we have the results shown in Table I. It is interesting to note that they fall into a distinct group, i.e., $ft \sim 10^{13}$. In view of this result, one can expect to find some reasons which indicate the interpretation that Sb¹²⁴ is to be classified into the C_{2T} group $(\Delta J = \pm 2,$ parity change no).

TABLE I. ft values of β -decay in the second forbidden transition.* f_{1T} , f_{2T} are the first and second forbidden *f*-functions, respectively (see reference 6); the coulomb corrections are also made.

	t(sec)		$\Delta J = \pm 2$, yes	$\Delta J = \pm 2$, no	
Element		$W_0(mc^2)$	tf1T	tf_{2T}	k
C136	1 × 10 ¹³	2.4	6.1 ×10 ¹²	9.8 ×1013	√ 18
1 C ⁹⁹ Sb ¹²⁴	5 ×10 ¹²	5.5	1.0×10^{10}	2.4×10^{12} 2.4 × 10^{12}	13

* If we take into account the fact that all β -emitters of the "a" type group ($\Delta J = \pm 2$, yes) have $ft = 10^{\circ}$ (see references 7, 9, and 8), it seems more natural to classify Cl³⁰, Tc³⁰, and Sb¹²⁴ into C_{2T} groups ($\Delta J = \pm 2$, no), rather than into "a"-type groups. Theoretically, tf_{2T} should be proportional to $\Sigma |T_{if}|^2$.

In fact, C_{1T} ($\Delta J = \pm 2$, parity change yes) gives an ft value for ⁵¹Sb₇₂¹²⁴ (see Table I) which seems too great to be classified in the 'a" type group, where the corrected ft values are about $10^7 \sim 10^8$ (see Taketani, et al.,⁷ also J. Davidson).⁸ It is interesting to note that the empirical ft values of different transitions, i.e., the allowed $(\int \sigma)$, the first forbidden (ΣB_{ij}) , and the second forbidden (ΣT_{ij}) , fall into distinct groups, i.e., 10^4 , $10^8 \sim 10^9$, and 1012~1013, respectively.9

In conclusion it is suggested that, when carrying out an analysis of β -decay, one can get useful and effective information from the evaluation of corrected *ft* values in addition to the usual analysis of the spectrum shape and the analysis of the selection rule on the basis of the shell model.

¹ C. S. Wu and L. Feldman, Phys. Rev. 82, 457 (1951). The authors are greatly indebted to Professor Wu for sending the manuscript before publication.
² E. J. Konopinski, Revs. Modern Phys. 15, 209 (1943).
³ S. I. Taimuty, Phys. Rev. 81, 461 (1951).
⁴ K. G. Kessler and W. F. Meggers, Phys. Rev. 80, 901 (1950).
⁵ Langer, Moffat, and Price, Phys. Rev. 79, 808 (1950).
⁶ Nakamura, Shima, and Kobayashi, J. Phys. Soc. Japan 4, 166 (1949).
⁷ Taketani, Nakamura, Umezawa, Ono, and Yamaguchi, Phys. Rev. 82, 441 (1951).
⁸ J. Davidson, Phys. Rev. 82, 48 (1951).
⁹ J. Davidson, Nakamura, Ono, and Umezawa, Prog. Theor. Phys. 6, 266 (1951).

(1951).

Third-Order Elastic Coefficients of Crystals

FAUSTO G. FUMI

Institute of Theoretical Physics, University of Milan, Milan, Italy (Received May 21, 1951)

