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we have the results shown in Table I. It is interesting to note that
they fall into a distinct group, i.e., fi~10%, In view of this result,
one can expect to find some reasons which indicate the interpreta-
tion that Sb™ is to be classified into the Cor group (AJ =32,
parity change no).

TABLE I. ft values of S-decay in the second forbidden transition.* fir,
for are the rat and second forbidden f-functions, respectively (see refer-
ence 6); the coulomb corrections are also made.

AJ =32, yes AJ ==+2, no
Element t(sec) Wo(mc?) the tfor k
C1se 1 X1013 2.4 6.1 X1012 9.8 X101 18
Tco® 7 X1012 1.57 1.1 X101 8.4 X1012 7.7
Shi 5 X108 5.5 1.0 X101 2.4 X1012 13

“gn

* If we take into account the fact that all B-emitters of the * type
group (AJ =2, yes) have ft =10% (see references 7, 9, and 8), it seems
more natural to classify CI%, Tc?, and Sb!2 into Cer groups (AJ = =2, no),
raﬂzu?thh:I«lzn into ““a”’-type groups. Theoretically, tf2r should be proportional
to i7|2.

In fact, Cir (AJ = =2, parity change yes) gives an ft value for
51Sby3!? (see Table I) which seems too great to be classified in the
“a” type group, where the corrected f¢ values are about 10’~108
(see Taketani, ef al.,” also J. Davidson).8 It is interesting to note
that the empirical ff values of different transitions, i.e., the
allowed (/°0), the first forbidden (ZBy;), and the second for-
bidden (2T;), fall into distinct groups, i.e., 10%, 108~10%, and
10'2~10', respectively.?

In conclusion it is suggested that, when carrying out an analysis
of B-decay, one can get useful and effective information from the
evaluation of corrected f¢ values in addition to the usual analysis
of the spectrum shape and the analysis of the selection rule on the
basis of the shell model.
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HE independent nonzero third-order elastic coefficients of
crystals Cper=Cpro=Cqpe(p, ¢, r=1, 2, 3, 4, 5, 6) (sixth-
order polar tensor) have hitherto been known only for cubic groups
and for C3.12 Here they are derived for all the crystal classes S;;
Cik, C3, Can; Cavy D2y Daw; Cyy S, Cany Cavy D2ay Dy, Dany Cay Se, Cav;
T, T4, Ta, O, Oy in which one can find orthogonal cartesian coordi-
nates that do not transform into linear combinations of themselves
under the symmetry operations of the crystal,? and for D3a(Cs, X%
= D3 X1) and Dj, which are equivalent to Cs, for polar properties
of even order. The numbers of coefficients agree in all cases with
those found group-theoretically by Bhagavantam and Suryana-
rayana? and by Jahn.? The coefficients for symmetry Ci, T, O,
Tx, Oy, agree with those given by Birch.!

For symmetry C; the number of independent third-order elastic
coefficients equals the numbers of combinations with repetition
of class 3 of 8 objects: 8!/5!31=56. They are listed in Table I.
Symmetry S;=C;Xi is equivalent to C;.
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For symmetry Cis

Okt X%, Yy——Yy, 33 (1)

the 24 coefficients with indices odd in y must vanish, since they
change sign under o (Table I). Symmetries Cor(CiaXi=CaX1)
and C2(Cs=C(y)) are equivalent to Cis.

For symmetry Cs,

¥y, y——y, -3z, (2)

o, requires that the 12 independent nonzero coefficients for Ci,
with indices odd in x vanish (Table I). Symmetries D2 (C20 X7
=D,X1) and D, are equivalent to Cy..

Tyl X—X, 3—>5; o, xow,

TasBLE 1. Third-order elastic coefficients of crystals.

