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Quantum Statistics of Fields
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Gibbs' theory of ensembles of classical mechanical systems has been modified for the application to
quantum-mechanical systems by Klein. In this paper, the formalism of the latter author is applied to
hamiltonians of di8erent types of Geld theories and thus a consistent theory of Geld thermodynamics is
obtained without explicitly referring to the statistical behavior of particles that are "contained" in the
Gelds. Speaking in terms of particles, the thermodynamics obtained in this way is the same as for a me-
chanical system where only the temperature is known, but no other conditions such as the number of par-
ticles, the total charge, etc.

Specifically, the thermodynamic functions of the nonrelativistic and relativistic Schrodinger Gelds,
Dirac s electron Geld, and the electromagnetic field are deduced. The statistics of the nonrelativistic Gelds
correspond to ordinary Bose and Fermi statistics of an ensemble of identical particles; the relativistic cases,
however, yield new expressions. The thermal equilibrium at low temperatures of the Dirac electron Geld
turns out to be the "vacuum" state as described in the hole theory. Finally, it is also shown that the applica-
tion of the present formalism to the electromagnetic Geld leads back to Planck's radiation theory.

L INTRODUCTION

N connection with the present dd5culties in quantum'. theory of fields it occurred to us that one source of
trouble may be that no distinction is made between the
positive and negative directions of the time axis. To any
nonphysicist it would hardly seem justified to assume
equivalence of past and future. Somehow the arrow
of the time axis should be inferred into our physical
laws. In ordinary mechanics this inference of the time-
arrow is obtained by the passage to thermodynamics by
means of statistics. Thus it seems to us that statistical
methods might shed some light onto the significance of
some of the difhculties encountered in present 6eld
theories.

The application of statistical mechanics to 6eld
theories has been tried before. Thus it is known that
Planck applied statistics to the electromagnetic field
which led him to the discovery of quantum mechanics
in 1900. It is also known that Debye' found another
deduction of Planck's radiation theory which does not
use the equilibrium of the 6eld with other systems.

However, it appears to us that all these previous in-
vestigations are somehow inconsistent in their methods.
Planck used "resonators" which are supposed to be in
thermal equjtlibrium with the radiation 6eld, and then
applied statistical mechanics to an ensemble of such
resonators. Debye' applied a phenomenological method
of counting nodes of waves in a given volume. Similarly,
in all more modern treatments of the quantum sta-
tistics af "6elds, "one 6rst quantizes the 6eld and then
applies statistics to the particles, the prescriptions for
the statistical "weight" of the con6gurations of the
particles being deduced from the degeneracy of the
state of the corresponding 6eld. In such a way it is
possible to explain the behavior of certain types of
particles at certain temperatures (see e.g., Schrsdinger's'

' See, for instance, IIandbuck d. Physik (Geiger-Scheel), vol. 24,
1, p. 9.' E. Schrodinger, Statistical Theresodyna~ics (Cambridge Uni-
versity Press, London, 1946}.

monograph). The thermodynamics of the particles,
then, is thought to be identical with the thermodynamics
of the corresponding 6eld. This is, however, somewhat
questionable, since the interpretation of a 6eld theory
as a particle theory can be obtained only by renorma-
lizing infinite terms in the expressions for the energy,
etc. , and it is by no means evident o priori that these
renormalizations are the same in a quantum statistics
of fields.

On the other hand, it is well known that one has
definite prescriptions for dealing with the statistics of
ensembles of systems. In classical mechanics one can
define a canonical ensemble of systems; then the ther-
modynamic functions are found by a method devised
by Gibbs (see reference 2). The modi6cations of Gibbs'
scheme which are necessary in quantum mechanics have
been found by Klein. ' These remarks show that one
actually has all the means for a straightforward appli-
cation of statistics to any field theory; but, as far as we
know, the problem has never been treated in this direct
way. An attempt has been made recently by Kaempft'er, '
who tried to deduce the behavior of an ensemble of
identical particles from a wave theory. However, his
results were not obtained by a consistent application of
quantum statistics to the wave field, but rather by
phenomenological methods of counting nodes of waves
or the like, analogous to the procedures of Debye. '

Thus it seems desirable ta attempt a consistent
quantum statistical treatment of various wave 6elds, s

such as the nonrelativistic and relativistic Schrodinger
fields, Dirac's electron field, and the electromagnetic
fieM. In the present paper we shall confine ourselves to
vacuum 6eMs. Speaking in terms of particles, this means
that we shall consider systems where only the tempera-
ture is known, but no other additional conditions such
as the total number of particles, the total charge, etc.

