) give the correct energy

dependence of the scattering when the scattering length
vanishes. Under more extreme conditions (Rp = f.,
Ri=-', r,') one can easily see that k cotb~k ', so that
the cross section tends to zero as k' (i.e., R'), and so on.
Finally, if there is no internal interaction at all,
R= F/F' at all energies, and the cross section vanishes
identically at all energies.

In the general case, I&0,

It is thus clear that the energy variation of the cross
section at low energies does not uniquely determine the
angular momentum I except in the case I=O. For in-
stance, a low energy variation cr E' may be due either
to P scattering, or to a peculiarity of the potential
leading to condition (3.19), etc.

IV. EXTERNAL COULOMB FIELD

With the preparation of Sec. II, and the formulas of
Yost, Wheeler, and Breit, it is no great hardship to
compute the expression for k cotb in the case of a
coulomb force between the two colliding particles.

Using the notation of II and III, and the results of
YWB, one has

Fi(r) = ( kr/2) Vi+, (kr),
Gi(r)=(—1)'(m.kr/2)&J i )(kr).

(3.14) c=c,'=c, (1+& ) I
1+—"

I
1+—

I

(
4z E P)

Referring to (2.6) and (2.7) one has A=O, @=1,and

C=ci=1/(2l+1)!!= 1/(21+1)(2l—1) 5 3 1. (3.15)
2m'

xi( (exp2wi7) —1)

k"(k cotbi) = O.i+ 2roik'+—-

n, = 1/ai

(3 16) Ci being given as 1/(21+1)!!by (3.15) and

A = (e"&—1)/vr,

s Qo

(4.2)

(4.3)gi(k) = 2 logk+2 g +2g' P
g2+g2 i g(g2+i!2)

1 ( r,+PRO&'& ) r, " '

21+1 Er,—((+1)RO"') Ci2
(3.17)

2i+i()
gi'=2) y —Q —)+2 log2,

E. & s)

y =0.57 (Euler's constant), (4.4)
where

(4.5)g= 1/ri, k

ri, = k'/mZiZ2e'
with

(4.6)

(the Bohr radius of the colliding system). Then one
obtains

( 1 i 2n. cotbi

g~ k+
( +g, (k)

(3.18) a 1 ( $2')Ji+1(Kt' )//& l(iver, ) = ar, /(1 —f).

etc. The superscript I on Eo, denotes that the 8 function
must be calculated for the compound system with
angular momentum I; in general the 8'E) will be dif-
ferent for difI'erent I's. Hence, when there is no external
interaction to affect the centrifugal field l(l+1)/r', the
cross section will generally vary as k" (i.e., as E") for
small values of energy, though in special cases (see
remarks above in the case l=0) it may vary as" k4'+'.

For instance, in the case of a square well of radius ro
and depth Vo=k'x'/2', the condition for this excep-
tional case is

(See also (3.13) above. )
Consideration of the signilicance of the various quan-

tities involved in (2.10), say, shows that the above
phenomenon may generally be expected to occur when
the logarithmic derivative of the zero energy internal
wave function (i.e., the wave function of the finite
isolated compound system) taken for r=r„ is equal to
the logarithmic derivative of the zero energy regular
external wave function evaluated at the same radius,
i.e. , when

k=o P~ Ic=o
F~f o 1~1'

(3.19)

~j See also N. F. Mott and H. S. VV. Massey, The Theory of
Atomic Collisions (Oxford University Press, London, 1950).

=rb( ai'+i2rpi—'k'+ ). (4.7)

Thequantity L2x cot8&/(e' &—1)+gi(k)j will be de-
noted by fi(k) in accordance with the notation of
Breit, Condon, and Present. "

The coefficient

1 q 2s

g2r 2) e~~&—l,

of cotbg tends to k" k for large k, but for small k it
tends to zero as exp( —2m./ri, k), so that cotbi tends to
infinity much more rapidly than k " ' (which occurs
for uncharged particle (n p) scatter—ing), and the form

'~ Breit, Condon, and Present, Phys. Rev. SO, 825 (1936).
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of the cross section as a function of k (or energy) is
substantially independent of / for small energies. As
had already been pointed out by Bethe' for the case
l=o, this shows that the coulomb efI'ects swamp both
the specifically nuclear, and the centrifugal effects at
low energies.