Cin, C2, C, Do,
C, 82 Ca Do

Cs, D3, Cai, Ss,
C3, S¢  Daa Ca

Car, D2a,
Dy, Dan

Tq, O,
T, Tx Ox

XXXXXX XXXXXX XXXXXX XXXXXX XXXXXX  XXXXXX XXXXXX XXXXXX XXXXXX
XXXXYY XXXXYY XXXXYY XXXXYY XXXXYY  XXXXYY XXXXYY XXXXYY XXXXYY
XXXX2Z XXXXZZ XXXXIZ XXXXZZ XXXXYY  XXXXZZ XXXXIZ XXXXLZ XXXXYY
XXXXY3 XXXXYZ XXXXYZ 0 0 0 0
XXXXIX XXXXZX 0 XXXXIX XXXXZX 0 0 0 0
XXXXXY 0 0 XXXXXY XXXXZX xxXXXXY 0 0 0
XXYYYY XXYYYY XXYYYY XXXX2Z XXXXYY  XXXXYY XXXXYY XXXX2Z XXXXYY
XXYY3Z XXYY2Z XXYYIZ XXYYIZ XXYYZ3 XXYY3Z XXYYZE XXYYZE XXYY3Z
XXYYYyZ 0 0 XXYYVE XXYYYS 0 1] 0 4]
XXYYZX XXYVIX 0 XXYYZX XXYYYS 0 1] o 0
xXYYXY 0 0 XXYYXY XXYYXY 0 0 (1] o
XX2227 XX2338 XXZ33Z XXXXYY XXXXYY  XX333% XX2333 XXXXYY XXXXYY
xX22Y3 0 0 XXYYIX XXYYY3 0 0 0 0
XXZZZX  XXZ3TX 0 XXYYXY XXYYXY 0 0 0 0
xx22xy 0 0 XXYYVZ XXYYYZ xX22XY 0 0 (1]
XXYZYZ XXYZYZ XXYIYZ XXYIYE XXYZY3 XXYZYZ XXYZYZ XXYIYE XXYZYZ
AXYZIX [\] 0 XXYZIX XXYZZX xXXY23% 0 (4] 1]
XXYZXY XXVIXY XXYZXY XXY23X 0 0 0 0
XXZXZX XXZXZX XXZXZX XXBXIX XXIXZX XXZXZX XXZXZX XXZXZX XXZXTX
xXZXXY 0 0 XXZXXY XXZXXY 0 0 0

XXXYXY XXXYXY XXXYXY XXXYXY XXZXZX XXXYXY XXXYXY XXXYXY XXTXTX

YYYYYY YYYYYY YYYYYY XXXXXX XXXXXX  XXXXXX XXXXXX XXXXXX XXXXXX
YYYYIZ YYYYIS YYYYZZ XXXXYY XXXXYY  XXXX3Z3 XXXXZZ XXXXYY XXXXYY
yYYYys 0 0 XXXXXY XXXXZX 0 0 0 0
YYYYIX YYYYIX 0 XXXXYZ XXXXYZ 0 V] 0 (1]
YYYYyxy (V] V] XXXXTX XXXXZX —XXXXXY V] 1] 4]
YY2223  YY233% VY2295 XXXXZZ XXXXYY  XX323Z XXZZZZ XXXXIZT XXXXYY
Yy22y3 (1] 0 XXYVXY XXYYXY 1] 0 0
YY223X  YYII3X 0 XXYYY3 XXYYYZ 0 0 /] [\]
yyzzxy 0 0 XXYYZX XXYYYZ —XX2ZXY 0 0 0
YYVZVE YYVIYZ YYYIYZ XXXYXY XX2XZX XX2X2X XXIXIX XXXYXY XXZXZX
YYyzzx 4] 0 XXYZXY XXYZIX —XXYIZX 0 0 0
YYVIXY YYYIXY 0 XXZXXY XXZXXY 0 0 0 0
YYZXZX YYIXZX YYIXZX XXYIYZ XXYZYZ XXY2Y3 XXYZYZ XXYZYE XXY3YZ
YYZXXY (1] 0 XXY2ZX  XXY2ZX 0 0 0 0
YYXYXY YYXYXY YYXYXY XXZXIX XX2XZX XXXYXY XXXYXY XXIXZX XXBXIX

