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we have the results shown in Table I. It is interesting to note that
they hll into s distinct group, i.e., filo'I ID. view of this result,
one can expect to 6nd some reasons which indicate the interpreta-
tion that Sb~ is to be classified into the CRT group (M &2,
parity change no}.

Element t(sec) S'o(mc')
dJ &2, yes

tfl T
hJ +2, no

tf~

TABLE I. ft values of p-decay in the second forbidden transition s' fIT,
fzT are the first and second forbidden f-functions. respectively (see refer-
ence 6); the coulomb correctfons are also made.

For symmetry C&a,

ey, .'x~x) y~-y) s~s) (1)

the 24 coefficients with indices odd in y must vanish, since they
change sign under aa (Table I). Symmetries Cza(C1qXz O' X&&

and C2(C» Cs(y)) are equivalent to Cga.
For symmetry C&,

a„.x—+-x, y-+y, s—+s; o.,'. x—+x, y—+—y, s-+s, (2)

a, requires that the 12 independent nonzero coef5cients for CIa
with indices odd in x vanish (Table I). Symmetries Dea(Cz, &(i
=D2Xi) and D2 are equivalent to C2„.

Clss
Tc»
Sb)24

1 )(10I&
7 X10I&
5 &10s

2.4
1.57
5.5

6.1@10»
1.1 X10»
1 0X10)o

9.8 X10» +18
8.4 X10» 7.7
2.4 X10II' 13

TABLE I. Third-order elastic coe8icients of crystals.

~ If we take into account the fact that all P-emitters of the "a" type
group (dJ~+2, yes) have ft 10s (see references 7, 9, and 8), it seems
more natural to classify Clss, Tc», and Sb» into Cn groups (M +2, no),
rather than into "a"-type groups. Theoretically, tf~ should be proportional
to X t Ttt ) &.

In fact, CIT (M +2, parity change yes) gives an ft value for
aISbye'~ (see Table I) which seems too great to be classified in the
"e" type group, where the corrected ft values are about 10'~10s
(see Taketani, ef al. ,' also J. Davidson). It is interesting to note
that the empirical ff values of di8erent transitions, i.e., the
allowed {J'e), the first forbidden (ZB~i), and the second for-
bidden (ZT;,}, fall into distinct groups, i.e., 10', 10' 10', and
l0"~10'3, respectively. '

In conclusion it is suggested that, when carrying out an analysis
of P-decay, one can get useful and effective information from the
evaluation of corrected fl values in addition to the usual analysis
of the spectrum shape and the analysis of the selection rule on the
basis of the shell model.
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HE independent nonzero third-order elastic coeKcients of
crystals C~,=C~,4„C4I~,(p, q, r=1, 2, 3, 4, 5, 6) (sixth-

order polar tensor) have hitherto been known only for cubic groups
and for Cg."Here they are derived for all the crystal classes Sa,
CIa Cg Cga Czg) Dg D2a ) C4) S4) Csa) Cs))) D2g Ds) D4a ) Cz) Sg) Cgg )
T, Ta, Tq, 0, Oa in which one can find orthogonal cartesian coordi-
nates that do not transform into linear combinations of themselves
under the symmetry operations of the crystal, ' and for Deq(CI, Xi

Dg&(i) and Ds, which are equivalent to C3, for polar properties
of even order. The numbers of coefficients agree in ail cases with
those found group-theoretically by Bhagavantam and Suryana-
rayanaz and by Jahn. ~ The coefficients for symmetry CI, T, 0,
Ta, OI, agree with those given by Birch. '

For symmetry C& the number of independent third-order elastic
coefficients equals the numbers of combinations with repetition
of class 3 of 8 objects: 81/$13' 56. They are listed in Table I.
Symmetry Sz CI ga is equivalent to C~.

Cia, Cg, C~, Dg, Cs~, Dg,
Cl, S2 Cga Dza C3, Ss Dsd

C4, S4, C4v, Dga, Td, 0,
C4a D4. D4a T, Ta Oa
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For symmetry C4

C4. X~y, y-+ —X) -—+S, (3)

there are 16 independent nonzero coefBcients (listed in column
6 of Table I):
C»»» =Cuuvvvu) C»«vu = C«vvvv) C»«gg Cvvvvgz)

C»«gu Cuvvvzv) C«vugg) C»uvgv = C»vvgv
C»gggg ~Cuvgggg, Czggggv ~ —Cvvzgzu) C»vzvg ~ Cuvzzzg)

C»vga — Cvvvzzg) C»gage Cvuugug) C»guzu Cuvguzu) Cggzggg)

Czgzggu Cggzzzu 0) Cggv gv g —Cgzzxsx) Cgzuggz Cgguggs 0)
Cggguzu) Cvgvggv ~ Cggz«v) Cvzg»v) Czugvzu ~ Cguzvgu ~0 (4

The 24 components odd in x or in y vanish. Symmetries C4a(C4&i
=S4Xi) and $4 are equivalent to Cs.
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For symmetry C&„

Cg. x-+y, ~-x, z~z; y, .x~, y-+x, z-+z, {5)

a. imposes four additional relations among the 16 coefBcients (4}:
Czzzzzy ~ Cyyyyzy p Czzggzy ~ Cyyggzyp Czzyggz Cyyyggz&

Cygygzy Cgzgzzy. (6)

Thus, these 4 coeaicients vanish (Table I}.Symmetries D4&(C4, Xi
=D4)&i~D&&Xi}, D4 and D~ are equivalent to C4..