The quantities n', ro', ~ ~ ~, etc. , are functions of the
various R and the functions po(r, ), etc., described in
Sec. II. Since r, /r~ is small ( 1/20), reference to YWB
or Beckerley shows that it is a good approximation to
use the expression (3.4) (3.5) (3.17) (mutalis mutandis)
to determine a~', y()~', ~ ~, etc. Thus one finds

(4.8)

etc. , n& being given in form by (3.17). It should be
noted that R will not in general be the same as in the
case of uncharged particle scattering. Only in the case
of identical compound systems may the same R be used
in (3.17) and (4.8).

1—iC+iBRB
U= 40 Q))

1+iC—iBRB
(5.2)

where cu, C, and 8 are diagonal matrices, given in terms
of the regular and irregular functions F, 6 of the out-
going or incoming pairs of components (F is a diagonal
matrix with elements F„s=1, e) by

co =F'/(F"+G") ~+iG'/(F"+G") &,

C = (FF'+GG')/k,
B= (F"+G")&/Qk.

(5.3)

(All these quantities are supposed evaluated at the

"See E. P. signer and L. Kisenbud (reference 2} and T. Teich-
mann, Phys. Rev. 77, 506 (1950) for further details of this for-
malism.

V. RELATION TO THE THEORY OF
NUCLEAR REACTIONS

If the collision is one in which the compound system
can disintegrate in several ways, then considerations of
the above type become much more complicated and
less perspicuous, both for "proper" reactions (in which
the outgoing components are diferent from the in-
coming ones), and for scattering. Consequently, only
some general comments are made here about the
analogy.

In general, the cross section for a reaction" "st" is
given by

o„=(~ /,k')~i(1 U)„~—', (5.1)

where U is the n-dimensional unitory symmetric col-
lision matrix. (The subscripts s and t, ranging from 1 to
n, denote the n possible initial or final states of the
system. ) U itself is given by

boundary of the compound systems, i.e., for r, =r„,
etc.) R is the symmetric derivative matrix with elements

R.~= +),Lvx.vt, ~/(&&, -&)]
In the case of pure scattering considered in the earlier

part of this paper U is simply a scalar, 'and it is most
convenient to express sin'8=-', ~f(1—U) ~' in terms of
cotb=(1+U)/i(1 —U), vis , s.in'8= 1/(I+cot'b). This
simple relation is no longer true in general if U is a
matrix and it is necessary to consider

~
i(1—U)

~

'
directly.

In order to see the significance of the quantities one
need merely note that, in the case of pure scattering,
formulas of the type

f(k) cotb = —1/a+ ,'rok'+- (5 5)

are obtained in most cases, and that the corresponding
cross sections are

o =47r(f(k)/k) a'[1+ k' a[r o/a—f'(k)/k'] . .]. (5.6)

The factor (f(k)/k)' gives the energy dependence of
the cross section at small energies (e.g. , 1 in the case
of no external interaction, ~k" for scattering at angular
momentum t, etc.).

This energy dependence has already been inves-
tigated very fully in the general case (many reactions)
by %'igner, '4 and, in fact, the value of the first coef-
ficient a' is given implicitly in this treatment. Because
U is a rather complicated matrix quotient and

(1—U) =1+co' 2co(1+iC—iBRB) '—co, (5.7)

it is rather difFicult to see what the coefFicients really
look like in the general analog of (5.5), even in the case
of proper reactions, (sWt) when one need only consider
[(1+iC—iBRB) '],&. Reference to (2.6), (2.7), and
(5.3) shows that the matrices in this last expression do
not always have the simple form of Taylor series in k',
beginning with 1 (they may, for instance, have an extra
factor k), and it is only after taking the absolute value
of the matrix element squared that the desired form is
obtained.

It is not proposed to carry this general discussion any
further here. Even with simple examples (such as are
treated in a different connection in reference 13) it is
rather dificult to obtain perspicuous results beyond
those given by signer. It is hoped to give a fuller dis-
cussion at some later opportunity.
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