'0. Klein, Z. Physik i2, 767 (1931).' F. KaempHer, Z. Physik 125, 487 (1949).
~G. %entze1, Einf@hrung iw die Quantentkeorie der Wdlen-

fefder (Deuticke, Wien, 1943).
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The question to which physical situations these
premises and thus the results are applicable is here of
minor importance. Our principal aim is to follow all the
statistical consequences of those theories which are
commonly used to describe some of the elementary
6elds; up to the bitter contradiction with physical pos-
sibilities, if necessary.

The structure of the present 6eld theories is such that
there is a hamiltonian for each of the vacuum fields
known. Then, difkrent vacuum 6elds are linked to-
gether in a rather arbitrary and tentative way by
assuming interaction terms. Thus it seems to us that
the 6rst obvious thing to do is to consider the vacuum
6elds alone, especially since the general theory permits
the existence of such vacuum 6elds. The extension of
the present formalism to the interaction of diferent
6elds is the object of further investigations which we
hope to present in a future publication.

Z= J' exp( —BH)dfqd~P. (2.2)

%ith the knowledge of Z, one can 6nd all the thermo-
dynamic functions of the ensemble, namely, the Helm-
holtz free energy F

F= —B ' logZ = —B-'
log~ exp( —BB)d~pdfq (2.3)

the temperature T

and the entropy
T=1/kB (2.4)

(2.5)

The modi6cations which have to be made in these
formulas if one is dealing with quantum-mechanical
systems, have been set up by Klein. ' It is seen that one
has to replace P by Neumann's density matrix P, which
is de6ned as follows:

(P).„=c.c„*, (2.6a)

if a certain state of the system in an ensemble is given
by P (f is normalized)

IL GENERAL THEORY

%'e summarize 6rst the principles of Gibbs' statistical
mechanics as applied to an ensemble of arbitrary
mechanical systems. If H(p~, q~) denotes the hamil-
tonian of the systems concerned, then one can de6ne
a canonical ensemble as follows:

P= (1/Z) exp( —BB). (2.1)

Here Pd~Pdrq is the probability of finding the system
with coordinates between q; and q,+dq; and momenta
between p, and p;+dp;. The partition function is given
by

Z= trace exp( —BH), (2.8)

F= —B ~ logZ= —(1/B) log trace exp( —BH), (2.9)

T= 1/kB, (2.10)

S= —BF/BT= kT tra—ceP logP. (2.11)

The next step is to apply our scheme to a 6eld theory.
It is known that in all cases of interest one can find a
diagonal representation for the hamiltonian, and thus
it will be particularly easy to set up the quantum sta-
tistics of fields by means of Eqs. (2.8)-(2.11).

GI. THE NONRELATIVISTIC SCHRODINGER FIELD

As a 6rst example, we treat the nonrelativistic
Schrodinger 6eld. The 6eld equation is

jp
ihf=-

2m
(3.1)

It may be represented in the hamiltonian form as
follows (see Schilf, ' Sec. 46):

g =jhp*p grad/—*grad|p,
2m

(3.2)

ik
K= — grads grad|k.2' (3.3)

The total hamiltonian may be written as the following
symbolic sum in a diagonal matrix representation:

H=gx Nx&x, (3.4)

E~ being the eigenvalues of the one-particle Schrodinger
equation. N& has diagonal elements Xz ranging from
0 to infinity in integer steps. For particles in a box (a
"periodicity cube" of volume V) one has

Fx=p2/2~= k~~2/2~. (3.5)

Having the eigenvalues of the hamiltonian, we may
now consider an ensemble of such 6elds and de6ne the
Neumann density matrix as

P= (1/Z) exp( —BH). (3.6)

The important quantity Z, the partition function, is

where the v's are the eigenfunctions of the hamiltonian.
The formulas (2.1) to (2.5) all remain valid if the
integrations are replaced by the traces of the matrices
which occur as integrands. Thus we have for a canonical
ensemble

P = (1/Z) exp( —BH); A = tracePA, (2.7)

where A denotes an arbitrary observable and 2 its
expectation value in the ensemble (matrices are denoted
by faced types). Furthermore, we have

f=P c's*. (2.6b)
«L. I. Schi6', Qscantgm Mechanics (Mcoraw-Hill Book Com-

pany, Inc. , New York, 1949).