For symmetry C3,

C:xy yz zx (7)

there are 20 independent coeQicients (Table I),' while for sym-
metry C3„

C3. x~y, y~z, z~x; cr„. x~x, y-+z, z~y, (8}

there are 14, since o, imposes six additional relations among the
coeKcients for C3 (Table I). Symmetries Dsq(C3„)&i~D3)&t) and
D3 are equivalent to C3..

For symmetry T,

C3". x-+y, y~z, z~x; C3" . —x-+y, y—+z, z-+—x, {9}
12 of the coefBcients for C3 vanish (Table I) owing to the addi-
tional relations imposed by C3".Symmetry Tt,= 1')&i is equivalent
to T.

For symmetry Tg,

C&". x-+y, ~z, ~x; C3" '. —x-+y, y~z, z~-x;
ag '. ~x, ~z, z-+y, (10}

only 8 of the relations imposed by C3" are distinct, owing to the
relations imposed by a~. 8 of the 14 independent coefFicients for
C3„vanish (Table I). Symmetries 0&{T&)&i 0)(i) and 0 are
equivalent to Tg.
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ordered structure the cube corners are 61led by aluminum atoms,
but there are insuGicient cobalt atoms to 611 up the cube centers
and the vacancies are not made up by the larger aluminum atoms
to that there is a contraction in the cell dimensions. These va-
cancies have then been considered as a possible source of informa-
tion on the vacancy mechanism of diGusion. Smoluchowski and
Burgess' have raised doubt as to the ability of these vacancies to
play a role in diGusion, due to their relatively small size compared
to the size of an aluminum atom, in connection with an experiment
on nickel-aluminum alloys. Their experiments seemed to uphold
the arguments presented there, in that no increase in the diGusion
coeGicient was found for compositions on the aluminum-rich side
in NiA1.

The arguments raised by Smoluchowski and Burgess are only
applicable to a highly ordered structure and rapidly lose validity
under the experimental conditions at elevated temperatures where
the actual diGusion takes place. At these temperatures there must
exist a considerable degree of disorder permitting vacancy diGu-
sion to take place, where vacancies are distributed in a random
fashion over lattice sites.
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~HERE has been much discussion among the workers in the
6eld of metallic diGusion as to the possibility of using an

a,lloy system such as iron-aluminum, nickel-aluminum or cobalt-
aluminum, near the 6fty-6fty atomic percent composition, to
test the vacancy theory of diGusion, but to our knowledge only one
previous report' on experimental work has been given. FeAls
NiA1 3 and CoA14 are body-centered cubic with ordered structures
at room temperature, aluminum atoms going to cube corners and
the ferrous atoms to cube centers. The lattice spacings at the ideal
composition (50-SO atomic percent} rise to a maximum. On the
cobalt-rich side of the ideal composition (to take a speci6c ex-
ample), the cobalt replaces aluminum, atom for atom, and a fall
in the lattice spacing results from the replacement of large alumi-
num atoms by the smaller cobalt atoms. On the aluminum-rich
side the number of atoms per unit cell is less than two. ' For the

w ~
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Atomic percent Cobalt.

Fic. 1.Values of the diffusion coefficient of cobalt in cobalt-aluminum alloys
as a function of cobalt concentration, at 1250'C.

Even though the ordered structure persists at elevated tempera-
tures where the diGusion experiments were carried out, it seems
highly unlikely, with such a large number of excess vacancies
present, that they would not be of consequence in any process
which took place as a result of vacancies. Even admitting that a
cobalt or aluminum atom could not move into the cobalt vacancy
created, as suggested by Smoluchowski and Burgess, ' the sheer
number of these vacancies would greatly increase the probability
of a vacancy being adjacent to a normal lattice defect {e.g. a
cobalt atom on a cube corner) or to a vacancy due to thermal ex-
citation, and thus increase the mobility of the vacancies and
consequently increase the diGusion coeKcient.

We have investigated the diGusion of cobalt into 6ve-compo-
sitions of cobalt-aluminum alloys near the ideal composition,
using radioactive Co' as the diGusing atom. The experimental
technique used was similar to that employed in our work on self-
diGusion in cobalt. s The diQusion was carried out at three tem-
peratures, 1050'C, 1150'C, and 12$0'C. The preliminary results


