tion to make β -emission possible. The β -emission H⁴ \rightarrow He⁴+ β ⁻ would give rise to high energy (~15 Mev) β -rays with a likelihood of short half-life. A search for these was made using a NaI (Tl) scintillation detector.

To study the region of half-lives of about 1 second, the same technique was used in the Li⁸ half-life determination described in the previous letter.¹ The discriminator in the circuit was set so that only high energy electrons would be counted. The observation of Li^8 produced by the $Li^7(d, p)Li^8$ reaction was used as an indicator of the sensitivity of the apparatus and made it possible to relate the expected ratio of β -intensities from H⁴ and Li⁸ to the ratio of cross sections of the reactions $H^{3}(d, p)H^{4}$ and $Li^{\gamma}(d, p)Li^{8}$. For a bombarding energy of 3.82 Mev there were 2000 counts observed from Li⁸ after bombardment for 3 seconds. There were no counts attributable to H⁴ after bombardment of the H^3 target with the same current and energy in the interval extending from 0.006 to 3 seconds after shutting off the cyclotron beam. This experiment was repeated 8 times, and not a single H⁴ β -ray was observed.

For half-life investigations in the region of 100 seconds, H³ was irradiated for 3 minutes and counts were simply looked for on the scaler after cutting the beam. Again, no counts were recorded, though as before, while the beam was on, neutrons from the $H^{3}(d, n)He^{4}$ reaction gave many counts.

The β -ray experiments were repeated with 4.1-Mev deuterons and 1/20 of the current of the first set of runs, and again no β -rays were detected. The combined evidence of absence of protons for Q values which would make their detection feasible, together with the absence of β -rays, decreases the probability of the existence of a stable H4, as is more fully discussed in the following note.2

We wish to thank Professor Breit for many helpful discussions and Professor Pollard for his continued interest in the problem.

Dill-Overlander-Loomis Post Doctorate Fellow. Now at Glasgow ¹ Differentiate Lower and Action and Actional Action and Actional Action and Actional Actionaction Actionactiona Actio

Evidence Regarding Instability of H⁴

G. BREIT AND J. S. MCINTOSH Yale University, New Haven, Connecticut* (Received August 3, 1951)

M CNeill and Rall's attempts¹ to find protons or β -rays from $H^3(d, p)H^4$ failed to detect these particles, decreasing the probability of there being a stable H4. The mass of a mechanically stable H⁴ must be greater than 4.0211, for otherwise Li⁸→He⁴+H⁴ would compete with β -decay of Li⁸. It must be less than 4.0259, for otherwise $H^4 \rightarrow H^3 + n$ could take place. The lower limit agrees with the value 4.019 obtained experimentally; ${}^{1}E_{\beta}$ for H⁴ \rightarrow He⁴ $+\beta^{-}$ is accordingly between 22.0 and 17.3 mMU, and the corresponding values of Q for $H^3(d, p)He^3$ are -2.23 and +2.23 Mev. The first of these is directly $H^2-H^1-n^1$. Calculations give half-lives as in Table I.

Under "Notes," N.C. is a normalization correction for a pneutron taking account of overlap probability with a He⁴ proton. The notation is as in the paper by Konopinski.5 The "forbid." factors give lengthening of the half-life. Uncertainties in Table I are: (a) the N.C. may be different for ${}^{1}D$; (b) just below dissociation into $H^3 + n$ the N.C. (1S) is large and t_1 unobservably long; (c) an uncertainty of a factor of 2 is possible on account of variability of ft values, (d) vector coupling effects in the ${}^{3}P$ states are neglected. A trace of Fermi interaction would seriously shorten t_1 for 1S_0 .

From data on β -counts, estimates have been made regarding the lower limit of Y_H/Y_L , where Y_H and Y_L are yields of $(, p)H^4$ and of (, p)Li⁸. Factors considered are: (1) ratios of barrier penetrations for first stage as in OBJ,6 (2) ratio of velocities for second stage, (3) ratio of geometric cross sections. Effects of Zr in target and of stopping powers are as in the following note.⁷ Curve Ain Fig. 1 is derived from data.¹ Absence of counts forbids the

TABLE I. Expected half-lives of H⁴.

State of H ⁴	Type of transition	Limits on $t_{\frac{1}{2}}$ (sec)	Notes
³ P ₂ odd	$\Delta I = 2$ (yes)	4.5 < t < 16 w = 41.2 to 32.5	(w = 41.2, N.C. = 3) (w = 32.5, N.C. = 2) Theory as in references 2, 3, and 4.
${}^{\mathfrak{d}}P_{1,0}$ odd	$\Delta I = 0, \pm 1 \text{ (yes)}$	0.03 < t < 0.12 w = 41.2 to 32.5	
¹ P ₁ odd (pure)	$\Delta I = 0, \pm 1$ (yes)		
$^{1}P_{1}$ +0.001 $^{3}P_{1}$	$\Delta I = 0, \pm 1 \text{ (yes)}$	30 < <i>t</i> <120	
¹ D ₂ , ¹ S ₀ even		0.4 < t < 3 w = 41.2 to 32.5	15, 25 = forbid. factor for $w = 41.2$, 32.5

region below A. Probable regions of t are marked for states of H^4 ; w, Q are shown at end points of regions. Curves marked a, \dots, d' show yield ratios versus Q. Primed letters refer to lower E_d . Unprimed letters deal with $E_d = 4.1$ Mev. The graphs for these have been displaced up by $\log_{10}20$ to allow for the smaller current. The 4.1-Mev experiment gives less information but provides more certainty regarding errors in energy scales, because for Q = -2.23Mev the 3.82-Mev experiment would barely make the reaction

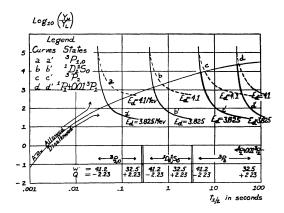


FIG. 1. Allowed and excluded regions. For each state of H⁴, parts of curves a, $\cdots d'$ below curve A are excluded.

possible. The ${}^{1}D_{2}$, ${}^{1}S_{0}$ states are probably⁸ unstable to *n* emission. The ${}^{3}P_{2}$ state appears likely to have lowest energy from shell structure spin-orbit coupling theory.9 The more likely possibility is made improbable by the experiments¹ within the reservations mentioned together with uncertainties in yields of reactions. The writers are grateful to Drs. McNeill and Rall for a helpful discussion of data.

- * Assisted by the joint program of the ONR and AEC.
 ¹ K. G. McNeill and W. Rall, Phys. Rev. 83, 1244 (1951).
 ² E. J. Konopinski and G. E. Uhlenbeck, Phys. Rev. 60, 308 (1941).
 ³ C. S. Wu, Revs. Modern Phys. 22, 336 (1950).
 ⁴ F. B. Shull and E. Feenberg, Phys. Rev. 75, 1768 (1949).
 ⁵ E. J. Konopinski, Revs. Modern Phys. 15, 209 (1943).
 ⁶ Ostrofsky, Breit, and Johnson, Phys. Rev. 49, 22 (1936).
 ⁷ J. S. McIntosh, Phys. Rev. 83, 1246 (1951).
 ⁸ S. S. Share, Phys. Rev. 53, 875 (1938).
 ⁹ M. G. Mayer, Phys. Rev. 78, 16 (1950).