QUAN TU M S'I'ATISTI CS OF F I EL DS

then Incidentally, the values of the above integrals are~

or

Z= trace exp( —PH) =g exp( —i1 P ExLx) (3.7) (23.m)"' 1
(kT)'" Q

h' n 1 g5/2
(3.15)

logZ= P log P exp( Nr—cL'x/kT)
K 0

= —Pic log{ 1—exp( —Err/kT) } (3.8)

5 5 (2+m)'/2 1
P/2T3/2 Q

V 2 h' n=l ~5/2
(3.16)

%e wish to replace the sum in the above expression
by an integral. In the periodicity cube, E is restricted
to the values given by

E'= (2 x)'L '{n '+n '+n '} (3.9)

where rs„e„,n, are all integers or zero, and I.' the volume
of the cube. Thus, except for surface terms which may
be neglected with respect to the volume terms as
E-space becomes continuous, each E has associated
with it a volume of E-space

d'E= (2x)'/L'= (2vr)'/ V. (3.10)

Hcllce wc obtain

(1/V) logZ=

E 3 (2mm)'/' 1
(kT)" P

V 2 h' n=i g.5/2
(3.17)

L= i LxdE(K),
J

(3.18)

in which

d/V(k)/V=-'~ 'K'dK/{exp(k'K'/2mkT) —1} (3,19)

These expressions check with those obtained earlier by
KaempGer4 by his more phenomenological methods.

The formulas (3.15) to (3.17) hold for all tempera-
tures. This corresponds, thus, to an Einstein-Bose gas
where there are an in6nite number of particles available
in a reservoir without kinetic energy. Obviously, one
may interprete Eq. (3.14) as (Stieltjes' integral)

or else, since E~ depends only on K',

—(2x) ", log{1—exp( —L/c/kl')}d"E (3.11) is the number of "particles" per unit volume between
K and A+dE. Thus, the number of particles which are
energized and thus "contained" in the field is

f'/V= (2n) 'kTJ log{1—exp( —'OE'/2mk7) }4~ÃdK

(3.12)

5/ V= —(2x')- 'k
~

log { 1exp( fi—'h'/2m—k 7''-) }4. 7/A'dE.
k2K21 1

+ 4+E'dE, (3.13)
(2w)' T &0 2 m{ex p(

O' E' /2mkT) —1 }

O2Ã2E 1 " 1
4m E'dE. (3.14)

V (2s) Jo 2m exp(k E /2mkT) —1

These integrals can be computed. Actually, they are
similar to the expressions which one obtains for the
statistics of Einstein-Bose particles. The reason for this
is, of course, that the nonrelativistic Schrodinger 6eld
is fully equivalent to a system of oscillators with sym-
metric states. Thus it is seen that a straightforward
application of quantum statistics to the 6eld is equiva-
lent in the present case to an application of Bose
statistics to the particles "contained" in the 6eld. This
is not quite the same thing as concluding that the par-
ticles "contained" in such a 6eld must obey Bose
statistics. Heretofore, statistics have been applied only
to the particles, never to the field (except for the paper
of Kaempffer'); only the symmetry properties for the
eigenfunctions of the particles have been inferred from
the quantum theory of Gelds.

(2n.m)& 1
(ET)l P—

V h' n=i g~
(3.20)

which again corresponds to the formula for an Einstein-
Bose gas.

IV. THE SCHRODINGER-GORDON FIELD

The relativistic generalization of the case treated in
the last section is the Schrodinger-Gordon field. Each
field variable satisfies the equation (Wentzel, ' p. 29)

( —/')4 =0 (4.1)

The lagrangian and the hamiltonian turn out as
follows (Wentzel, ' p. 29):

L= -,' (P' c'{grad/ }
' —c'/i'P ')d'x— '-

{x'+ c'
~
grad/

~

'+ c'-/i'if'} d"x,
4

(4 3)

2 E{pK px+/dK /7K /fK} ) (4 4)

' C. D. McKay, "Thermodynamics of fields, " thesis, Queeg's
University Library, Kingston, 1951.