HE independent nonzero third-order elastic coefficients of crystals $C_{pqr} = C_{prq} = C_{qpr}(p, q, r=1, 2, 3, 4, 5, 6)$ (sixthorder polar tensor) have hitherto been known only for cubic groups and for C_{3} .^{1,2} Here they are derived for all the crystal classes S_{2} ; C1h, C2, C2h; C2v, D2, D2h; C4, S4, C4h, C4v, D2d, D4, D4h; C3, S6, C3v; T, T_h , T_d , O, O_h in which one can find orthogonal cartesian coordinates that do not transform into linear combinations of themselves under the symmetry operations of the crystal,³ and for $D_{3d}(C_{3v} \times i$ $= D_3 \times i$) and D_3 , which are equivalent to C_{3v} for polar properties of even order. The numbers of coefficients agree in all cases with those found group-theoretically by Bhagavantam and Suryanarayana² and by Jahn.² The coefficients for symmetry C_3 , T, O, T_h , O_h agree with those given by Birch.¹

For symmetry C_1 the number of independent third-order elastic coefficients equals the numbers of combinations with repetition of class 3 of 8 objects: 8!/5!3!=56. They are listed in Table I. Symmetry $S_2 = C_1 \times i$ is equivalent to C_1 .

For symmetry C_{1h}

$$\sigma_h: x \to x, \quad y \to -y, \quad z \to z, \tag{1}$$

the 24 coefficients with indices odd in y must vanish, since they change sign under σ_h (Table I). Symmetries $C_{2h}(C_{1h} \times i = C_2 \times i)$ and $C_2(C_2 = C_2(y))$ are equivalent to C_{1h} .

For symmetry C_{2v}

 $\sigma_v: x \to -x, y \to y, z \to z; \sigma_v': x \to x, y \to -y, z \to z, (2)$ σ_v requires that the 12 independent nonzero coefficients for C_{1h} with indices odd in x vanish (Table I). Symmetries $D_{2h}(C_{2v} \times i$ $= D_2 \times i$) and D_2 are equivalent to C_{2v} .

TABLE I. Third-order elastic coefficients of crystals.