222233 222232 222233 XXXXXX XXXXXX 223223 232223 XXXXXX XXXXXX
2222Yy3 0 0 XXXXIX XXXXTX 0 0 0 o
23823X%  22233X 0 XXXXXY XXXXZX 0 0 V] (1]
2222Xy 0 0 AXXXYZT XXXXYZ 0 0 0 1)
23YZYZ  22Y2YZ  23YZYT XXZXIX XXZXZX 2ZYZYZ  3ZYZYT XXZXTX XXBXIX
23y22% (4] 0 XXZXXY XXTXXY 0 (1] 0 0
22YIXY  2ZYZXY (4] XXYZZX  XXYIBX 0 o 1] (1]
223X2X  2ITXIX  BIZXZX  XXXYXY XXZXZX 2ZYZYZ  ZTYZYE XXXYXY XXZXZX
322XXY 0 (4] XXYZXY XXYIZX [i] 0 0 0
ZIXYXY BIXYXY 2ZIXYXY XXYZYE XXYZYZ 2ZXYXY  2ZXYXY XXYIYE XXYIYT
32y2y2 0 V2Y2YZ  Y2YZYT 0 0 0 0
Y3Y2ZX  YZYZZX (1] YIY2ZX  YZY22X (1] 0 0 1]
yzyzXYy 0 (1] Y2YZXY Y2YZIX y2y2XY [1] 0 (V]
¥23X2% V] 0 Y2YZXY Y2YIZX 0 V] 0 o
V2ZIXXY YITXXY YITXXY YIZXXY YIZXXY  YIZXXY YIIXXY YIIXXY YI2XXY
yzxyxy 1] (1] YZY2IX  YZYZIX 0 0 (1] 0
LXTXIX 2ZXLXZX o NZY2YZ  Y2YZYT 0 0 (1] o
3X3XXY W] 0 YZYZZX  YIYIX  —YZYZXY 0 0 0
BXXYXY BXXYXY 0 YZYZXY YZYBIX 0 0 [\ [\]
zYXYxy 0 o y2YZY3  YZYZYZ 0 (4] o 0
For symmetry C4
Cy: x—y, y—o—x, -7z, 3)

there are 16 independent nonzero coefficients (listed in column
6 of Table I):

szzz:z = nyyyyy, C:;z:zyu = szyyyy, szxzu = va/uuy

szr.zzy bt nym/zyy szm/.uy zzyyzy = — Lazyyzy=
Crzeeer= Cm/nu, szuzu == Cyuuzy, szuzy:= Cmunz,
C.rzyuz =- nyyuz, Crzozez= yyyzYL) C:uzy:y = Cyyzyzyy Cuuuy

25322y = U, Ctnm/: = Czuzsz, szyzsz ™ Crzyzez =0,

yeyszy = Cn:uzy, Cyuzzuy Czy:yzy = - Czyzyzy =0. (4)

Cuuzu’= -

8LZTYZTY)y
The 24 components odd in x or in ¥ vanish. Symmetries Csa(Cy X1
=S,X3) and S, are equivalent to C,.
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For symmetry Cy,
Y-z, Tp: XY, (9
o, imposes four additional relations among the 16 coefficients (4):

3—3; Y%, 3%,

Cy: x>y,

Cz:zzzy = nyyw:y, szuzy = Cuuuxu, szu:zz = Cuwnz,

veyzzy = Cuu::u- (6)
Thus, these 4 coefficients vanish (Table I). Symmetries Ds»(Cso X3
=Dy Xi=DyX1), Dy and Dy are equivalent to Cy..
For symmetry Cs,

M

there are 20 independent coefficients (Table I),! while for sym-
metry Cs,,

Cz: x>y, y—>3, 3%,

(8)
there are 14, since o, imposes six additional relations among the
coefficients for C; (Table I). Symmetries D33(Cs»Xi=D3Xi) and
Dj3 are equivalent to Cs,.

For symmetry T,

Ca: x>y, y—z, 2%; 0y X%, Y2, Y,

y—z, Zr—X,

Gy’ —x—y, y—z, )

12 of the coefficients for C; vanish (Table I) owing to the addi-
tional relations imposed by Cs”. Symmetry T, =T X1 is equivalent
to T.

For symmetry T,

Cy': x>,

’. .
Cy': x>y, z2—x;

y—oz, z—x; Ci': —x—>y, y—3z, z—o—x;

aq: ¥—x, y—z, 2y, (10)

only 8 of the relations imposed by Cy’ are distinct, owing to the
relations imposed by ¢4: 8 of the 14 independent coefficients for
Cs, vanish (Table I). Symmetries Ox(TaXi=0X3) and O are
equivalent to T4.

The writer wishes to thank Professor Bhagavantam and Mr.
Hearmon for correspondence.