The total number of particles is thus not an independent
variable.

gr and f being regarded as canonical variables. In
momentum space representation, one finds the hamil-
tonian
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2 c2(~2+ E2) (4.5)

For px, qx, H a matrix representation can be found
(Wentzel, ' p. 34); the eigenvalues of H turn out to be

(H)xxxrc ... Px——h(Nx+ 1)idx . (4.6)

Thus, in the representation where H is a diagonal
matrix, we can again define the Neumann density
matrix by (3.6) and the partition function Z now
becomes

Z= P exp( —aHivx) =P exp{—P 8hcox(Nx+-', ) I
N~ K

=gx exp( ——,'8hcdx)/I1 ex—p( H—iidx) }. (4.7)

27 kT
X 1+——+

8n mc'
(4.15)

The total number of particles "contained" in the field
at a given temperature is, similarly to (3.19),

S (2x.m)~' ~ i 1 ( mc')
k"'T'" P ' expl —n

V h' ~=i ln312 4 kT )
35 k'1

X 1+— +, (4.14)
8n mc'

I' (2mm)~~'
t 1 t mc')

(kTl"'mc' -P ' — - expl n—
V k3 a=i ln'i' 0 kT j

Thus logZ, which alone enters into the thermodynamic
functions, becomes

logZ= —gx log[1 —exp( —i7h&ax) I
—~i8 gx hco». (4.8)

As in the last section, the sum is replaced by an
integral by means of (3.10), whence we obtain

(2n.m)'" ~ 1 ( mc'q
(kT)'n P exp

V h' n" ( kTJ
15 kT

X 1+— +".
8n mc'

(4.16)

(1/V) logZ= —(2 ) ' t flog(1 —exp( —Ph )]
+,'ehidx jd'E-(4.9)

or else, since co~ depends only on E',

F/V = (2')—'kTJ" log{1 exp( h(ox/—kT) I4—ice'dE,

(4.10)

S/V= —(2ir) 'k logI1 exp( hcox—/kT) j4—mE'dE

+ 4''dE, (4.11)
(2ir)' & kT exp(h(ax/kT) —1

E 1 f

IEGER~

— 4+E'dE.
V (2w)' ~ exp(hex/kT) —1

(4.12)

15 kT
X 1+—— +. , (4.13)

Sn mc'

Herein, the last term of (4.9) has been dropped, since,
although it is in6nite, it is independent of the tem-
perature (if multiplied by kT) and just gives rise to an
infinite zero-point energy. Thus we need indeed the
saute renormalization as in the interpretation of a single
6eld as an ensemble of particles.

The integrals can be computed; they lead to series
of hankel functions of the argument (nmc'/kT) which
is usually very large. Hence the hankel functions may
be replaced by their asymptotic expansions, and one
obtains finally~

P (2sm)"' t 1 t' mc"
(kT)'" Q l expl n—,

V h' kT&

X=10 's9~'"' cm '. (4.17)

One may object that one cannot speak of the disin-

tegration of the mesons without considering their decay
products. However, it should be kept in mind that the
mesons, in the present formalism, are annihilated and
do not decay into other particles. This is a consequence
of the Schrodinger-Gordon equation. Therefore, if
certain particles in nature do not disintegrate but only
disappear into an unobservable state when the tempera-

It is an interesting observation that, in the present
case, one cannot obtain the formulas of Sec. III by
letting c approach in6nity. Thus, the statistics of the
Schrodinger-Gordon field is quite different from that one
of the nonrelativistic field. In the particle-picture, one
can interpret Eqs. (4.13)—(4.16) as an expression of the
fact that the number of existing particles is in thermal
equilibrium with the surroundings. If the temperature
is raised, then the kinetic energy of the particles already
present in the 6eld is raised, in addition to more par-
ticles being created. Thus, part of the thermal energy
is contained in the rest mass of the particles. It is only
natural that the nonrelativistic equations cannot
describe such a case. There, in the particle-picture the
particles are assumed to be already created and to be
only raised from an "unobservable" state without

any kinetic energy into a state which is observable.
Since the Schrodinger-Gordon equation is supposed

to hold for mesons, one should expect that Eqs. (4.13)
to (4.16) are valid for the meson field. The number of
mesons present per unit volume should be in thermal
equilibrium with the surroundings according to (4.16);
if the temperature is lowered, the mesons must disin-