	Cib. Co.	Cm. Dr.		C3r. D3.	CA. SA.	Car. Dod.		TA. O.
C_{1}, S_{2}	C2h	D2h	C3, S6	D34	C4h	D4, D4h	Τ. Τ.	Ön
XXXXXX	XXXXXX	XXXXXX	XXXXXX	XXXXXX	XXXXXX	XXXXXX	TTTTTT	XXXXXX
xxxxyy	xxxxyy	xxxxyy	xxxxyy	xxxxyy	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	xxxxyy	xxxxyy	xxxxyy
******	0	0	******	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0	0	0	
*****	******	ň	xxxxys	******	ň	ň	ň	ŏ
xxxxxx	0	ň	******	*****	******	ň	ň	ŏ
XXVVVVV	rrvvvv	TTVVVV	TTTT22	TTTTTVV	xxxxxy xxxxvv	rrrrvv	rrrrag	rrrrvv
xxyyyy xxvvzz	xxyyyyy	rryyzz	xxxxx55	XXXXX Y J	TTVV22	TTVV22	TTVV72	rrvvzz
XXVVVZ	0	0	XXVVVZ	XXVVV8	0	0		0
xxvvzx	xxvvzx	ŏ	xxvvzx	XXVVVZ	ŏ	õ	Õ	ŏ
xxvvxv	Ő	Õ	xxvvxv	xxvvxv	Ō	Ō	Ō	Õ
XXZZZZ	xx2222	XXZZZZ	XXXXVV	XXXXVV	XXZZZZ	XXZZZZ	xxxxvv	xxxxvv
XXZZVZ	0	0	XXVVZX	XXVVV3	0	0	0	0
XXZZZX	XXZZZX	Ó	XXVVXV	XXYYXY	0	0	0	Ō
xxzzxy	0	0	xxyyyz	xxyyyz	xxzzxy	0	0	0
xxyzyz	xxyzyz	xxyzyz	xxyzyz	XXYZYZ	xxyzyz	xxyzyz	xxyzyz	xxyzyz
xxyzzx	0	0	xxyzzx	xxyzzx	xxyzzx	0	0	0
xxyzxy	xxyzxy	0	xxyzxy	xxyzzx	Ő	0	0	0
xxzxzx	xx2x2x	xxzxzx	XXXXXX	xxzxzx	xxzxzx	xxzxzx	xxzxzx	xxzxzx
xxzxxy	0	0	xx2xxy	xxzxxy	0	0	0	0
xxxyxy	xxxyxy	xxxyxy	xxxyxy	xxzxzx	xxxyxy	xxxyxy	xxxyxy	xxzxzx
уууууу	уууууу	<i><i><i>уууууу</i></i></i>	xxxxxx	xxxxxx	xxxxxx	xxxxxx	xxxxxx	xxxxxx
<i>yyyyzz</i>	yyyyzz	yyyyzz	xxxxyy	ххххуу	<i>xxxx</i> 23	xxxxzz	xxxxyy	xxxxyy
уууууz	0	0	xxxxxy	xxxxzx	0	0	0	0
yyyyzx	yyyyzx	0	xxxxyz	xxxxyz	0	0	0	0
ууууху	0	0	xxxxzx	xxxxzx	-xxxxxy	0	0	0
yyzzzz	yyzzzz	y yzz3z	xxxxzz	ххххуу	XXZZZZ	XXZZZZ	XXXXZZ	xxxxyy
yyzzyz	0	0	xxyyxy	xxyyxy	0	0	0	0
yyzzzx	yyzzzx	0	xxyyyz	xxyyyz	0	0	0	0
yyzzxy	0	0	xxyyzx	xxyyyz	-xxzzxy	0	0	0
yyyzyz	yyyzyz	yyyzyz	xxxyxy	xx2x2x	xx2x2x	xxzxzx	xxxyxy	XXZXZX
yyyzzx	U	0	xxyzxy	xxyzzx	-xxyzzx	Ŭ V	v v	U O
yyyzxy	yyyzxy	U	xxzxxy	xxzxxy	U	0	0	0
yyzxzx	yyzxzx	yyzxzx	xxyzyz	xxyzyz	xxy2yz	xxyzyz	xxyzyz	xxyzyz
yyzxxy	0	0	xxyzzx	xxyzzx	0	0	0	
ggaggag	992929	yyxyxy	******	112121		xxxyxy	******	******
0000000 8888018	0	100200	******	******	0	000020		
8288 ys	97999 Y	Ň	******	******	Ň	Ň	Ň	ň
888888A	0	ŏ	xxxxxy	******	Ň	ŏ	ŏ	Ň
22V2V2	221/21/2	221212	TYZYZY	rrerer	87112112	221/21/2	rrerer	rrerer
22V22Y	0	0	rrerry	rrerry	0	0	0	0
22922XV	22V2XV	ŏ	TTV22T	TTV22T	ŏ	ŏ	ŏ	ŏ
777171	222x2x	222 X 2 X	xxxvxv	rrarar	88V8V2	221212	rrrvrv	TITIT
327 X X V	0	0	xxv2xv	TTVZZT	~ 0	~~,õ,~	0	0
ZZXVXV	82XVXV	222222	XXV2VZ	XXV2VZ	ZZXVXV	22 <i>x</i> vxv	xxvzvz	xxvzvz
121212	0	0	VEVEVE	VEVEVE	0	0	0	0
YEYEEX	VEVEEX	õ	VZVZZX	VEVEEX	ō	õ	Õ	ŏ
yzyzxy	0	0	YEYEXY	Y2Y22X	VZVZXV	0	0	Ó
yzzxzx	0	0	yzyzxy	yzyzzx	Ŏ	0	0	0
yzzxxy	yzzxxy	yzzxxy	yzzxxy	yzzxxy	yzzxxy	yzzxxy	yzzxxy	yzzxxy
yzxyxy	0	0	yzy22x	yzyzzx	0	0	0	0
EXEXEX	zxzxzx	0	yzyzyz	yzyzyz	0	0	0	0
2X2XXY	0	0	yzyzzx	yzyzzx	— yzyzxy	0	0	0
zxxyxy	zxxyxy	0	yzyzxy	yzyzzx	0	0	0	0
xyxyxy	0	0	yzyzyz	yzyzyz	0	0	0	0

