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From the statistical mechanical occupation probability of microstates Einstein has inferred a distribution
function for the macroscopic states of a canonical ensemble. The conventional theory of thermodynamic
fluctuations proceeds by making certain series expansions in the Einstein function and by dropping all cubic
and higher order terms. In this paper we establish that: (u) The correlation moments for the extensive
thermodynamic parameter fluctuations may be computed directly from the distribution function for the
microstates, without introducing an intermediate macroscopic distribution function. (b) These same
moments can be evaluated from the Einstein function without making series expansions or invoking ap-
proximations. {e) All moments computed by methods (a) or {b) agree exactly. (This may be taken as an
alternative derivation of the Einstein function. ) (d) The second moments computed by the conventional
method are correct, but all higher moments are incorrect.

I. INTRODUCTION

TATISTICAL mechanics predicts both the average
values of the thermodynamic variables of a system

in equilibrium and the characteristics of the Quctuations
of these variables about their average values. ' In this
paper we discuss and, to some degree, extend the theory
of the Quctuations of the extensive thermodynamic
parameters. ' In particular we investigate the Einstein
method' which, by introducing macroscopic concepts at
the fundamental level of the distribution function,
aBords great insight into macroscopic Quctuation
phenomena.

The general subject of Quctuations is of interest for
a number of reasons. Recent developments in cryogenics
have led to the increasing application of thermo-
dynamics at low temperatures. Problems of thermo-
dynamic stability, of critical points, and of phase
transitions' have also received extensive recent atten-
tion. In each of these cases the Quctuations play a
fundamental role, as they do in all "marginal" appli-
cations of thermodynamics. Finally, in a recent paper'
by Welton and one of us, it has been conjectured that
a logical approach to a theory of linear irreversible
processes lies through the analysis of equilibrium Quc-
tuations, and it is in connection with this program that
the present investigation of Quctuation theory is
undertaken.

II. THE MSTMBUTION FUNCTION
FOR MICROSTATES

In order to introduce a convenient notation we
brieQy restate the results of statistical mechanics in
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giving the occupation probabilities of the microstates in
a canonical ensemble.

For the set of extensive parameters xp, xl, x2,
which determines the macroscopic state of a thermo-
dynamic system, we adopt the convention that xp shaB
represent the internal energy, whereas x~, x2, x3, are
parameters such as the volume, mole numbers, etc. The
expectation values of these parameters in an equilibrium
state will be denoted by Xp XI, X2, ~

The entropy may be considered as a single-valued
6rst-order homogeneous function of the extensive
parameters, S(Xp, Xi, Xp, ' '); the inverse function,
Xp(S, Xi, Xp, ), being similarly single-valued, first-
ordered, and homogeneous. Whereas the latter func-
tional form is the more convenient for the conventional
development of thermodynamics, we shall 6nd the
former form to be considerably more convenient in the
analysis of Quctuations. Indeed much of the awkward-
ness of Quctuation formalisms has arisen from the
habitual maintenance of the second form as funda-
mental.

The intensive parameters are conventionally defined

by the equations,

T= BXp/BS, Pp= BXp/—BXp ', k=—1 2, 3 ' . (1)

Alternatively, we shall 6nd it convenient to de6ne a set
of intensive parameters by the equations,

Fp= BS/BXp, k=0, 1, 2, (2)
whence

Fp 1/T, Fp Pi,—/—T; k=1, 2,—3, ——. (3)

By Euler's theorem on homogeneous functions we have

Xp= TS+Qi PpXp (4)

S=gp FpXp (5)

A set of partial Legendre transforms of the energy (the
so-called generalized Gibbs' functions) may be defined

by the equations,

Xp[T, Pi, Pp, , P,j=Xp TS QPpXp (6)— — — .
1
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The possibility of considering these transforms as
functions of the parameters T, Pg, P2, ~, I'„) X,+g,
X,+2, , instead of parameters 5, Xj, ~ ~, X„, X„g,
X„+2, ~ ., is determined by the nonvanishing of the
jacobian of this transformation. This jacobian is
identical with the discriminant of the quadratic forms
determining the stability of the system, ' and thus
vanishes only at critical points. One thus obtains the
relations,

