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Fredholm Structures in Positron Theory*
MauriCE NEUMAN

Brookhaven National Laboratory, Upton, Long Island, New York
(Received August 2, 1951)

HE integral equation for the matter field in positron theory—
the theory of a quantized Dirac field interacting with a given
external electromagnetic field—

V() =pa@)+e [ KX (e @)y’ )

was investigated from the point of view of the Fredholm method.!
The symbol KF is defined as

KaﬁF(xxl)EisawF(xx’)'Ycﬁ“A“(x,)y (2)

where SF(x) is the well-known Feynman propagation function. It
was found that the Fredholm determinant Dy(e) derived from (2)
is equal to the vacuum expectation value of the Heisenberg
S-operator. A set of operators Ao(e), Ai(e), - -An(e)- -+ [where
Ao(e) = Dy(e) ], whose matrix elements (x122° « - 20| An(e) | y1y2° * * yn)
are determinantal representations of the nth particle parts of the
S matrix, was also constructed. The set of operators {A.(e)} is
isomorphic to a set of operators {D.(e)} whose matrix elements
(21%2+ + *%n| Dn(€) | 9192 - -yn) are the nth Fredholm minors con-
structed on KF. The set {A,(¢)} has many but not all of the
functional properties of {Dn(e)}. The situation is somewhat similar
to that obtaining between an ordinary exponential function and
the chronologically ordered exponential of Dyson.

The properties of {Dn(¢)} have been extensively investigated
in classical analysis. One can therefore utilize the isomorphism
between {A,(e)} and {D,(e)} to construct various representations
of (S)n. The determinantal representation of {A.(e)} are interest-
ing in so far as they clearly exhibit the operation of the exclusion
principle for real and virtual particles.

We shall illustrate the method by considering the somewhat
trivial case of Ao(e) where the isomorphism degenerates into an
equality Ao(e) =Dq(e).

We write

H=1eT (Ya(x)pa(*)). 3)
Here T is the ordering operator of Wick?
T(Ya(2) Pa(r')) = 6(x0— x"°)Ya (%) a(a’) — B(x"0— 2°) (2" )¥a(%) ; (4)
6(x) is the usual step function: 8(|x|)=1, 8(— |x|)=0 for x>0;
8(0) =4%. The letter ¢po(x) stands for Yg(x) ysa"A*(x). We also have
(T(Yalx)pp(x"))o= —iKap (xx'). 5)
(S)o may then be written as

(S)o= % [T (—ie) T (X 1) (X 1) - - - ¥ (X ) (X ) Do,  (6)

where Y(X1) =Y (*1), $(X1) = dany(#1) and all the repeated vari-
ables and indices are integrated and summed over, respectively.
The convention 6(0) =4 in the definition (4) guarantees the charge
symmetry of Eq. (6). Wick’s theorem? and Eq. (5) yield

(T (XD)é(X1) - - - Y (Xn)d(Xn) Do
=(—d)re®D IMEF (X1 Xiw) - - - KF (X nXiw), (7)
and, consequently,
(S)o=Do(e). (8)

Having established contact with the Fredholm theory, we may
now exploit the known properties of Dy(e) to find another repre-
sentation for (S)o. The integral equation for f(x),

f=fot+AKf, )
is solved in the Fredholm theory by
Jo=f—=NDo(N) IDi(N) fo. (10)
Moreover,? we have
Tr Di(\)=—Dq¢'(N), 11)
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where the prime denotes differentiation with respect to the ar-

gument. Comparing (10) with the Liouville-Neumann solution,
fo=f—=A[1=AKT'Kfo, (12)

and making use of Eq. (11) and of Do(0) =1, we immediately de-

duce the expressions

Do(\) =exp[Tr log(1—2K)],

Di(\)=K[1—-AKT exp[Tr log(1—2K)]

(13)
=K exp[i nIN(K"—Tr K™)]
n=1

=K TI exp[n-\"(K"—Tr K77, (14)
n=1

For (S)o we get
(S)o=exp[Tr log(1—eK¥)]. 15)

Expression (15) could be derived more simply by an elegant
method due to Glauber,* but the connection with the Fredholm
theory is then somewhat obscured.