For symmetry C_4

 C_4

$$x \rightarrow y, y \rightarrow -x, z \rightarrow z,$$

(3)

there are 16 independent nonzero coefficients (listed in column 6 of Table I):

 $C_{xxxxxx} = C_{yyyyyy}, \quad C_{xxxxyy} = C_{xxyyyyy}, \quad C_{xxxxxx} = C_{yyyyxx},$ $C_{xzyzzz} = -C_{yyyzzz}, \quad C_{xzzzzz} = C_{yyyzyz}, \quad C_{zzzyzy} = C_{yyzyzy}, \quad C_{zzzzzzy}, \quad C_{zzzyzyz} = C_{yyzyzy}, \quad C_{zzzzzzy} = -C_{zzzzzzz}, \quad C_{zzyzzz} = 0,$ $C_{sexyxy}, \quad C_{yxyxy} = -C_{exsxxy}, \quad C_{yxxxy}, \quad C_{xyxyxy} = -C_{xyxyxy} = 0.$ (4) The 24 components odd in x or in y vanish. Symmetries $C_{4h}(C_4 \times i$ $=S_4 \times i$) and S_4 are equivalent to C_4 .

(7)

For symmetry $C_{4\nu}$,

 $C_4: x \rightarrow y, y \rightarrow -x, z \rightarrow z; \sigma_v: x \rightarrow y, y \rightarrow x, z \rightarrow z,$ (5)

 σ_v imposes four additional relations among the 16 coefficients (4):

 $C_{xxxxxy} = C_{yyyyxy}, \quad C_{xxyyxy} = C_{yyyzxy}, \quad C_{xxyyzx} = C_{yyyzxy},$ $C_{yzyzzy} = C_{zzzzy}.$ (6)

Thus, these 4 coefficients vanish (Table I). Symmetries $D_{4h}(C_{4v} \times i$ $= D_4 \times i = D_{2d} \times i)$, D_4 and D_{2d} are equivalent to C_{4v} .

For symmetry C_{3} ,

$$C_2: x \rightarrow y, y \rightarrow z, z \rightarrow x,$$

there are 20 independent coefficients (Table I),¹ while for symmetry Car.

$$C_3: x \to y, y \to z, z \to x; \sigma_v: x \to x, y \to z, z \to y,$$
 (8)

there are 14, since σ_v imposes six additional relations among the coefficients for C_3 (Table I). Symmetries $D_{3d}(C_{3v} \times i = D_3 \times i)$ and D_3 are equivalent to C_{3v} .

For symmetry T,

$$C_3': x \to y, y \to z, z \to x; C_3'': -x \to y, y \to z, z \to -x, (9)$$

12 of the coefficients for C_3 vanish (Table I) owing to the additional relations imposed by C_{3} ". Symmetry $T_{k} = T \times i$ is equivalent to T.

For symmetry T_d ,

$$\begin{array}{cccc} C_3': x \rightarrow y, & y \rightarrow z, & z \rightarrow x; & C_3'': -x \rightarrow y, & y \rightarrow z, & z \rightarrow -x; \\ & \sigma_d: x \rightarrow x, & y \rightarrow z, & z \rightarrow y, \end{array}$$
(10)

only 8 of the relations imposed by C_3'' are distinct, owing to the relations imposed by σ_d : 8 of the 14 independent coefficients for C_{3v} vanish (Table I). Symmetries $O_h(T_d \times i = 0 \times i)$ and O are equivalent to T_d .

The writer wishes to thank Professor Bhagavantam and Mr. Hearmon for correspondence.