(8/BT)Xp[T, Pc, , P,]=—S,

DI. CORRELATION MOMENTS FROM THE
MICRODISTRIBUTION FUNCTION

We now show that the correlation moments of the
fluctuating extensive parameters can be computed
directly from the distribution function for the micro-
states [Eq. (12)]; i.e., if bx& denotes the deviation of
xc, from its equilibrium value: bxc,

—= (xc,—XI,), and if
(b) denotes the expectation value, or ensemble average,
of any quantity b, then a typical moment which we
may wish to calculate is (taking i, j, k~&r) the third
moment

(8/BP))XO[T, Pc, ', P ]=—X)', (7) ((x;"—X,)(x,"—X;)(xc,"—Xc,))= (bx,bx, bxc.).
k=1, 2, , r.

A set of analogous I.egendre transforms of the entropy
(which we shall call the generalized Massieu' functions)
may be defined by the equations,

S[FD, Fg, , F„]=S QF—kXc—,
0

If co„ is the degeneracy of the e'" microstate, the
ensemble average can be written more explicitly as

(bx;bxgbxx) =Q„(u f„(x;" X;)(x,—" X,)(xg,—" Xc). —

However it follows from the form of f that

Bf„/BFc,= —((8/BFc)S[FO, , F,]+xc,")f /k

(xc," —Xc,)f„/—k, (14)
Except at critical points the generalized Massieu func-
tions may be considered as functions of the parameters,
Fo, F~, , P„X,+~, X,+2, , and satisfy the equa-
tions,

whence

(b*;bx,bx,)
= —k Q co (Bf /BF;)(x&" X,)(xc," X—c,)—

k(8/BF,—)[Q„co.f„(x," X;)(xc." X—c,)]-
+k Q. (o.f.[(xp X,)(8/BF c)

—(xI," XI,)—
+ (xc," Xc,) (8/BF,)—(x " X)].—

(b*,b*,bx.)= k(8/BF, ) (bx—,b*,)
k(bx, )BX,/B—F; k(bx.)BX;/B—F;

(8/BFI,)S[F0, , F„]=—Xg, k=0, 1, 2, ~, r. (9)

We now consider a macroscopic system and its en-
vironment in equilibrium. The system parameters
x„+~, x„+~, are assumed to be 6xed:

k=i) 2) 3, (10)
However,

(b*;)=0= (bx.)
and we obtain

(bx;bx, bxI,)= k(8/BFc) (Bx;b—x;bc,). (15)

The form of this equation is clearly maintained for
moments of any order higher than the third, so that we
have, for instance;

but we assume the interaction with the environment to
be such. that the parameters, x0, xy, x2, ~ ~ ~, x„, are able
to Ructuate about their equilibrium values; i.e., we
consider a system "canonical with respect to xo, x~,
x„and microcanonical with respect to x„+~, x„+~, ~ ~ ." '

The distribution function for the occupation prob-
ability of the microstates is then

f =exp[(XO[T, P&, , P„]—xp+P P~c,")/kT] (11)
j.

r

f =exp[—(S[FO, , F,]+/ Fpxc,")/k], (12)
0

where f„ is the occupation probability for the nc"

microstate and x~" is the expectation value of xI, in the
I'" microstate.

~ E. A. Guggenheim, Thermodynamics {North Holland Pub-
lishing Company, Amsterdam, 1949).

~ Implicit in the canonical formalism is the assumption that the
environment is so large that its "capacity" places no bounds upon
the variation of xo, xj,, ~ ~ -, x,. Except in the region of critical
points, the fluctuations are generally sufBciently small so that the
eEect of 6nite environmental "capacity" is negligible.