The author is grateful to Dr. E. J. Kelly and Dr. H. S. Snyder

for many discussions and criticisms.

* Research carried out at Brookhaven National Laboratory, under the
auspices of the AEC.
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Isotope Shift in the Spectrum of Os I
and the Magnetic Moment of Os!®

S. Suwa
Institute of Science and Technology, Komaba, Meguro-ku, Tokyo, Japan
(Received July 23, 1951)

N order to determine the ratio of the distances between the
components due to even isotopes in the spectrum of osmium
and the magnetic moment of Os!®, the hyperfine structure (hfs)
of OsI' was studied, using a water-cooled hollow cathode dis-
charge tube and a Fabry-Perot etalon.

The hfs of any clearly resolved line was found to consist of six
components. Four of them, which are spaced equidistantly to a
rough approximation, are due to the even isotopes (186, 188, 190,
192), and the remaining two are due to the odd isotope 189. The
number of components due to Os!® in each line and their intensity
ratio were found to be in harmony with the assumption of the
nuclear spin 4. Kawada? had previously shown that Os!8® might
have probably a spin of }.

The result of the measurements is given in Table I. In each

TaBLE 1. Displacement effect of the even osmium isotopes and the splitting
of Os!8 in the spectrum of Os I (in unit of 1073 cm™1),

Even isotopes Os!8e
Av Av Ay Doublet
NA) Combinations (186-188) (188-190) (190-192) distance
4794 d¢s23D3 —d%sp "Ds 51.4 48.7 236
4447 (14)5 —(53)s 100.3 95.2 see
4420 dss2 8Dy —dsp "Dy 67 57.5 55.4 350
4261 dss28Dy —dssp "Ds 67 64.5 58.8 538
4135 ds? 8Dy —d%sp TPy 58 54.4 47.9 333
4112 d%s25D1 —(36)2 58.4 55.6 ..
3876 (9)4—(53)s ~100 87.0 84.4 see
3752 dsst D3 —(35)s? 51 49 3n
Mean ratio 1.1s 1.05 1

» See reference 1.

line listed the heavier isotopes have greater wavelength, as ex-
pected from the indicated electron configuration of the terms. The



LETTERS TO

ratio Av(186-188):A»(188-190):A»(190-192) can be regarded as
constant within experimental error for all lines except A4135,
whose structure was possibly disturbed by the overlapping of
another line of the combination (13);-(60),, though this was not
well confirmed. The mean value of the ratio, excluding N4135, is
given in the last row of Table I. This ratio is not in agreement with
the measurements of Kawada;? but the present investigation
might be considered the more accurate, owing to the improved
resolving power of the spectroscopic apparatus.

The ratios of the isotopic displacements of even isotopes in the
heavy elements with even atomic number Z(Z=74—82), are
summarized in Table II. The magnitude of the shift decreases as

TasLE II. Ratio of spacings between consecutive even
isotopes in heavy elements.

Z\N 126 -

124 - 122 - 120 - 118 - 116

Pbab 82 1 0.90

Hgs 80 1 : 099 : 088

Pte 78 1 : 097
Z\N 116 - 114 - 112 - 110 - 108 - 106

0s 716 1 105 : 1.1s

Wi 74 1 113 : 1.02

Murakawa and S. Suwa, J. Phys. Soc. Japan 5, 429 (1950); 5, 382
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¢ S, Tolansky and E. Lee, Proc. Roy. Soc. (London) A158, 110 (1937).
4 J. A. Vreeland and K. Murakawa, Phys. Rev. 83, 229 (1951).

the neutron number N decreases from N =126 to 116, increases
from N=116 to 108, and again begins to decrease from N =108.
This indicates a variation in the effect caused by adding two neu-
trons to a nucleus.