tegrate and not merely disappear into an "unob-
servable" state. At room temperature (68'F) the meson

density is very small (for p-mesons):
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ture is lowered, one should note that the Schrodinger-
Gordon equation cannot be the right equation for them;
or else one has to invent some explanation why more
mesons are present than are given by Eq. (4.1/). We are
grateful to Professor Schrodinger for suggesting that
one might get such an explanation by saying that the
mesons do not disintegrate, but are absorbed by the
nucleons. The nucleons themselves are certainly not in
thermal equilibrium. There are much too many of them
left. Unless one considers the transformation of nucleons
into electromagnetic radiation impossible, one must be
astonished. that there is so much matter with rest mass
/0 left in the universe, and one must regard it as a
relic of 2 or 3 billion years ago that has not yet reached
equilibrium.

Finally, we could perhaps remark that in this section,
too, the counting prescriptions of Einstein and Bose
hold, for the X~'s run from 0 to ~ and each combination
is enumerated just once. Nevertheless, the thermo-
dynamic functions are quite diferent from those in
ordinary Bose statistics.

V. SPINOR FIELDS

In this section we shall treat GeMs "containing" par-
ticles which obey the exclusion principle.

The nonrelatieistic case for such 6elds is obtained by
taking the ordinary Schrodinger equation (3.1), but
assuming anticommutation, rather than commutation,
rules for P and its conjugate. This leaves the matrix
representation (3.4) for H unchanged, but the matrix
Ng has now the form

logZ= P», log {1+(exp —8E»,) }

and the thermodynamic functions

(5.10)

F= —kT logZ
kT P», l—og {1+exp( E»,/kT) —}, (5.11)

5= k P», {(E»,/kT)/[exp(E», /kT)+1]
+logL1+exp( —E»,/kT) j}, (5.12)

E=P», E»,/{exp(E»./kT)+1}. (5.13)

If we set

it follows that
E=Q N(K, s)E»„ (5.14)

some particles are lifted out of an inGnite reservoir with
no kinetic energy.

More interesting is the relativistic case. The hamil-
tonian of the quantized Dirac equation is in a suitable
matrix representation (Wentzel, ' p. 162; Schiff, ' p. 352)

H=Z N», E». (5.7)
Xy8

with N», as given by (5.1). The eigenvalues E», of the
Dirac equation are (Schiff, ' p. 351)

E»,=+(k c K +m c4)& for s=1, 2, (5.8a)

E».= (k'c'—K'+ nPc') & for s= 3, 4 (5.8b)

and thus may be positive or negative.
Thus we can Gnd the partition function Z:

Z=Q~» exp( —8Q», N», E»,)
=g», {1+(exp —8E»,) } (5.9)

and

pO Oy

&0 ~)

Hence, the partition function Z becomes

Z= trace exp( —88)= P exp( —0 g» N»E»)
%~~0,1

and

logZ= Q» log Qx» exp( N»E»/kT)—
=P» log{ 1+exp(—E»/kT) },

(5 1)

(5 2)

(5 3) (5.16)
i E», i))kT

N(E, s) =1/{exp(E»,/kT)+1}. (5.15)

Thus, so far, the thermodynamic functions are the
same as in the nonrelativistic case for electrons, except
for the summation over s which arises from the spin
of the particles.

However, we observed that now half of the eigen-
values EE., are negative, whereas heretofore the energy
eigenvalues have always been positive. For low tem-
peratures such that

which differs from (3.8) only in some signs. The eigen-
values E» are given by (3.5), as before. In a similar way
to Sec. III one can proceed to calculate the thermo-
dynamic functions and obtains the following expressions
as for a Fermi-Dirac gas:

F/V = —(2svs)"'k (kT)"' P {(—1)"+'/e"'} (5 4)

S/V=(5/2)(2sns)~~'k~k5"T'/'P{( 1)"+'/e"—'}, (5.5)

E/V= (3/2)(2sm)~~'k~(kT)5~' P {( 1)"+'/N'~—'} (5.6).
Thus the particle-picture of such a GeM corresponds

to that one of the nonrelativistic Schrodinger Geld;
except that for the particles, Fermi instead of Bose
statistics is applied. Again, by raising the temperature,

we obtain in the particle-picture that

N(E, s)—1 (5.17)

for all negative energy eigenvalues. This means that in
thermal equilibrium at low temperatures all the negative
energy states are occupied. Thus we obtain that the
"normal" state of the Geld at low temperatures is
exactly the vacuum state as postulated by Dirac in his
hole theory, which serves to substantiate the present
formalism.