(bx,bx,)=P cd.f„(xc" Xc)(xg X,)— —
= —k P„cv„(xP X;)Bf„/BF, —
= —k(8/BF;)[Q„ f (;"—X,)]

+k Q (u f„(8/BFc)(xP—X;)
kB(bx,)/BF, —k(BX;/BF—c)Q ru f
kBX;/BF;. — (17)

Equations (15), (16), and (17) form a set of iteration

(bx,bx;bxpbxc)

k(8/BF c) (bx;bx, b—xj,) k(BX,/BF c) (bx,b—xc,)
k(BX,/BF, )(bx—;bxa) k(BXa/BFr)(bx—,bx,). (16)

The second moments must be considered separately. We
have
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equations from which we immediately obtain

(bx;bx; bxg) =Is'8'Xs/8F, aF;

Xexp( —(5[Pa, , F.]++Prxa)/&) (20)
0

where Odh0 ~ .dx, is the total number of microstates,
each state being weighted with its degeneracy, in the
range dh0~ dx)q '

) dhs.
We now let 00 denote the value of 0 corresponding to

unit density of states in the space of x0, x~, ., x, and
recall that the entropy in a microcanonical ensemble
having parameters in the range dh0, dh~, ~, dh„ is
de6ned' as

s=—k ln(Q/QD) (21)

F

W= Qo exp[ —(5[Fo, , F,] s+P Fgcl)/k] —(22)
0

(bx;ax, bxpax()

O'8—'X;/8F;8PsaFi+fs'(8X;/8Pi) (8X;/8PI)
+ z (ax,/ap, )(ax,/ap, )

+k'(8Xg/8Pi)(aX;/8P~). (19)

Equations (17), (18), and (19) are then the funda-
mental equations for the correlation moments of the
thermodynamic extensive parameters. It is, of course,
clear that the indices appearing on the right sides of
these equations may be freely permuted. It should also
be noted that in performing the differentiations indi-
cated, the fundamental set of independent parameters
is to be considered to be F0, . , F„X,+~, X„+2, ~ .
IV. THE MACROSCOPIC DISTRIBUTION FUNCTION

%e shall now brieQy review the logic whereby the
distribution for the microstates may be transformed
into a distribution function for macroscopic states. 6 It
follows immediately from Eq. (12) that the probability
W'dh0 . dh„of 6nding a system, canonical with respect
to x0, hj, , x„with parameters instantaneously in the
ranges dx0, dh~, . , dx, is

8'Ch0 dh, = QCh0 ~ ~ dx

for the fact that there is a single general thermo-
dynamics, rather than a "microcanonical thermo-
dynamics" and a separate "canonical thermodynamics. "
Thus we may now simply say that s is the entropy of a
system in equilibrium, with parameters x0, x&, ~ ~, x,.

To recapitulate, the probability of 6nding a system
with deviations from equilibrium between axo = (xp —Xo)
and axo+daxo= [(xo+dxo) —Xo], and between ax~
= (xl—X1) and 8xl+daxl= [(x1+dxl) —Xl], and

'~ 0
7

between bx, = (x,—X,) and ax,+dbx, = [(x„+dx„)—X,]

Wdxp dx„= Qodxp dx„
r

Xexp[—(S—s+P Fj,axl,)/k], (24)

s—S=Q Fl,bxl, +~2 Q S,gax, axe
j,k=0

where

+(1/3!) Q 5,;ghx;bx, bxI,+, (25)
s, jk 0

S,~——Sp, ——8'5/8X;8Xp —— '8s/a, xagx(26)
(the latter evaluated at Xo, X&, . , X,), and similarly
for S;,~, S;;I,~, . Dropping the cubic the cubic and
higher order terms, we obtain

where S and s are the entropies of systems in equi-
librium with parameters X0, Xj., ~ ~ ~, X„and x0, x~,

x„, respectively.
Although we shall adopt Eq. (24) as the funda-

mental macroscopic distribution function and shall show
that all quantities of interest can be computed directly
from it, the conventional procedure at this point has
been to expand either (s—5) or (xo—Xo) in a Taylor
series and to drop the cubic and higher order terms in
the expansion. Of these two procedures, the expansion
of (xo—Xo) is the more awkward, but has nevertheless
been the more common. We shall illustrate the more
reasonable, but still unnecessary procedure of ex-
panding (s—S). We obtain