The magnetic moment of Os!# can be calculated from the hfs of
4420 and M261 (see Table I). Neglecting any splitting of the
final term d%s? 5D, of Os!89, the coupling constant of the 6s electron,
a(6s), was found to be 0.79 cm™. Putting this value and =4} into
the well-known Goudsmit-Fermi-Segre formula,

u(0s'%) = 40.6+0.1 nm

was obtained.
The writer wishes to express his sincere thanks to Professor K.
Murakawa for his kind guidance in this work.
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Quantum Corrections to Transport Properties
at High Temperatures
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N the quantum theory of transport phenomena' the following

formulas are given in Boltzmann statistics for the “cross
sections,” ¢® for diffusion, thermal diffusion, and viscosity of
mixtures, and ¢® for viscosity and thermal conductivity :

0 =3 Z (+1) sin’(mai=n0), (1a)
2 I+1)(+2) .
o (g) = g 2 S—(—le4(—_3)——s n%(nip2—m), (1b)

in which 2= ug/k, p and g are the reduced mass and the initial
relative velocity of a pair of colliding molecules, and n(k) is the
phase-shift corresponding to the orbital quantum number, /.
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At very low temperatures formulas analogous to Eq. (1b), written
for Fermi-Dirac and Bose-Einstein statistics, have been used for
the calculation of the viscosity of the light and heavy isotopes of
helium? 3 and for light and heavy hydrogen,* by numerical evalua-
tion of the phase shifts. At higher temperatures this method is
not feasible because of the large number of phase-shifts required.
Consequently, it is important that another method of attack be
developed for those temperatures for which the deviations from
classical behavior are small.

In this temperature region we have succeeded in expressing the
cross sections (and hence all of the transport coefficients) as power
series in Planck’s constant ; this was accomplished by using Kahn’s®
expressions for the phase shifts, which are derived from the
W.K.B. method:

mk) =n!k)+mt k) +-- -, )
2l (B) = (/2)bk— krm+ f:’ [(1—F)t—17dr, (2a)

m”(k)=(7r/16bk)-(1/24k)J::[(F’"/F')
—(F"/F)*][1—-FJ%dr, (2b)

in which the variable, b, defined by A%(l+1)=pu2g%?, has been
introduced; rm is the distance of closest approach in a collision;
F(ry=[e(r)/(3ug?) ]+[b%/r?], F'=dF/dr, etc., and ¢(r) is the
intermolecular potential function.

The differences in the phase-shifts which occur in Egs. (la)
and (1b) can be expressed in terms of the various derivatives of »;
with respect to b, with the result that

[nen—m]=3x+10x'(B/ ugb)

+s[x—v+by'+(4/3)b2x" J(h/ugh)*+0(h3), (3a)
[neva—m]=x+bx'(h/ugb)

+i0x—y+by'+(16/3)b%x" J(h/ugh)*+0(h%), (3b)

in which the primes on x and ¢ indicate differentiation with re-
spect to b; x, defined as (2/k)(9n?/db), or

x(b, g)=7—2b f" [1—FTY2dr,

is the classical angle of deflection, and ¢ =16bkn’! or
Y(b, g)=n—3b J;ﬂ [(F"/F)—(F"/F)*][1—F]%dr. (4b)

The final expressions for the cross sections may be obtained by
substituting Eqs (3a, b) into Egs. (1a, b), developing sin(ni4n—m)
in a power series in (%/ugb), and transforming the summation over

mto an integration over b [using di= db(ug/h) {1 —3(h/ugh)?

--}J. The first term, proportional to A9, is the classical expres-
sion for ¢(™. The terms proportional to odd powers of # may be
seen to vanish by partial integrations; we may finally write

(4a)

™ = o™+ pqu™ 5)
where
s =g [ [1—cos"xbdb, (52)
aw®=(/8ug) [ [x—y-+by/
+3btx"] sinx(db/b)+0(h), (5b)
ban® = (1/8u%) [ {Ix—v+bv/
+(4/3)btx" ] sin2x—sinx} (db/b)+O(Y).  (5c)

Chapman and Cowling! have shown that the transport proper-
ties may be expressed directly in terms of a set of quantities,
Q") (s), which are functions of the temperature and are defined in
terms of the quantities ¢ calculated above:

2m(s) =t [ exp(—y) iy, ©)

where v2=ug?/2«T, k being Boltzmann’s constant. Consequently,
substitution of the expression (5) into Eq. (6) leads to a series
development of each of the transport coefficients in a series of
powers of h2/uxT, the coefficients of which are functions of T and