The summation over the negative states makes the
sums in (5.10) to (5.15) divergent; naturally, there is an
inGnite number of particles present in the negative
states. Only the deviation from the vacuum state is
physically interesting.
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Thus one has to renormalize everything so that it is
zero for T=0, It is seen that all one has to do is to take
the sums only for the positive eigenvalues of the energy
and to double their value. Furthermore, the summation
over the spins gives an additional factor 2. Thus we have

F= 4kT—Px log {1+exp( Ex—/kT) }, (5.1&)

S=4k pa{log(1+exp( —Ex/kT)
+ (Ex/kT) { exp(Ex/kT)+1] '}, (5.19)

E=4 Qx Ex/{exp(Ex/kT)+1}, (5.20)

X=4 Px 1/{exp(Ex/kT)+1}. (5.21)

The sums can be approximated by integrals and the
latter expanded into asymptotic expressions. One then
obtains' the following formulas which are analogous
to the expressions (4.13) to (4.16):

F (2z m) 3~' ~ 1 ( mc'$
(kT) ~ P e.p} —I

V h' e@' ( kT)
15 kT

)& (—1)"+' 1+— +, (5.22)
8e mP

S 4 (2+m)3" 1 r mc'q
(kT)'&'~' g exp~ —e

V T h' ~ e"' ( kT)

H=gx he} El (Nx&o+Nx&'&+I). (6.1)

Hence the partition function Z becomes

Z= g exp {—0 Px(Xx&'&+iVx&'&+1) hc I El }
(1) ++(%) (6.2)

or

logZ= —2 pre log{1—exp( —ah }El)}
—~ Zxhc}EI ~

(6 3)

Equation (6.3) is the same expression as for the
Schrodinger-Gordon Geld, except for the factor 2 and

~x=hc}KI. (6.4)

Hence we obtain the same expressions as in (4.10)
to (4.12) except for that factor 2 and m=0. The in-
tegrals can be calculated, ~ and yield

VI. THE ELECTROMAGNETIC FIELD

As the last application of the formalism outlined in
this paper we take the electromagnetic field. One expects
to obtain the Stefan-Boltzmann expressions for which,
thus, a new derivation is supplied.

The hamiltonian of the electromagnetic Geld may be
represented in the following symbolic form (Wentzel, '
p. 117)

35 kT F kT( t" r hcE)
1)„+, 1+ + { (523)

——— ~ log 1—exp} —
} IPdE

s

E (2am)~~' 1 ( mc')—=4 (kT)'I'mc' P exp} —e
V h' ~ e'" 5 kT)

S k t "thcE rhcE)
)(( 1)~+i 1+ +... (5 24)

——
~,

I exP}
g~ mcn V s' ~ 0 1 kT . 4 kT

8 m k4T4

(6 5)
45 h'c'

1V (2sm)31' ~ 1 r mc')—=4 (kT)II' Q exp} n—
V h' ~ n'i" E kT]

hcE~ 32 Hk4
—log 1—exp} —

}
E'dE= T', (6.6)—

kT ) 45 k'c'

15 kT
X(—1)"+' 1+— + ~ ~ ~ . (5.25) E/V= (1/s~) ~l E'hcdK/{exp(hcK/kT) 1}—

s~~
These relativistic formulas correspond to the non-

relativistic ones in a similar way to the one outlined
when we were dealing with the Schrodinger-Gordon
equation. Again, it is not possible to obtain the non-
relativistic expressions by letting c approach inGnity.
In the particle-picture, one would say that (5.22) to
(5.25) describe the thermal equilibrium of electron-
positron gas mixture which contains an equal number
of particles of either kind. Thus, the energy of creation
for each pair of electrons and positrons is contained in
the thermal energy of the Geld.

At room temperature (68'F), the equilibrium state is
almost Dirac's vacuum state. The number of particles
per unit volume deviating from the vacuum state is

X/V =10~"~"cm-'. (5.26)

8 mk4
T4, (6.7)

15 hV

which is indeed what was expected.