1 F, Birch, Phys. Rev. 71, 809 (1947).

28, Bhagavantam and D, Suryanarayana, Nature 160, 750 (1947), have
shown group-theoretically that Birch's number of coefficients for symmetry
Ta(=8) is in error; the correct number is 6, as was also confirmed by H. A.
Jahn, Acta Cryst. 2(1), 30 (1949). This result is actually obvious, even in
more complete form, since symmetries T4, O, and Oa (Ta Xi =0 X1) are
equivalent for polar properties of even order.

3 F. G. Fumi, Acta Cryst. (1951), to be published.

4 After the writer had undertaken this work, he was informed by private
communication that Mr. R. F. S. Hearmon, Physics Section, Forest
Products Research Laboratory, England, had been applying to the third-
order elastic tensor the direct method described in C. E. Love, The Mathe-
gﬁlical 131;01'3' of Elasticity (Cambridge University Press, London 1927),

apter VI.

Experimental Evidence for the Vacancy Mechanism
in Diffusion in Metals and Alloys*

FosTER C. N1x anD Frank E. Jaumor, Jr.t

Randal Morgan Laboratory of Physics, University of Pennsylvania,
Philadelphia, Pennsylvania

(Received July 25, 1951)

HERE has been much discussion among the workers in the

field of metallic diffusion as to the possibility of using an

alloy system such as iron-aluminum, nickel-aluminum or cobalt-
aluminum, near the fifty-fifty atomic percent composition, to
test the vacancy theory of diffusion, but to our knowledge only one
previous report! on experimental work has been given. FeAl?
NiAl,;? and CoAl* are body-centered cubic with ordered structures
at room temperature, aluminum atoms going to cube corners and
the ferrous atoms to cube centers. The lattice spacings at the ideal
composition (50-50 atomic percent) rise to a maximum. On the
cobalt-rich side of the ideal composition (to take a specific ex-
ample), the cobalt replaces aluminum, atom for atom, and a fall
in the lattice spacing results from the replacement of large alumi-
num atoms by the smaller cobalt atoms. On the aluminum-rich
side the number of atoms per unit cell is less than two.* For the
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ordered structure the cube corners are filled by aluminum atoms,
but there are insufficient cobalt atoms to fill up the cube centers
and the vacancies are not made up by the larger aluminum atoms
to that there is a contraction in the cell dimensions. These va-
cancies have then been considered as a possible source of informa-
tion on the vacancy mechanism of diffusion. Smoluchowski and
Burgess! have raised doubt as to the ability of these vacancies to
play a role in diffusion, due to their relatively small size compared
to the size of an aluminum atom, in connection with an experiment
on nickel-aluminum alloys. Their experiments seemed to uphold
the arguments presented there, in that no increase in the diffusion
coefficient was found for compositions on the aluminum-rich side
in NiAL

The arguments raised by Smoluchowski and Burgess are only
applicable to a highly ordered structure and rapidly lose validity
under the experimental conditions at elevated temperatures where
the actual diffusion takes place. At these temperatures there must
exist a considerable degree of disorder permitting vacancy diffu-
sion to take place, where vacancies are distributed in a random
fashion over lattice sites.

45—
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FIG. 1. Values of the diffusion coefficient of cobalt in cobalt-aluminum alloys
as a function of cobalt concentration, at 1250°C.

Even though the ordered structure persists at elevated tempera-
tures where the diffusion experiments were carried out, it seems
highly unlikely, with such a large number of excess vacancies
present, that they would not be of consequence in any process
which took place as a result of vacancies. Even admitting that a
cobalt or aluminum atom could not move into the cobalt vacancy
created, as suggested by Smoluchowski and Burgess,! the sheer
number of these vacancies would greatly increase the probability
of a vacancy being adjacent to a normal lattice defect (e.g. a
cobalt atom on a cube corner) or to a vacancy due to thermal ex-
citation, and thus increase the mobility of the vacancies and
consequently increase the diffusion coefficient.

We have investigated the diffusion of cobalt into five-compo-
sitions of cobalt-aluminum alloys near the ideal composition,
using radioactive Co® as the diffusing atom. The experimental
technique used was similar to that employed in our work on self-
diffusion in cobalt.® The diffusion was carried out at three tem-
peratures, 1050°C, 1150°C, and 1250°C. The preliminary results