or W~A exp( P 5;I,bx, bxl,/2k),
j'.k-0

(27)

lV= Qo exp[ —
f5—s+Q FI,(xl, XI) I/0]. (23)—

0

The essential point of the argument is to now note that
although S is the entropy of a canonical ensemble with
parameters X0, X~, ., X, and s is the entropy of a
microccnoeiccl ensemble with parameters x0, x~, . , x„,
nevertheless s is the same function of its parameters as
S is of its parameters. This fact is a fundamental
theorem of statistical mechanics, rooted in the enor-
mously high dimensionality of the phase spaces (speaking
classically) of thermodynamic systems, and responsible

A. I. Kbiochin, Mathematical Fousdatiyes of Statistical
Mechanics (Dover Pubhcations, Neer York, 1949).

where A is a renormalization constant. We shall refer
to Eq. (25) as the "approximate macroscopic distribu-
tion function, " as distinguished from the true macro-
scopic distribution function of Eq. (24).

V. CORRELATION MOMENTS FROM THE
MACROSCOPIC DISTRIBUTION FUNCTION

We shall now show that the correlation moments of
the Quctuating extensive parameters can be computed.
directly from the true macroscopic distribution func-
tion, (23), without invoking approximations, such as
cutting o6' a series expansion. Ke shall also 6nd that
all the correlation moments so computed are identical
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Xexpr —(S—s+Q F~bx~)/kj. (28)

As in Kq. (14) we now have

BW/BF p= —W(x p
—Xp)/k. (29)

The procedure following Eq (14). may now be repeated,
with sums replaced by integrations, and one easily
obtains the iteration Kqs. (15) and (16). Again the
second moments must be considered separately, and we
easily obtain Eqs. (17), (18), and (19). We thus see
that the macroscopic distribution function may be
directly used as the basis of calculation and yields the
correct results in all cases.

VI. AN ALTERNATE FORM FOR THE
SECOND MOMENTS

%e have seen that the correct second correlation
moments are given by

(»,bxp) = kBX;/BFp-
where, in the partial difkrentiation, the independent
variables are to be taken as F0, .-,F„X,+~, X,+~, . ~ ..
%'e now develop an alternative, and more familiar,
form for these second moments, which is of interest in
the theory of critical Quctuations, " and which bears
on the calculation which proceeds from the approximate
macroscopic distribution function. Let the inverse
matrix to the (r+1) by (r+1) matrix S,p have the
elements,

8;p=—(cofactor S,p)/~tS;p~~
—=Sp, .

Then we shall. show that

(3D)

with those obtained from the microdistribution func-
tion, so that the two distribution functions are com-
pletely equivalent. The calculation of this section may
therefore be considered as constituting an alternate
derivation of the macroscopic distribution function.

Consider a typical third moment,

(»» Bxp)=. Qp ~ t dxp dx»». Bxp
J

r i

Consider the erst of the two jacobians in this equation:

B(Xo, , X,) (B(Fo, , F,) )
B(P„,F„) (B(X„,X„))

(BDBS/BXp), ~, (BS/BX„)5 )
—'

B(Xp, , X„)

(33)

The second jacobian in Eq. (32) is identical with the
determinant of the matrix, except that the elements of
column k are BX;/BXp, BX;/BX~, , BX;/BX,. Thus
column k has a unity in position j and zeros elsewhere.
Making a laplace expansion of the determinant ac-
cording to the elements of column k we thus obtain

B(Po, , Pp i, X,, Fp+i, , F.) = (cofactor S;p) (34)
B(xo, , X.)

which, together with Eqs. (32) and (33) establishes our
result, Kq. (31).

(5fp) =k(B/B»p) log,W. (35)

and we shall see in a subsequent paper that this function

plays a fundamental role in the theory of Quctuations of
intensive parameters. With

VII. APPROXIMATE CORRELATION MOMENTS

Having now obtained the correct correlation moment

by direct calculation based on the true distribution
functions, without recourse to approximations, we shall
examine the validity of the results obtained by the con-
ventional methods, based on the approximate macro-
scopic distribution function of Kq. (25).