VII. CONCLUSION

In spite of many applications of quantum statistics
to Geld theories, a consistent treatment of this subject
had not yet been given before. In the foregoing sections
we have shown that Klein's' formalism of quantum
statistics can be applied to Geld theories without the
need of much al.teration. In some instances the thermo-
dynamic functions were very similar to those for an
ensemble of like particles; in others modiGcations had
to be made.
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The statistics of the nonrelativistic Gelds correspond
to ordinary Bose and Fermi statistics of an ensemble of
identical particles and thus agree with the results ob-
tained by KaempGer. ' The relativistic cases, however,
are different and yield new expressions where the
number of existent particles is in equilibrium with the
surrounding thermal conditions. It is considered as a
considerable support for the present formalism that the
thermal equilibrium at low temperatures of the Dirac
electron Geld is automatically the "vacuum" state as
described in the hole theory. Finally, the fact that the
application of our formalism to the electromagnetic
field leads back to Planck's radiation theory had to be
expected.

It seems to us that the treatment given here is much
more straightforward and direct than the approach of
Debye' and KaempBer' to the statistics of waves. We
should like to emphasize once more that here we are
not primarily concerned with the particles that are

"contained" in the field, but with the statistics of the
Geld only. The notion of "particles" is used only for
convenience because it turned out that the calculation
of the traces of the matrices representing the dis-
tribution functions is most easily performed in the
S-representation which permits one to talk about
"particles. "

In conclusion, we should like to acknowledge our
indebtedness to colleagues and students who have
shown much interest in the progress of this work. We
are especially grateful to Professor Bergmann in
Syracuse and Professor Preston in Toronto for valuable
discussions and helpful advice. Professors Green and
Schrodinger in Dublin have read and criticized the
manuscript and made pertinent suggestions; we wish
to thank them. We are also indebted to the Reuben
Wells Leonard Foundation for awarding a fellowship
to one of us (C.D.M.) which made this research
possible.
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A Calculation of the Electron A~~ity of Sodium*
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A wave function of the form C =q{r~, rg)(i+t;r~2) is assumed for the (3s) electrons of Na, to take into
account the polarization effect of the added electron, an effect neglected by the Hartree method. On this
basis the electron affinity of sodium is calculated to be +1.2 ev and therefore the negative ion is stable.
The decrease in energy relative to the Hartree result is mainly due to the increased separation and conse-
quent lowered interaction potential energy of the (3s) electrons. Since the (4s) electrons of K should be
strongly polarized, the electron amenity of potassium can be estimated to be about +0.7 ev.

L INTRODUCTION AND THEORY

A LTHOUGH the negative sodium ion Na prob-
ably can exist as a stable structure, calculation

of its energy by the method of the self-consistent fielcV

leads to a negative electron affinity, indicating an un-
stab1e ion (to the accuracy of the approximation). The
reason is that the Hartree-Fock method cannot take
into account the polarization e6ect of the added elec-
tron, an eGect which contributes very largely to the
stability of a negative ion. ~

To take account of the polarization of the two outer
shell electrons, it is necessary to adopt a wave function

*Presented at the February, 1951 meeting of the American
Physical Society in New York. Part of a dissertation submitted in
partial ful61lment of the requirements for the degree of Doctor of
Philosophy at Brown University.

f Now at Yale University, New Haven, Connecticut.' D. R. Hartree and %.Hartree, Proc. Cambridge Phil. Soc. 34,
550 (1938).

This question is discussed by D. R. Hartree, Rep. on Prog. in
Phys. 11, 113 (1948) and E. Conwell, Phys. Rev. 74, 268 (1948).

which depends on the interelectronic distance r~2 be-
tween the outer electrons, as well as on their distances
ri, r2 from the nucleus. The simplest wave function of
this kind is

f (r3 ' ' rN)c'(&1 &2 &12)

where the inner ten electrons are represented by the
numbers 3, , X()V= 12 for Na ), and the outer two
electrons are labeled i and 2. If the wave function U
of the Na+ core is chosen as a product of one-electron
functions, it follows from the variation principle that
U is essentially the self-consistent Geld function. Simi-
larly, if exchange is included U becomes the Hartree-
Fock function, a determinant of one-electron functions.
We are led in either case to an equation for C, which

I There is a slight difference between U and the s.c.f. function
because 4 is not the Hartree function. However, the distinction is
only a theoretical one, since the wave function U is negligibly
in6uenced by the outer wave functions.