¹ F. Birch, Phys. Rev. **71**, **809** (1947). ³ S. Bhagavantam and D. Suryanarayana, Nature **160**, 750 (1947), have shown group-theoretically that Birch's number of coefficients for symmetry T_d (=8) is in error; the correct number is 6. as was also confirmed by H. A. Jahn, Acta Cryst. 2(1), 30 (1949). This result is actually obvious, even in more complete form, since symmetries T_a . 0, and O_k ($T_d \times i = O \times i$) are equivalent for polar properties of even order. ³ F. G. Fumi, Acta Cryst. (1951), to be published. ⁴ After the writer had undertaken this work, he was informed by private communication that Mr. R. F. S. Hearmon, Physics Section, Forest Products Research Laboratory, England, had been applying to the third-order elastic tensor the direct method described in C. E. Love, *The Mathe-matical Theory of Elasticity* (Cambridge University Press, London 1927), Chapter VI.

Experimental Evidence for the Vacancy Mechanism in Diffusion in Metals and Alloys*

FOSTER C. NIX AND FRANK E. JAUMOT, JR.† Randal Morgan Laboratory of Physics, University of Pennsylvania, Philadelphia, Pennsylvania (Received July 25, 1951)

HERE has been much discussion among the workers in the field of metallic diffusion as to the possibility of using an alloy system such as iron-aluminum, nickel-aluminum or cobaltaluminum, near the fifty-fifty atomic percent composition, to test the vacancy theory of diffusion, but to our knowledge only one previous report¹ on experimental work has been given. FeAl,² NiAl,3 and CoAl4 are body-centered cubic with ordered structures at room temperature, aluminum atoms going to cube corners and the ferrous atoms to cube centers. The lattice spacings at the ideal composition (50-50 atomic percent) rise to a maximum. On the cobalt-rich side of the ideal composition (to take a specific example), the cobalt replaces aluminum, atom for atom, and a fall in the lattice spacing results from the replacement of large aluminum atoms by the smaller cobalt atoms. On the aluminum-rich side the number of atoms per unit cell is less than two.⁴ For the

ordered structure the cube corners are filled by aluminum atoms, but there are insufficient cobalt atoms to fill up the cube centers and the vacancies are not made up by the larger aluminum atoms to that there is a contraction in the cell dimensions. These vacancies have then been considered as a possible source of information on the vacancy mechanism of diffusion. Smoluchowski and Burgess¹ have raised doubt as to the ability of these vacancies to play a role in diffusion, due to their relatively small size compared to the size of an aluminum atom, in connection with an experiment on nickel-aluminum alloys. Their experiments seemed to uphold the arguments presented there, in that no increase in the diffusion coefficient was found for compositions on the aluminum-rich side in NiAl.

The arguments raised by Smoluchowski and Burgess are only applicable to a highly ordered structure and rapidly lose validity under the experimental conditions at elevated temperatures where the actual diffusion takes place. At these temperatures there must exist a considerable degree of disorder permitting vacancy diffusion to take place, where vacancies are distributed in a random fashion over lattice sites.

FIG. 1. Values of the diffusion coefficient of cobalt in cobalt-aluminum alloys as a function of cobalt concentration, at 1250°C.

Even though the ordered structure persists at elevated temperatures where the diffusion experiments were carried out, it seems highly unlikely, with such a large number of excess vacancies present, that they would not be of consequence in any process which took place as a result of vacancies. Even admitting that a cobalt or aluminum atom could not move into the cobalt vacancy created, as suggested by Smoluchowski and Burgess,1 the sheer number of these vacancies would greatly increase the probability of a vacancy being adjacent to a normal lattice defect (e.g. a cobalt atom on a cube corner) or to a vacancy due to thermal excitation, and thus increase the mobility of the vacancies and consequently increase the diffusion coefficient.

We have investigated the diffusion of cobalt into five compositions of cobalt-aluminum alloys near the ideal composition, using radioactive Co⁶⁰ as the diffusing atom. The experimental technique used was similar to that employed in our work on selfdiffusion in cobalt.⁵ The diffusion was carried out at three temperatures, 1050°C, 1150°C, and 1250°C. The preliminary results