We shall Gnd it convenient to de6ne

(»,»p) = —kS,p. (31)

Consider the quantity BX;/BFp. Recalling the inde-
pendent variables implied therein, and employing
jacobian notation, we have

BX, B(Xg, Fo, , Fp g, Fp+g, ~, F,)
BFI, B(Fp, I'o, , Fp g, Fp~g, . , F,)

B(Fo, , FI„g, X;, Fp+g, , F„).
B(Fo, , Fp i, Fp, Pppi, , P.)
B(X„,X,)

W=A exp( Q S,p»gBxp/2k)
j,k=0

(~fp)=Z S~p»~
j=0

which, except at critical points, may be inverted:

(36)

(37)

B(Pp F )

B(Fo, , Fp g, X;, Fp+g, , F,)
(32)B(X„., X,)

' M. J. Klein and L. TlSZ8ts Ph&S RC& 76p 1861 {1949).

Now let p be a function of the form,

y—=(».)~(»,)"" (»)- (38)

where the n; are non-negative integers, and consider the
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quantity

(@(bf ))= . d(bx, ) d(bx„)W@(bf )

=k~ . .
~

d(bxo) . d(bx„)@aW/abx„

=
k~

. d(bx, ) d(bx„)

. . . moments are given as zero in the aforementioned
approximate scheme, since our iteration procedure
reduces them all to a linear combination of first
moments, which latter must vanish. Furthermore all
the fourth, sixth, eighth, . . . moments are also incor-
rectly given by the approximate macroscopic distribu-
tion function: For consider a fourth moment

(bx;bx, bxgbxi) = k(s—,i(bx, bxg)+ S„.g(bx, bxq)

+S«(b', bx, ))

X [a(d W)/abx —Way/abx„]. (39) =k'(s'isgr+s&is*a+s«s;~) (43)

Integrating the erst term with respect to bx we see
that this term vanishes because of the vanishing of plV
at the limits of integration. Thus

(@(bf ))= —k(ay/abx )= kn„(4/—bx ) (40).

Using Kq. (37) we can now put

Qbx, )=g „S,( d( fb))= —k g S„,n (y/bx ) (41).
m 0 m, =o

This equation furnishes us with an iteration equation
for the approximate correlation moments, the moments
on the right being two orders lower than the moment
on the left. If we take &=1 so that n =0 for all m we
obtain (bx~)=0 as is to he expected. If we put P= hx;

we have m„= b; (where b„; is the Kronecker delta) and

(bx;bxp) = —ks, g

which is identical with (32). This result shows that all
the second moments computed with approximate
macroscopic distribution function are exact. It has
heretofore been considered, on the contrary, that the
dropping of the higher terms in the exponent of 8' must
cause small but nonzero errors in the results (42) for
the second moments, and that these errors might con-
ceivably become significant near critical points.

It is also easy to see that all the third, 6fth, seventh,

If we compare the right-hand members of Kqs. (43) and
(19) we note that each contains certain purely thermo-
dynamic quantities and diferent powers of Boltzmann's
constant; but transformations among purely thermo-
dynamic quantities cannot involve Boltzmann's con-
stant, so that Kqs. (43) and (19) cannot be identical.
Therefore we see that the approximate macroscopic dis-
tribution function yields all the second moments of the
thermodynamic extensive parameter fluctuations ex-
actly, but that all the higher moments are incorrectly
given.

VIII. CONCLUSION

In considering the various Quctuation moments of
thermodynamic extensive parameters, we may either
take a microscopic point of view and proceed directly
from the distribution function for the microstates in the
canonical ensemble, or we may take a completely
macroscopic viewpoint and proceed from the Einstein
function which gives the probability of each instan-
taneous macroscopic fluctuation. In both cases we may
proceed entirely without approximation, and the
results of both methods agree completely. The macro-
scopic point of view provides insight into various phe-
nomena, such as irreversibility and the Quctuations in
the intensive parameters, which is not so directly
a6orded by the microscopic point of view.


